Trusted Computing and Trusted Infrastructure
We study Trusted Computing technologies, and ways to apply them to active trusted infrastructure: particularly in grid and cloud scenarios, and in service-oriented architectures.
The best way to understand this perspective is to look at the publications below. Much has been written about Trusted Computing at the lower levels of the hardware-software stack, but the most interesting applications arise in complex distributed systems. These also give rise to the greatest security challenges: and those which presently have no alternate evident solutions.
We also run a course on trusted computing infrastructure within the MSc in Software and Systems Security.
Prospective Students
Applications are welcome. Unfortunately, no funded studentships are available at the moment
Events
These are some events we have hosted here, or participated in elsewhere.
Hosted in Oxford
- First European Trusted Infrastructure Summer School, September 2006
- Third European Trusted Infrastructure Summer School, September 2008
- Trust 2009, April 2009
Elsewhere
- Second European Trusted Infrastructure Summer School,Bochum, Germany, October 2007
- Fourth European Trusted Infrastructure Summer School, Graz, Austria, September 2009
- Asia-Pacific Trusted Infrastructure Summer School, Shah Alam, Malaysia, 2008
- Asia-Pacific Trusted Infrastructure Summer School,Zhu Hai, China, 2007
- Trusted Infrastructure Workshop, CMU, Pittsburgh, USA, 2009
Other links
- The University is a Liaison Member of the Trusted Computing Group.
Faculty
Students
Past Members
Selected Publications
-
Exploring the use of Intel SGX for Secure Many−Party Applications
K.A. Küçük‚ A. Paverd‚ A. Martin‚ N. Asokan‚ A. Simpson and R. Ankele
In Proceedings of the 1st Workshop on System Software for Trusted Execution (SysTEX '16). New York‚ NY‚ USA. 2016. ACM.
The theoretical construct of a Trusted Third Party (TTP) has the potential to solve many security and privacy challenges. In particular‚ a TTP is an ideal way to achieve secure multiparty computation—a privacy−enhancing technique in which mutually distrusting participants jointly compute a function over their private inputs without revealing these inputs. Although there exist cryptographic protocols to achieve this‚ their performance often limits them to the two−party case‚ or to a small number of participants. However‚ many real−world applications involve thousands or tens of thousands of participants. Examples of this type of many−party application include privacy−preserving energy metering‚ location−based services‚ and mobile network roaming. Challenging the notion that a trustworthy TTP does not exist‚ recent research has shown how trusted hardware and remote attestation can be used to establish a sufficient level of assurance in a real system such that it can serve as a trustworthy remote entity (TRE). We explore the use of Intel SGX‚ the most recent and arguably most promising trusted hardware technology‚ as the basis for a TRE for many−party applications. Using privacy−preserving energy metering as a case study‚ we design and implement a prototype TRE using SGX‚ and compare its performance to a previous system based on the Trusted Platform Module (TPM). Our results show that even without specialized optimizations‚ SGX provides comparable performance to the optimized TPM system‚ and therefore has significant potential for large−scale many−party applications.
Details about Exploring the use of Intel SGX for Secure Many−Party Applications | BibTeX data for Exploring the use of Intel SGX for Secure Many−Party Applications | DOI (10.1145/3007788.3007793) | Link to Exploring the use of Intel SGX for Secure Many−Party Applications
-
Security and Privacy in Smart Grid Demand Response Systems
Andrew J Paverd‚ Andrew P Martin and Ian Brown
In Jorge Cuellar, editor, Smart Grid Security. Pages 1−15. Springer International Publishing. 2014.
Details about Security and Privacy in Smart Grid Demand Response Systems | BibTeX data for Security and Privacy in Smart Grid Demand Response Systems | Download (pdf) of Security and Privacy in Smart Grid Demand Response Systems | DOI (10.1007/978-3-319-10329-7_1) | Link to Security and Privacy in Smart Grid Demand Response Systems
-
Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing
Andrew J Paverd‚ Andrew P Martin and Ian Brown
In Fifth IEEE International Conference on Smart Grid Communications (SmartGridComm 2014). 2014.
Details about Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing | BibTeX data for Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing | Download Paverd-SmartGridComm-2014.pdf of Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing | Download Paverd-SmartGridComm-2014-slides.pdf of Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing | DOI (10.1109/SmartGridComm.2014.7007758) | Link to Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing