
flexible, professional
education

Software
Engineering
(part-time)

MSc in

Software
Engineering

‘Software engineering’ is the application
of scientific and engineering principles to
the development of software systems:
principles of design, analysis, and
management. The application of these
principles makes it easier to develop
software that meets its requirements,
even when these requirements change; to
complete the development on time, and
within budget; and to produce something
of lasting value, by being easy to maintain,
re-use, and re-deploy.

The Software Engineering Programme at the
University of Oxford teaches the principles of
modern software engineering, together with the
tools, methods, and techniques that support their
application. It offers a flexible programme of short
courses to those working full time in industry or
in the public sector. It is accessible to anyone with
the right combination of previous education and
practical experience.

The courses on the Programme can be used as
individual programmes of professional training in
specific subjects, or as credit towards a Master
of Science (MSc) degree in Software Engineering
from the University of Oxford. Students on the
MSc take between two and four years to complete
a minimum of ten courses, typically at a rate of
three courses per year, earning a degree while in full
time professional employment. The courses may be
taken in any order and combination, depending upon
previous experience and education.

Each short course is based around a week of
intensive teaching in Oxford, with some initial
reading to consider beforehand, and a six-week
assignment to complete afterwards. The teaching
week allows you the chance to explore a subject in
depth, with expert teaching and supervision, away
from the demands of work and family. The reading
gives you the opportunity to prepare yourselves;
the assignment, an opportunity to deepen and to
demonstrate your understanding.

Course Structure

4 weeks 1 week 6 weeks

Pre-Study Teaching
Week Assignment

Agile Methods AGM
Agile methods are challenging conventional wisdom
regarding systems development processes and practices;
effectively putting process on a diet, and investing instead
in people and teams. This course will enable today’s
software development professional to understand the
heart of agility, covering both the theory and practice of
agile methods such as XP and Scrum.

Software Development
Management SDM
SDM presents the skills required for the successful delivery
of complex and innovative software projects, giving
students a thorough grounding in the methodologies
and practice of people, project, and development
management, enhanced by industry guest speakers and by
syndicate exercises. On completion of the course students
will be able to assess a software development situation
and select an appropriate management strategy.

Process Quality & Improvement PRO
Every software development organisation needs to
be focused on the delivery of quality. The software
engineering discipline responds by calling for a managed
process for the construction and testing of software, and
for the improvement of that process. This course explains
the necessary concepts within the frameworks provided
by three important international standards.

Management of Risk & Quality MRQ
Too many project planning approaches concentrate on
just estimating and network aspects. This is of little value
if the project is given the wrong shape or the wrong
activities are chosen in the first place. The approach
taught in this course builds the project from an analysis of
the specific risks to be faced, in order to ‘manage quality
up and risk down’.

Requirements Engineering REN
Establishing firm and precise requirements is an essential
component of successful software development.
Requirements may be technical, although these are often
the least problematic; successful analysis requires broader
investigation, addressing the human context of current
and future work practices. This course covers a range of
methods from ‘hard’ semi-formal approaches, to ‘softer’
people-oriented ones. .

Software Engineering
Mathematics SEM
It is well known that software-based systems are
extremely complex entities; it is also well known
that abstraction offers the opportunity for software
engineers to focus on key aspects of behaviour. This
course shows how to use basic logic and set theory to
describe, reason about, and understand properties of
software and systems. The techniques presented are
given in terms of the Z formal description technique.

Specification & Design SDE
State-based modelling and analysis provides the
opportunity to develop and reason about models of
systems in terms of the potential effects of operations
on the system under consideration. This course builds
upon the material presented in SEM, and considers
how an approach based on well-founded mathematical
concepts might be incorporated into the software
development process. In doing this, the course gives
consideration to both the Z and B languages.

