Understanding Concurrent Systems. 4: Case Studies

Sudoku in CSP!

6 4

See CSP,, coding in example files.

Understanding Concurrent Systems. 4: Case Studies

Deadlock-free routing

It is common to want a service for sending messages between nodes of a
network: imagine that the nodes send and receive messages for users
(who might be people or other processes). send.s.(r, m) and
receive.r.(s, m) represent message m sent from s to 7.

Internal packets are of the form (s, 7, m).

Most naive attempts to create a routing service lead to deadlock!

Understanding Concurrent Systems. 4: Case Studies

Deadlocking ring

D; = send.i?(b, m) — D/(i,b, m)
O ring.i?(a, b, m) — D!(a, b, m)
Di(a, b, m) = receive.il(a, m) — D;
b =P
ring.(1 ® 1)!(a, b, m) — D,

Everybody sending a message at once deadlocks this....and adding more
buffering doesn’t remove this possibility.

Let's examine deadlock in the abstract.....
. In parallel networks without 3-or-more way synchronisation....

where each component process is deadlock free.

Understanding Concurrent Systems. 4: Case Studies

Communication graphs

The communication graph of a network is formed by putting in an edge
when alphabets intersect.
FORKy _ PHIL

FORK;

PHIL,

FORK,

PHIL,

Obviously this plays a large part in hunting deadlocks.

Understanding Concurrent Systems. 4: Case Studies

Deadlock states and ungranted requests

Since deadlock is a static phenomenon, we can examine the fixed state

in which 1t occurs.

Each component process is in a state which we can add to the

communication graph.

Because of our assumptions each process must be able to perform some
action. Such actions must, be dependent one other processes (or this

would not be a deadlock).

Thus each process has one or more ungranted requests to other
processes: it is asking for a communication that the other cannot

currently agree to.

Ungranted requests are the building blocks of deadlock!

Understanding Concurrent Systems. 4: Case Studies

Strong conflict

Say two processes are in conflict if each has an ungranted request to the
other, and strong conflict if one of them has no other options.

Good networks can (almost??7) always be (re-)designed to be free of
strong conflict.

A strong conflict free network satisfying our assumptions has a proper
cycle (length at least 3) of ungranted requests.

Therefore if the network is a tree it is deadlock free....

. and methods of eliminating deadlocks from more complex networks
usually concentrate on proving there are no cycles of ungranted requests.

Understanding Concurrent Systems. 4: Case Studies

Routing in a tree network

In a tree network there is a unique path between two nodes: so that is
the way to send a message! The obvious node definition is

NodeE1(n) = L{pass.(n’,n)?(a, b, m) = NodeF1(n,a,b,m) | n’ € tnbrs(n)
O send.n?(b, m) — NodeF1(n,n,b, m)

NodeF1(n,a,b, m) = receive.n.(a, m) — NodeE1(n)
{n = %
pass.(n, tnext(n, b)).(a, b, m) — NodeE1(n)

The internal channel is pass.

But strong conflicts can arise on this channel when a pair want to send a

message to each other...this leads to deadlock.

Understanding Concurrent Systems. 4: Case Studies

Deadlock-free tree

This can be solved by making swapping a pair of messages a possibility:

NodeE2(n) = L{pass.(n',n)?(a, b, m) = NodeF2(n,a,b,m) | n" € tnbrs(n)
O send.n?(b, m) — NodeF2(n,n,b, m)

NodeF2(n,a,b, m) = receive.n.(a, m) — NodeE2(n)
$n = bF
(pass.(n, tnext(n,b)).(a, b, m) — NodeE2(n)
O swap.(n, tnext(n, b))!(a, b, m) —
swap.(tnext(n, b), n)?(a’, b’, m") — NodeF2(n,a’, b, m')
O swap.(tnext(n, b),n)?(a’, b, m") —
swap.(n, tnext(n, b))!(a, b, m) — NodeF2(n,a’, b", m")

Understanding Concurrent Systems. 4: Case Studies

Generalisation

We can use the deadlock-free tree as the core of a non-tree routing
network by ensuring that all ungranted requests arise within the tree.

See the book.

Understanding Concurrent Systems. 4: Case Studies

Routing in a ring

Assume that all messages pass round in one direction.
As we have seen, this can easily create deadlock.

Two approaches:

e Token ring: messages are always held on one of a fixed number of
tokens that pass constantly round the ring.

e Non-blocking ring: each node has two places, and only accepts a
message on send when both are empty. Thus the ring never
becomes full.

See book and example files.

Understanding Concurrent Systems. 4: Case Studies

Routing in an ordered network

Suppose that the nodes of our network are in a partial order, and that
messages only head downhill >.

Then we can design nodes so that they input from all greater neighbours
if from any.

Then there can be no cycle of ungranted requests: a minimal member of
a cycle cannot refuse one neighbour while requesting input from another.

But it seems unlikely that this can be much use for general-purpose
routing: if you can send a message from A to B you can't do the reverse!

