Handbook of Constraint Programming 1
Francesca Rossi, Peter van Beek, Toby Walsh
(© 2006 Elsevier All rights reserved

Chapter 6

The Complexity of
Constraint Languages

David Cohen & Peter Jeavons

6.1 Introduction and Outline

One of the most fundamental challenges in constraint programming is to understand the
computational complexity of problems involving constraints. It has been shown that the
class of all constraint satisfaction problem instances is NP-hard [71], so it is unlikely
that efficient general-purpose algorithms exist for solving all forms of constraint prob-
lem. However, in many practical applications the instances that arise have special forms
that enable them to be solved more efficiently [11, 25, 69, 82].

One way in which this occurs is that there is some special structure in the way that the
constraints overlap and intersect each other. The natural theory for discussing the structure
of such interaction between constraints is the mathematical theory of hypergraphs. Much
work has been done in this area, and many tractable classes of constraint problems have
been identified based on structural properties (see Chapter 5). There are strong parallels
between this work and similar investigations into the structure of so-catteginctive
queriesin relational databases [41, 58].

Another way in which constraint problems can be defined which are easier to solve
than in the general case is when tigpes of constraintare limited. The natural theory
for discussing the properties of constraint types is the mathematical theory of relations and
their associated algebras. Again considerable progress has been made in this investigation
over the past few years. For example, a complete characterisation of tractable constraint
types is now known for both 2-element domains [85] and 3-element domains [14]. In
addition, a number of novel efficient algorithms have been developed for solving particular
types of constraint problems over both finite and infinite domains [3, 8, 16, 25, 26, 28, 63].

In this chapter we will focus on the second approach. That is, we will investigate
how the complexity of solving constraint problems varies with the types of constraints
which are allowed. One fundamental open research problem in this area is to characterise
exactly which types of constraints give rise to constraint problems which can be solved

2 6.

in polynomial time. This problem is important from a theoretical perspective, because
it helps to clarify the boundary between tractability and intractability in a wide range of
combinatorial search problems [27, 37, 49, 62]. It is also important from a practical per-
spective, as it allows the development of constraint programming languages which exploit
the existence of diverse families of tractable constraints to provide more efficient solution
techniques [69, 82].

In this chapter a set of types of constraints will be callembastraint language Sec-
tion 6.2 gives the basic definitions, and Section 6.3 lists some typical examples of tractable
(and intractable) constraint languages.

In Section 6.4 we present the mathematical theory that leads us to the major results in
the area: we will characterise the complexity of constraint languages (over finite domains)
in terms of properties of associated finite algebras.

In Section 6.5 we show how the algebraic theory can be used to identify tractable
constraint languages and select an appropriate algorithm. This section presents a strong
conjecture for a simple algebraic characterisation of all tractable constraint languages. We
will also show that a direct result of the theory is that if the decision problem for a constraint
language can be solved in polynomial time, then so can the search problem. In other words,
for any language for which it can be decided in polynomial time whether a solution exists,
a solution can be found in polynomial time.

In Section 6.6 we consider how the algebraic theory can be extended to deal with
constraint languages over infinite domains, and in Section 6.7 we consider multi-sorted
constraint languages (where different variables can take their values from different sets).

Finally, in Section 6.8 we briefly consider some alternative approaches, including a
constructive approach which builds new tractable constraint languages by combining sim-
pler languages. This theory applies to constraint languages over both finite and infinite
domains. This constructive approach has a rather different flavour from the more descrip-
tive algebraic approach, and the two approaches have not yet been fully unified.

We conclude the chapter in Section 6.9 with a discussion of possible future work in
this exciting area.

6.2 Basic Definitions

In this section we begin by defining the fundamental decision problem associated with any
given constraint language. It is the complexity of this decision problem that is the main
focus of this chapter.

The central notion in the study of constraints and constraint satisfaction problems is
the notion of aelation.

Definition 1. For any setD, and any natural numbet, the set of all-tuples of elements
of D is denoted byD™. Theith component of a tuplewill be denoted by([:].

A subset oD" is called ann-ary relation over D. The set of all finitary relations over
D is denoted bR p.

A constraint languageover D is a subset oR .

The ‘constraint satisfaction problem’ was introduced by Montanari [75] in 1974 and
has been widely studied [33, 37, 65, 71, 72, 73] (see Chapter 2). In this chapter we study a
parameterised version of the standard constraint satisfaction problem, in which the param-
eter is a constraint language specifying the possible forms of the constraints.