Concurrency & Distributed
Systems CDS
The consequences of design decisions are particularly
hard to predict in the presence of concurrency or
complex patterns of interaction. This course presents a
powerful technique for describing the intended behaviour
of concurrent systems, and for reasoning about the
interactions that emerge. The technique is based upon the
language of Communicating Sequential Processes (CSP)

Model Checking MCH
Model-checking, one of the most powerful forms
of automated reasoning, automatically explores and
validates every configuration of a given design. Without
such techniques, it is impossible to prove correctness of
complex designs. This course presents practical techniques
for the analysis of patterns of interaction, and automated
tools for the application of these techniques.

Courses in
Software
Engineering

Software Engineering Methods

These courses assume an understanding of the issues and challenges of software development.

Functional Programming FPR
In functional programming, computations are
modelled as expressions rather than statements. This
offers significant opportunities for parametrisation,
modularisation, and optimisation, beyond those available
in imperative or object-oriented programming. It also
results in programs that are clearer, simpler, and often
surprisingly concise. This course uses Haskell, but the
techniques and concepts are useful in any language –
particularly for transformations on structured data.

Concurrent Programming CPR
The next generation of soft real-time server-side
applications will only scale through massively concurrent
programs executing on multi-core processors in a
distributed environment. Erlang is an open source
language with lightweight processes, no shared data,
and built-in distribution, catering for these kinds of
problem. This course uses Erlang to implement highly
concurrent, massively scalable, soft real-time systems,
with an emphasis on fault tolerance and high availability.

eXtensible Markup Language XML
XML is a universal notation for creating languages, be
they data or instructions. This course teaches one how
to create such languages, how to validate them and
how to transform them. All using the same generic
framework of XML. We use a variety of practical
examples that highlight fundamental issues and
demonstrate how XML can be applied to a variety of
Software Engineering disciplines.

Service Oriented Architecture SOA
SOA represents a convergence of ideas from object
orientation, distributed systems, and component-
based development, underpinned by cross-platform
protocols based largely on XML. This course provides an
understanding of the strengths and weaknesses of SOA,
informed by an ability to implement simple web services
using a suitable development platform. It covers the
definition of applications as combinations of services,
and emergent properties of those compositions.

Agile Practices in Engineering APE
In this course we cover engineering practices that
support frequent, reliable delivery of software in
an agile environment. We look at techniques such
as continuous integration and pair programming, as
well as automated quality assurance, release and
deployment. We show how these methods may be
applied to greenfield or legacy projects.

Software Testing STE
Software Testing is a key aspect of the system
development. This course provides all of the key
knowledge and skills required to both lead a software
test organisation and to be actively engaged in software
testing. The course details processes, plans, methods and
tools for test and presents a full life-cycle approach to
testing. It covers functional, non-functional, performance
and security testing.

Database Design DAT
Database Design introduces the fundamentals of the
relational model, including the relational algebra and
calculus. It explores how to design relational databases
that fit business requirements and covers the topics
of normalization and orthogonal design. It teaches
how to query a relational database using SQL, and
highlights where SQL deviates from the relational model.
Finally, it touches upon query optimization, transaction
management and distributed databases.

Mobile and Sensor Networks MOB
This course presents communication protocols and
management techniques for wireless, mobile, and ad hoc
networks. It introduces application scenarios, models
and challenges of these networks; it then focuses on
wireless sensor networks, and presents in-network
processing and storage management techniques
for resource constrained sensor systems. Finally, it
introduces the concept of delay-tolerant networks, and
touches upon epidemic and gossip-based protocols.

Software Engineering Tools

These courses assume a familiarity with modern programming languages, tools, and techniques.

Safety Critical Systems SCS
Computers are often placed in control situations within
safety-critical systems. Safety is an emergent property
of whole systems; software may play only a small part.
This course considers the specific issues, problems and
techniques associated with analysis, design, development
and verification of systems that will be used in safety-
critical applications.

Performance Modelling PMO
This course presents techniques for modelling the
performance of computing and communications systems.
It covers tools, techniques, and analytical methods to
improve the efficiency or productivity of existing or
planned computer systems. In particular, it addresses the
problem of how to design for the best balance of system
behaviour, performance, and workload.