Understanding Concurrent Systems. 4: Case Studies

The mad postman (Yantchev)

The solution is to divide each physical node into two logical ones:

N
N Sl 12

N . N

send.(i\,j)\ down.(i,j) up.(i+1,j)

WA
right.(i,j) ‘," i right.(i,j+1)
o/
left. (i,j— 1= ’ left.(i.j)
[s receive. (i)
N\

down.(i+1,j) up.(i,j)

Understanding Concurrent Systems. 4: Case Studies

The routing algorithm

Divide each node NN, ; into the parallel composition of two processes I; ;
and O; ;. If every message enters the pair via I; ; with destination (%, ()
it is then

e routed to [, , through the Is, where m = maz(i, k) and

n = max(j,1);
o passed to O, p;
e routed to Oy ; through the Os

So making each node parallel (or equivalent to parallel) is the key to
deadlock-free routing here.

Understanding Concurrent Systems. 4: Case Studies

The input nodes /

L ; = send.(i,5)?((z,y), m) — 1] ;((4,5), m)
O down.(i,7)7(x,y)?p — I ;((z,y),p)
O right.(2,7)?(x,y)?p — IZ-’,J-((CU, Y), D)

I i ((z,y),p) = right.(i + 1,5)/(z, y)!p — L

{1 <
(down.(i,j +)z, y)lp — I ;
< < yP
over.(i,5)(z,y)lp — L ;)

Understanding Concurrent Systems. 4: Case Studies

The output nodes O

0;,;((z,),

p) =

left.(i — 1,5)!(z, y)!p — O
£ > b
(up.(3,5 — D)lzlylp — 05 ;
L > y>

recewve.(t,j)!lp = O; ;)

Understanding Concurrent Systems. 4: Case Studies

Communications protocols

Let's assume we have a medium that can lose or duplicate messages, but
cannot corrupt or reorder them. It can send structured (i.e., not just
bits) messages and acknowledgements,

Note that corruption can be turned into loss via checksums: corrupted
messages are discarded.

Understanding Concurrent Systems. 4: Case Studies

Alternating Bit Protocol The simplest of a family of protocols for

this situation is the alternating bit protocols, whose network is

Y

Cl1

In out

Y

Y
n

A
Y

A

C2

A

Messages and acknowledgements are tagged alternately with 0 and 1 to
distinguish new ones from repetitions and duplications.

This is usually described using real-time features such as time-outs, but
it is possible to construct a version whose correctness is independent of

timing details.

Understanding Concurrent Systems. 4: Case Studies

Error-prone channels
In the following there is no limit on loss or duplication
C(in, out) = in?x — C'(in, out, x)

C'(in, out,) = out!x — C(in,out) (correct transmission)
M outls — C'(in, out, x) (potential duplication)

M C(in, out) (loss of message)

The channels for the protocol would be C'1 = C'(a,b) and
C2=C(c,4a).

Understanding Concurrent Systems. 4: Case Studies

No matter how many errors one can tolerate, it is clear we could not
tolerate an infinite unbroken sequence of them: the system would never
get anywhere. It is useful to have a version with bounded error

behaviour.
Cn(in,out,r) = in?x — C'(in, out, z, 1)

C\ (in, out, z,r) = outlx — Cy(in, out, N)
£r = 0P
(outlr — Cy(in, out, N)
M outly — Cy(in, out,x,r — 1)

M Cy(in, out,r — 1))

Understanding Concurrent Systems. 4: Case Studies

Controlled errors

Or alternatively one where we can see the errors happening:
CE(in, out) = in?x — CE'(in, out, x)

CE'(in, out,z) = outlr — CE(in, out) (correct transmission)
O dup — out!z — CE'(in, out, z) (potential duplication)

O loss — C'(in, out) (loss of message)

Understanding Concurrent Systems. 4: Case Studies

Basic sender and receiver

Each has a parameter saying which bit the next new
acknowledgement/message will have.

S(s) =1in?z — S'(s,)

S'(s,x) = a.s.x — S'(s, 1)
Od.s — S(1—s)
Od.(1—s) — S'(s, z)

R(s) = b.s?x — out!lt — R(1—s)
0b.(1—s)?7z — R(s)
Ocl(1—s) — R(s)

Note that each is always willing both to send and receive.

Understanding Concurrent Systems. 4: Case Studies

(Un)fairness

Even if the channel processes behave perfectly, the system built from the
above can fail to make progress: there is nothing to stop (repeated)
messages or (repeated) acknowledgements infinitely excluding the other.

This can be avoided by restricting R so that it never does infinitely
many of one without the other. Namely, it is made fair.

You can either do this by putting a regulator process in parallel with R,
or by redesigning it: perhaps making channels b and c alternate.

Understanding Concurrent Systems. 4: Case Studies

See also...

Example file on Sliding Window Protocol, a development on ABP in
which the sends and acknowledgements of multiple messages are
interleaved, so we don’t have to wait for one message to be acked before

sending another.