David Cohen & Peter Jeavons 3

Definition 2. For any setD and any constraint language over D, the constraint satis-
faction problemCSP(T") is the combinatorial decision problem with

Instance: Atriple (V, D,C), where

e V is a set ofvariables

e Cis asetofconstraints {C1,...,C,}.

e Each constrainCC; € C is a pair (s;, R;), where
— s; is a tuple of variables of length;, called theconstraint scopg
— R; € I'is ann;-ary relation overD, called theconstraint relation

Question: Does there exist aolution, that is, a functionp, from V' to D, such that, for
each constraint(s, R) € C, with s = (vy,...,v,), the tuple{p(vy),...,p(v,))
belongs to the relatioi??

The setD, specifying the possible values for the variables, is calledltdmain of the
problem. The set of solutions to a CSP instafce: (V, D, C) will be denotedSol(P).

In order to determine the computational complexity of a constraint satisfaction problem
we need to specify how instances are encoded as finite strings of symbolsizébéa
problem instance can be taken to be the length of a string specifying the variables, the
domain, all constraint scopes and corresponding constraint relations. We shall assume in
all cases that this representation is chosen so that the complexity of determining whether
a constraint allows a given assignment of values to the variables in its scope is bounded
by a polynomial function of the length of the representation. For finite domains it is most
straightforward to assume that the tuples in the constraint relations are listed explicitly
(although in practice the constraint relations are likely to be defined implicitly).

Throughout the chapter we shall be concerned with distinguishing between constraint
languages which give rise to tractable problems (i.e., problems for which there exists a
polynomial-time solution algorithm) and those which do not. To ensure that tractability
does not depend on the way in which the relations are encoded, we define the notion of a
tractable constraint language in a way that depends on finite subsets only.

Definition 3. A constraint languagd;, is said to beractableif CSP(I'") can be solved in
polynomial time, for each finite subg&tC T.

A constraint languagel’, is said to beNP-completelf CSP(I) is NP-complete, for
some finite subsét C T".

There are known to be infinitely many computational problems which are neither solv-
able in polynomial time nor NP-complete [66], but we shall see below that all constraint
languages over domains of size 2 and 3 are known to be either tractable or NP-complete.
The same dichotomy is conjectured to hold for all constraint languages over any finite
domain (see Conjecture 52 below), although this question is still open [11, 37].

6.3 Examples of Constraint Languages

This section introduces some typical constraint languages that we will be concerned with
in this chapter. For each language mentioned we simply state in this section whether it
is known to be tractable or NP-complete. A more detailed discussion of many of these
languages can be found later in the chapter.

4 6.

Example 4. Let D be anyfield (that is, a set on which the operations of addition, sub-
traction, multiplication and division are defined, such as the rational numbers).| lyet
be the constraint language consisting of all those relationsowehich consist of all the
solutions to some system lifiear equationver D.

Any relation fromI'|y, and therefore any instance 65P(I"), can be represented
by a system of linear equationsver D, and so can be solved in polynomial time (e.g., by
Gaussian elimination). Hendg ,, is a tractable constraint language. O

Example 5. A constraint language over a two-element 8et= {d,, d; } is known as a
Booleanconstraint language. Using such languages we can express the standard proposi-
tional SATISFIABILITY problem [38, 77] as a constraint satisfaction problem, by identify-
ing the 2 elements ab with the logical valuegRUE andFALSE.

It was established by Schaefer in 1978 [85] that a Boolean constraint landuage,
tractable if (at least) one of the following six conditions holds:

1. Every relation inl" contains a tuple in which all entries are equadi{o
2. Every relation inl* contains a tuple in which all entries are equalito

3. Every relation inl’ is definable by a conjunction of clauses, where each clause has
at most one negative literal,

4. Every relation inl’ is definable by a conjunction of clauses, where each clause has
at most one positive literal (i.e., a conjunctionHdrn clauses;

5. Every relation inl" is definable by a conjunction of clauses, where each clause con-
tains at most 2 literals;

6. Every relation inI" is the set of solutions of a system of linear equations over the
finite field with 2 elements, GF(2).

In all other case§' is NP-complete.

This result establishestichotomyfor Boolean constraint languages: any Boolean con-
straint language is either tractable or NP-complete. Hence this result is knddahas-
fer's Dichotomy Theorem [85].

Similar dichotomy results have also been obtained for many other combinatorial prob-
lems over a Boolean domain which are related to the Boolean constraint satisfaction prob-
lem [62, 27]. O

Example 6. It follows from Schaefer's Dichotomy Theorem [85] (Example 5) that some
Boolean constraint languages containing jusingle relationare NP-complete.

For example, for any 2-element s8t= {dy, d; }, let N be the ternaryot-all-equal
relation overD defined by

Np = D*\ {{do,do,do) , {dy,dx,dr)}
- {<d07 d07d1> 3 <d0a d17d0> 5 <d07 d17 d1> 5 <d17d05 d0>) <d17d07d1> 3 <d17 d17d0>}'

The problemCSP({Np}) corresponds to thBlOT-ALL-EQUAL SATISFIABILITY prob-
lem [85] which is known to be NP-compléte

IMoreover, this system of equations can be computed from the relations in polynomial time - see [11]
2The standard version ®oT-ALL-EQUAL SATISFIABILITY given in [38, 77] is slightly more general, but
can be shown to be polynomial-time equivalen&®P ({ Np }).

David Cohen & Peter Jeavons 5

Similarly, letTp be the ternarpne-in-threerelation overD defined by
Tp = {{do,do, d1) , (do, d1,do) , {d1,do, do)}

The problemCSP({Tp}) corresponds to th©NE-IN-THREE SATISFIABILITY problem
(with positive literals) [85, 38, 27] which is known to be NP-complete. O

Example 7. The class of constraints known asax-closedconstraints was introduced
in [54] and shown to be tractable. This class of constraints has been used in the analysis
and development of a number of industrial scheduling tools [69, 82].

Max-closed constraints are defined in [54] for arbitrary finite domains which are totally
ordered. This class of constraints includes all of the ‘basic constraints’ over the natural
numbers in the constraint programming language CHIP [89], as well as many other forms
of constraint. The following are examples of max-closed constraints over a ddthain
which can be any fixed finite set of natural numbers:

3.(81 + x5 + 31‘4 Z 2£C2 + 10,
4ZC1 75 8,
x1€{1,2,3,5,7,11,13},
2rx1r3T5 > 310 + 1,

(3.131 Z 7) \ (2561 Z 4) V (5332 S 7)

Hence the constraint language comprising all relations of these forms is tractable.]

Example 8. Let D be any finite set, and I&tzoa be the set of all relations of the following
forms:

e All unary relations;
e All binary relations of the formD, x D, for subsetd),, D, of D;

o All binary relations of the forn{ (d, n(d)) | d € D}, for some subseb, of D and
some permutation of D;

o All binary relations of the form{{(a,b) € Dy x Dy | a = d; V b = do} for some
subsetd),, D, of D and some elements € Dq,ds € Ds.

These relations were introduced in [26], where they are c8llell relations.
It was shown in [26] thal’ 704 is tractable, and that for any binary relatiGhover D
which isnotin I'zpoa, I'zoa U { R} is NP-complete. O

Example 9. The class of binary constraints known@snected row-convexconstraints
was introduced in [35] and shown to be tractable. This class properly includes the ‘mono-
tone’ relations, identified and shown to be tractable by Montanari in [75].

Let the domainD be the ordered s€id;,ds, ..., d,}, whered; < ds < -+ < dp,.
The definition of connected row-convex constraints given in [35] uses a standard matrix
representation for binary relations: the binary relat®rover D is represented by the
m x m 0-1 matrix M, by setting);; = 1 if the relation contains the paii/;, d;), and
M,; = 0 otherwise.

A relation is said to be connected row-convex if the following property holds: the pat-
tern of 1's in the matrix representation (after removing rows and columns containing only

6 6.

0’s) is connected along each row, along each column, and forms a connected 2-dimensional

region (where some of the connections may be diagonal).
Here are some examples of connected row-convex relations:

00000100O0O0 1100000000O0 00000O0O0O1TO0O0
0000111000 1100000000 0000001100
0001111010 0011100000 00000O0OO0OO0OO0OO
0111111010 00111000O00O0 00000OO0C1T1T1T1
1111111011 0011100000 0000001110
0111111010 0011100000O0 00001100O0O0
0011111010 0000011111 00001000O0O0
0011111010 0000011111 1111000000
00011000O00O0 0000011100 0111000000
00001000O0O0 0000011100 00110000O0O0

O

Example 10. The binaryinequality relation over an ordered sétis defined as follows:
<p = {<d17d2> S D2 | d1 < dg}

When D is the set of natural number®], the class of constraint satisfaction problem
instancesCSP({<p}) corresponds to thAcycLic DIGRAPH problem [4]. An instance
of this problem is a directed grapH, and the question is whethét is acyclig that is,
contains no directed cycles. Note that a directed graph is acyclic if and only if its vertices
can be numbered in such a way that every arc leads from a vertex with smaller number to
a vertex with a greater one.

Since theAcycLiCc DIGRAPH problem is tractable, it follows thdt<y} is a tractable
constraint language. O

Example 11. The binarydisequality relation over a seb is defined as follows:

?éD = {(dl,d2> c D? | dy 7é d2}

The class of constraint satisfaction problem instan€8® ({#p}) corresponds to the
GRAPH COLORABILITY problem [38, 77] with|D| colours. This problem is tractable
when|D| < 2 or |D| = oo, and NP-complete wheh < |D| < oo. O

Example 12. The ternarybetweennesselation over an ordered sél is defined as fol-
lows:

BD:{<x7y7Z>€D3|$<y<Z or J,‘>y>z},

For a finite setD, the constraint languageBp } is tractable whenD| < 4 and is NP-
complete whenD| > 5 (see Example 45).

For aninfinite seD, the constraint languade3 } is NP-complete because the class of
constraint satisfaction problem instan€&SP ({ Bp }) corresponds to thBETWEENNESS
problem, which is known to be NP-complete [38]. An instance of this problem is a pair
(A, T) where A is a finite set and” C A3; the question is whether there is a function
f+A— {1,...,]A]} such that, for every tripléa,b,c) € T, we have eitherf(a) <
fb) < fle)or f(a) > f(b) > f(c). O

David Cohen & Peter Jeavons 7

Example 13. The class of constraints known lsear Horn constraints was introduced
in [55, 61] and shown to be tractable.

The constraint relation of a linear Horn constraint is a relation over an infinite ordered
set which is specified by a disjunction of an arbitrary finite number of linear disequali-
ties and at most one weak linear inequality. The following are examples of linear Horn
constraints:

3x1 + x5 — 3x4 < 10,
A +I3+$57é77
(31’1 +$5—4IC3S7)V(2$1+3.’E2—41’3#4)V(1’2+1’3+1’57&7),
(421 + x5 # 3) V (Bag — 35 + 14 # 6).

Linear Horn constraints are an important class of linear constraints for expressing problems
in temporal reasoning [55]. In particular, the class of linear Horn constraints properly
includes the point algebra of [90], the (quantitative) temporal constraints of [59, 60] and
the ORD-Horn constraints of [76]. |

6.4 Developing an Algebraic Theory

A series of papers by Jeavons and co-authors [50, 51, 52, 54] has shown that the complexity
of constraint languages over a finite domain can be characterised using algebraic properties
of relations (see Figure 6.1).

The first step in the algebraic approach to constraint languages exploits the well-known
idea that, given an initial set of constraint relations, there will often be further relations that
can be added to the set without changing the complexity of the associated problem class.
In fact, it has been shown that it is possible to add all the relations that can be derived from
the initial relations using certain simple rules. The larger sets of relations obtained using
these rules are known aslational cloneqg34, 80]. Hence the first step in the analysis is
to note that it is sufficient to analyse the complexity only for those sets of relations which
are relational clones (see Section 6.4.1).

The next step in the algebraic approach is to note that relational clones can be char-
acterised by theipolymorphismswhich are algebraioperationson the same underlying
set [49, 52] (see Section 6.4.2). As well as providing a convenient and concise method
for describing large families of relations, the polymorphisms also reflect certain aspects of
the structure of the relations that can be used for designing efficient algorithms. This link
between relational clones and polymorphisms has already played a key role in identifying
many tractable constraint classes and developing appropriate efficient solution algorithms
for them [14, 15, 17, 19, 28, 50].

The final step in the algebraic approach links constraint languages with finite univer-
sal algebras (see Section 6.4.3). The language of finite algebras provides a number of
very powerful new tools for analysing the complexity of constraints, including the deep
structural results developed for classifying the structure of finite algebras [45, 74, 87].

6.4.1 Step I: From relations to relational clones

As stated above, the first step in the algebraic approach is to consider what additional re-
lations can be added to a constraint language without changing the complexity of the cor-
responding problem class. This technique has been widely used in the analysis of Boolean

Complexity of a constraint language

0

Properties of the corresponding relational clane

)

Properties of polymorphism

0

Structural properties of a corresponding algebra

[72)

Figure 6.1: Translating questions about the complexity of constraint languages into ques-
tions about the properties of algebras.

constraint satisfaction problems [27, 85], and in the analysis of temporal and spatial con-
straints [36, 76, 83, 63, 64]; it was introduced for the study of constraints over arbitrary
finite sets in [49].

Definition 14. A constraint languagd' expresses relation R if there is an instance
P =(V,D,C) € CSP(I') and a list{vy, ..., v,) of variables inV such that

R = {{¢p(v1),....¢(va)) | ¢ € Sol(P)}

For any constraint languadg the set of all relations which can be expressed loyill
be called theexpressive powelof I'. The expressive power of a constraint languBgan
be characterised in a number of different ways [53]. For example, itis equal to the set of all
relations that can be obtained from the relation¥ insing therelational join andproject
operations from relational database theory [43]. It has also been shown to be equal to the
set of relations definable lprimitive positive formulasver the relations i’ together with
the equality relation, where a primitive positive formula is a first-order formula involving
only conjunction and existential quantification [11]. In algebraic terminology [34, 80], this
set of relations is called thelational clone generated b¥', and is denoted byT").

Example 15. Consider the Boolean constraint langudge= {R;, R>} whereR; =
{(0,1),(1,0),(1,1)} and Ry = {(0,0),(0,1),(1,0)}.

It is straightforward to check that all 16 binary Boolean relations can be expressed
by a primitive positive formula involving?; and R,. For example, the relatioRs; =
{{(0,0),(1,0),(1,1)} can be expressed by the formuky = JyR,(z,y) A Ra(y, 2).
Hence(T'), the relational clone generated Byincludes all 16 binary Boolean relations.

In fact it can be shown that, for this constraint langudgethe set(T") consists of
precisely those Boolean relations (of any arity) that can be expressed as a conjunction of
unary or binary Boolean relations [81, 87]. This is equivalent to saying that the constraint
languagd” expresses precisely this set of relations. a

David Cohen & Peter Jeavons 9

The link between these notions and the complexity of constraint languages is estab-
lished by the next result.

Theorem 16 ([11, 49]). For any constraint languag€ and any finite subsdt, C (I')
there is a polynomial time reduction fro@5P(T'y) to CSP(T").

Corollary 17. A constraint languagg€ is tractable if and only ifT") is tractable. Similarly,
I is NP-complete if and only i) is NP-complete.

This result reduces the problem of characterising tractable constraint languages to the
problem of characterising tractable relational clones.

6.4.2 Step Il: From relational clones to sets of operations

We have shown in the previous section that to analyse the complexity of arbitrary constraint
languages over finite domains it is sufficient to consider only relational clones. This con-
siderably reduces the variety of languages to be studied. However, it immediately raises
the question of how to represent and describe relational clones. For many relational clones
the only known generating sets are rather sophisticated, and in some cases no generating
sets are known.

Very conveniently, it turns out that there is a well-known alternative way to represent
and describe any relational clone: usggerations

Definition 18. Let D be a set, and a natural number. A mapping : D* — D is called
a k-ary operationon D. The set of all finitary operations ab is denoted byD p,.

We first describe a fundamental algebraic relationship between operations and rela-
tions. First, observe that any operation on a Betan be extended in a standard way
to an operation on tuples of elements fradmy as follows. For any K-ary) operation
f and any collection of tuples,,... t, € D", define f(¢1,...,t) to be the tuple

(Fta(t], - te[1]), s f(tand, - s tn])

Definition 19 ([34, 74, 80, 87]).A k-ary operationf € Op preservesan n-ary relation
R € Rp (or f is apolymorphismof R, or R is invariant under f) if f(¢1,...,tx) € R
for all choices ofty,...,t; € R.

For any given set§' C Rp andF C Op, we define the mappingBol andInv as
follows:

Pol(T') = {f € Op | f preserves each relation frof},
Inv(F) = {R € Rp | Ris invariant under each operation fraft}.

We remark that the mappind3ol and Inv form a Galois correspondencbetween
Rp andOp (see Proposition 1.1.14 of [80]). Brief introductions to this correspondence
can be found in [34, 79], and a comprehensive study in [80]. We note, in particular, that
Inv(F) = Inv(Pol(Inv(F"))), for any set of operations'.

Itis a well-known result in universal algebra that the relational clone generated by a set
of relations over a finite set is determined by the polymorphisms of those relations [80].
Here we will establish this key result using purely constraint-based reasoning.

10 6.

Sets of
relations

Sets of
operations

Inv(Pol(I')) o
=N

| @ Pol(l)

Figure 6.2: The operatotav andPol.

Definition 20. LetI" be a finite constraint language over a finite &t
For any positive integek, theindicator problem of orderk for I is the CSP instance
P =(V,D,C) € CSP(I") where:

e V = DF (in other words, each variable i® is a k-tuple of domain elements).
e C ={(s,R) | R € T ands matchesR}.

In this definition we say that that a list ftupless = (v, ..., v,) matches relation R if

n is equal to the arity of? and for eachi € {1,2, ..., k} then-tuple (vy[i], ..., v,[i]) is

in R. Hence the CSP instan@@has constraints from the constraint langudgen every
possible scope which matches a relation flbm

Note that the solutions to the indicator problem of orkléor I are mappings fronb*
to D that preserve each of the relationslinhence they are precisely tkeary elements
of Pol(T").

Indicator problems are described in more detail in [48], where a number of concrete
examples are given. A software system for constructing and solving indicator problems for
given constraint languages is described in [39].

Theorem 21 ([49, 80]).For any constraint languagg over a finite set(I") = Inv(Pol(T")).

Proof. If two relations both have a polymorphisify then their conjunction also has the
polymorphismyf. Similarly, if a relation has a polymorphisif) then any relation obtained

by existential quantification of that relation also has the polymorphfsnFinally the
equality relation has every operation as a polymorphism. It follows from these observations

David Cohen & Peter Jeavons 11

that for anyR in the relational clone of' we havePol({R}) D Pol(I"). Hence(I') C
Inv(Pol(T)).

To establish the converse, [Etbe a constraint language over a finite sgtlet R be
an arbitrary relation ifinv(Pol(T")), and letn be the arity ofR. We need to show that
R € (I'), or in other words thak can be expressed using the constraint langliage

Let k£ be the number of tuples in the relatiéty and construct the indicator problem
P of orderk for I'. Choose a list of variables = (v1,...,v,) in P such that each of
then-tuples(v1[d], ..., v,[i]), fori = 1,..., k, is a distinct element of our target relation
R. Consider the relatio®; = {{f(v1),...,f(vn)) | f € Sol(P)}. By the observation
above, the elements 8bl(P) are thek-ary polymorphisms of', and these include the
projection operations which simply return one of their arguments. By the choiceath
of these projection operations results in a distinct tupl& difeing included inR;, and so
R C R,. Conversely, by the choice &, every polymorphism of' preserves?, and hence
every element of?; is contained inR. O

Since the relational clonf”) consists of those relations that can be expressed by the
constraint languagg, we immediately obtain the following strong link between polymor-
phisms and expressive power.

Corollary 22. A relation R over a finite set can be expressed by a constraint langiliage
precisely whePol(I") C Pol({R}).

Combining Theorem 16 and Theorem 21 we obtain the following link between poly-
morphisms and complexity.

Corollary 23. For any constraint languageE, 'y over a finite set, ifl’y is finite and
Pol(T") C Pol(T'y), thenCSP(T'y) is reducible toCSP(T") in polynomial time.

This result implies that, for any finite constraint langudgever a finite set, the com-
plexity of CSP(T") is determined, up to polynomial-time reduction, by the polymorphisms
of I'. Hence we can translate our original problem of characterising tractable constraint
languages into an equivalent problem for sets of operations.

Definition 24. A set of operationg’ C O, is said to be tractable ifnv(F") is tractable.
AsetF C Op is said to be NP-completelifiv(F') is NP-complete.

With this definition we have translated our basic challenge into characterising tractable
sets of operations.

6.4.3 Step lll: From sets of operations to algebras

We have seen in the previous section that the problem of analysing the complexity of a
constraint language can be translated into the problem of analysing the complexity of the
set of operations which preserve all of the relations in that language. In this section we
shall open the way to the use of a further set of powerful analytical tools by making the

final translation step, from sets of operations to algebras.