Software Engineering Methods …continued

A range of other courses are available,
addressing subjects in software and systems
security. These may address complementary
topics, or provide useful background, for the
study of software engineering.

Security Principles SPR
This course teaches the fundamental principles of
information and systems security. It explores a wide
range of technologies, examines security standards and
expectations, and explains techniques for the evaluation of
security requirements and solutions. It places theoretical
work on protocol design, cryptography, and information
flow firmly in the context of existing and emerging
practice.

Design for Security DES
Security is a system-level property, and emerges from the
coordinated design of components and processes. This
course shows how a range of factors, from architectural
patterns to detailed technical controls, can be considered
together in the production of cost-effective solutions.
It addresses the challenge of providing security, through
a combination of infrastructure, mechanisms, and
procedures, while satisfying requirements for functionality
and usability.

Security Risk Analysis
& Management RIS
The concept of risk is central to software and systems
security. Understanding the ways in which systems
are vulnerable to threats needs to inform the selection
and prioritisation of security measures. This course
teaches a principled approach to risk analysis, explores
the techniques and practices of risk management, and
demonstrates their application through a realistic set of
examples and case studies.

Forensics FOR
Investigating computer crime is a delicate process
that requires a deep understanding of the evidential
standards expected of electronic forensic data. This
course describes the best practice in deconstructing an
attack whilst preserving evidence, and explores how to
design and evaluate systems in order to facilitate forensic
examination. It combines a principled approach with
practical work, recovering data using low-level tools.

Courses in
Software and
Systems Security

Object Orientation OOR
Objects are fundamental to object orientation: an entity that
binds together code and data, and is accessed through an
interface. When programming in the large, an object-based
design controls complexity and encourages code reuse. This
course takes a closer look at the cohesion, coupling, and
subtyping of objects, offering an introduction for beginners
and a wider perspective for more experienced programmers.

Object Oriented Design OOD
This course teaches standard techniques for the
specification and design of software systems. The notation
of the Unified Modeling Language (UML) is presented, via a
number of case studies. The course describes fundamental
principles of object-oriented modelling, requirements
development, and design, showing how to effectively use
system requirements to drive design and development.
It also introduces design-by-contract and the Object
Constraint Language.

Object Oriented Programming OOP
This course teaches the concepts and principles of object-
orientation. OOP builds on OOR, however, it shifts the
focus from logical design to the impact that the concept of
an object has on practical programming. While the language
used is Java, most of the material covered will apply equally
well to any other object-oriented language: objects,
messages, interfaces, exceptions and generics.

Design Patterns DPA
This is an advanced course in the structure and behaviour
of object-oriented systems. It is based around the notion
of a design pattern: an abstraction of a proven solution to
a recurring problem in a specific context in system design.
The course covers both the philosophy and the practice of
patterns, in both design and programming.

Software Product Lines SPL
The SPL approach to software development promises
significant improvements in time-to-market, cost,
and reliability, through the systematic identification
and exploitation of commonalities and variations in
software systems. The approach promotes asset reuse
throughout the software life cycle, and facilitates product
customisation; it has been applied successfully in a number
of different domains, by large and small organisations alike.

Software Engineering Tools

…continued

Trusted Computing Infrastructure TCI
 A secure system relies on numerous layers operating
together. This course looks at the platforms underpinning
secure systems, with an emphasis on practical means
of implementing these securely. It examines roots and
chains of trust, operating systems, trusted platforms, and
virtualisation. It shows how these are applied to secure
networking, remote working, trusted storage, and remote
computation in grids and clouds.

People & Security PAS
Many failures in security can be attributed to human
weakness, misunderstanding, or failure to grasp the
importance of prescribed processes and procedures.
The interaction between people and technology often
presents a significant challenge to secure operation. This
course teaches techniques drawn from human-computer
interaction and psychology, addressing this challenge
within the context of hard, technical decisions.

Network Security NES
Networks are a potential vector for many attacks, and
are an ideal location for threat mitigation technologies.
This course teaches approaches to prevent, detect, and
remediate security problems in the network at each
layer, as well as looking at cross-cutting concerns across
the networking stack. It examines the strengths and
weaknesses of boundary protections, intrusion detection
and prevention, and privacy-preserving routing.

Data Security DAS
Issues of data security are becoming increasingly
important in many contexts; further, it is becoming more
difficult to separate the design and implementation of
technical solutions in this area from overarching ethical
and legal concerns. This course gives consideration to
recent developments in the fields of information security
and privacy, and reflects upon how they impact upon
models of data access, release and aggregation.

Security Incident Management SIM
 Managing security incidents is critical to business
continuity. Incidents range from the small and predictable,
which can be eliminated through operation controls, to
the large and unpredictable, where standard management
controls may not work. This course teaches the principles
of incident management in practice, and identifies key
themes for effective response to events that impact
upon businesses, governments, and individuals.

Secure & Robust Programming SRO
Secure and Robust programming focuses on the
low level aspect of high integrity code generation.
We revise fundamental aspects of logic to provide a
robust foundation to specification. We show how logic
programming can be used to animate specifications and
create effective static analysis tools. We then proceed
to Design by Contract and through the use of a case
study, show how to annotate programs with behavioral
constraints to ensure a weak form of correctness.

Cloud Security CLS
 Automated self-managed services – for software,
platforms, and infrastructure – can provide significant
convenience for local administration, yet also remove
many tools and controls commonly used, while
introducing new risks and threats. This course reviews
the architectural principles of cloud computing,
describes threats and security controls at each level of
abstraction, and addresses cloud management services
for trustworthy, secure, and resilient operation.

Mobile Application Security MAP
 Mobile devices present distinctive challenges for
security, including problems of device association,
power constraints, and restricted interfaces. Mobile
applications often incorporate both local and remote
services, complicating the management and enforcement
of security policies. This course presents a range of
techniques for the design and implementation of secure
mobile applications, balancing the requirements of
functionality, security, resource utilisation, and privacy.

“The MSc looks impressive on a
resume. It has certainly opened
a number of doors for me”

MSc in Software
Engineering

A postgraduate degree is evidence of individual ability
and understanding beyond the expectations of industry
training, undergraduate education, and professional
experience. It is a demonstration that you have achieved
a mastery of the subject: that you can select, adapt, and
apply appropriate techniques; that you can evaluate what
is, and what is not, working; that you can anticipate, and
facilitate, change. This kind of evidence can be invaluable
in the workplace: to lend additional authority to your
opinions; to better establish your credentials; and to
reassure others as to your suitability for new roles and
responsibilities.

A postgraduate degree is also an opportunity for
personal development: a chance to test your ideas
and intuitions, to experiment with new tools and
techniques, and to make new connections between
theory and practice. It is an environment in which you
can take a step back from the immediate demands
and compromises of your latest project, and think
more strategically about the nature of the problems
you encounter, and how they might be solved more
efficiently, and more effectively. This kind of opportunity
can be invaluable in your personal life, bringing new
confidence, skills, and inspiration.

The University
of Oxford

The courses take place in a purpose-built teaching
facility in Oxford, part of the new building for the
Department of Computer Science. Each course is
taught by a subject expert: a member of faculty, or an
industrial practitioner. The students will bring a varying
combination of expertise and experience: some will be
developers, managers, or consultants; others will be
architects, designers, or testers. Class sizes are kept
small to facilitate learning and interaction.

All students are members of the University’s
Department of Computer Science, a recognised centre
of excellence for teaching and research in computing
and related disciplines. The University of Oxford was
the first university in the English-speaking world, and is
consistently ranked among the ten leading universities
globally.

Each student will be a member also of one of the
Oxford colleges. Several colleges offer places for this
course, but most students choose to belong to Kellogg
College, a college established specifically to meet the
expectations of students on professional and non-
residential programmes. If a student on the programme
already has a degree from Oxford, and was a member
of a different college for their previous period of study,
then they may prefer to return to that college. All of the
teaching faculty whose teaching is primarily for part-
time students are themselves members of Kellogg.
.

Studying on
the Programme

Getting Started

All of the courses described above can be taken as
individual programmes of professional training. You may
book a place on any course on-line, or by calling the
Programme Office. One month before the teaching week
– or upon payment of the invoice, if later – you will be
sent some initial reading material. The teaching week
itself runs from 9am to 5pm from Monday to Thursday,
and from 9am to 12.30pm on Friday. At the end of the
week, you will be given an assignment task: you can
take this, and get feedback on your submission, even if
you have no plans to use the course as credit towards a
postgraduate qualification.

To study for a postgraduate qualification – the MSc
in Software Engineering – you need to make a formal
application to the University. You can take up to two
courses before doing this and still use them as credit,
provided that you complete the assignments. If you
appear to meet the admission criteria, you will then
be invited for an interview, where you will have the
opportunity to discuss your expectations, your study
plans, and your readiness to take part in a programme of
part-time, professional education. If your application is
successful, then you may be admitted at the beginning
of the next term: in January, April, or October.

The admission criteria are straightforward; relevant
industrial experience is valued as highly as previous
education. At a minimum, we expect applicants to have
either a degree-level qualification in a related discipline,
or a substantial record of practical achievement in
software development in a professional context. We will
ask also for at least two references, one of which will
normally come from your current employer.

www.softeng.ox.ac.uk/apply

Course Selection

Each of the courses is designed to work as a separate
programme of learning, and courses in related subjects
can be taken in any order. Some of the courses assume
familiarity with material taught in others: if you are
not already familiar with this material, then you may
obtain greater value by attending the other courses
first. Advice and guidance on course selection can be
obtained from the Programme Office.

“I work in IT, but my
background is in physics. This
was an ideal opportunity to
get a formal qualification in
the area that I work in.”

Academic Awards

To be awarded an MSc in Software Engineering, you
will need to attend ten short courses, complete the
corresponding assignments, and write a dissertation
based upon a research project of your own design.
You have four years from the date of admission to do
this, although more time will be allowed in exceptional
circumstances. Most students take three or four years
to complete the MSc; some take two years, which is
the minimum period allowed between admission and
graduation.

The security courses offered by the Programme can
be used for the MSc in Software Engineering. If you
prefer to take the majority of your courses on security
subjects, and write a dissertation on the same topic,
then you can choose to be examined instead for the
MSc in Software and Systems Security.

If your plans change while you are studying and you
are no longer able to meet the requirements for
an MSc, even if more time were allowed, then you
may choose to be examined for a lower graduate
qualification. Attendance at four (or eight) courses,
and the successful completion of the corresponding
assignments, can lead to the award of a Postgraduate
Certificate (or Postgraduate Diploma) in Software
Engineering. Should you later return to study on the
Programme, you will be able to use these courses as
credit towards an MSc.

Fees

There is a fee for each course attended, which covers
materials and lunches during the teaching week, and the
assignment, but not accommodation. This is payable
strictly in advance.

There is an additional registration fee for students on
the MSc in Software Engineering. This may be paid in up
to four annual instalments.

These fees are revised each year, typically in line with
the rate of inflation in the UK.

Contact Software Engineering
 University of Oxford
 Department of Computer Science
 Wolfson Building
 Parks Road
 OX1 3QD UK
 +44 1865 283525
 office@softeng.ox.ac.uk
 www.softeng.ox.ac.uk

Key Facts

• a flexible programme in software
engineering leading to an MSc
from the University of Oxford

• a choice of over 30 different
courses, each based around an
intensive teaching week in Oxford

• MSc requires 10 courses and a
dissertation, with up to four years
allowed for completion

• applications welcome at any
time of year, with admissions in
October, January, and April.