Definition 25. Analgebrais an ordered paitd = (D, F') such thatD is a nonempty set
and F' is a family of finitary operations o®. The setD is called theuniverseof A4, and
the operations fron¥’ are calledbasic An algebra with a finite universe is referred to as
a finite algebra.

12 6.

To make the translation from sets of operations to algebras we simply note that any set
of operationsF’ on a fixed setD can be associated with the algeljfa, F'). Hence, we
will define what it means for an algebra to be tractable by considering the tractability of
the basic operations.

Definition 26. An algebrad = (D, F') is said to be tractable if the set of basic operations
Fis tractable. An algebrad = (D, F') is said to be NP-complete i is NP-complete.

Our basic task is now translated as: characterise all tractable algebras.

It will be useful to describe an equivalence relation linking algebras that correspond
to the same constraint language. As we noted earlier, the mappingsdInv have the
property thafinv(Pol(Inv(F'))) = Inv(F'), so we can extend a set of operatidnso the
setPol(Inv(F')) without changing the associated invariant relations. Th®sEInv(F))
consists of all operations that can be obtained from the operatiafistiogether with the
set of all projection operations, by forming arbitrary compositions of oper&tioNste
that any set of operations which includes all the projection operations and is closed under
composition is referred to by algebraists adane of operations. The clone of operations
obtained from a sek’ in this way is usually referred to as the set®fm operationover
F, so we will make the following definition.

Definition 27. For any algebrad = (D, F'), an operationf on D will be called aterm
operationof A if f € Pol(Inv(F)).
The set of all term operations of will be denotedlerm(.A).

Two algebras with the same universe are calbeth equivalenif they have the same set
of term operations. Since, for any algebta= (D, F'), we havenv(F) = Inv(Term(A)),
two algebras are term equivalent if and only if they have the same set of associated invari-
ant relations. It follows that we need to characterise tractable algebras only up to term
equivalence.

We will now show that we can restrict our attention to certain special classes of alge-
bras.

The first simplification we apply is to note that any unary polymorphism of a con-
straint language can be applied to all of the relations in the language without changing the
complexity.

Proposition 28 ([52, 49]). LetT" be a constraint language over a sBt, and let f be a
unary operation inPol(T").

CSP(T") is polynomial-time equivalent ©0SP(f(T")), wheref(I') = {f(R) | R € '}
and f(R) = {f(t) | t € R}.

If we apply Proposition 28 with a unary polymorphisfrwhich has the smallest pos-
sible range out of all the unary polymorphismdlgfthen we obtain a constraint language

f(T') whose unary polymorphisms are all surjective. Such a language will be called a
reducedconstraint language.

Definition 29. We call an algebraurjectiveif all of its term operations are surjectife

SIf f is an m-ary operation on a seD, and g1,g2,...,gm are k-ary operations onD, then the
composition of f and g1,g2,...,9m is the k-ary operationh on D defined byh(ai,az,...,ar) =
f(gl(a17 . .,(lk), s 79m(017 B .,G,k;))-

4Some authors call an algebra surjective if all offitssicoperations are surjective. However, such algebras
can have non-surjective term operations, so our definition is more restrictive.

David Cohen & Peter Jeavons 13

It is easy to verify that a finite algebra is surjective if and only if its unary term opera-
tions are all surjective, and hence form a group of permutations. It follows that an algebra
A = (D, F) is surjective if and only ifinv(F") is a reduced constraint language. Using
Proposition 28, this means that we can restrict our attention to surjective algebras.

The next theorem shows that for many purposes we need consider only those surjective
algebras with the additional property of being idempotent.

Definition 30. An operationf on D is calledidempotenif it satisfiesf (x, ..., z) = = for
all x € D.

Thefull idempotent reducof an algebrad = (D, F) is the algebra(D, Termid(.A)),
whereTermid(A) consists of all idempotent operations frAferm(A).

An operationf on a set D is idempotent if and only if it preserves all the relations in the
setl'con = {{(a)} | @ € D}, consisting of all unary one-element relationslonHence,
Inv(Termid(A)) is the relational clone generated by (F') U I'con.

That is, considering only the full idempotent reduct of an algebra is equivalent to con-
sidering only those constraint languages in which we can arbitrarily fix variables to partic-
ular values from the domain.

Theorem 31 ([11]). A finite surjective algebrad is tractable if and only if its full idempo-
tent reductA, is tractable. Moreoverd is NP-complete if and only ifl; is NP-complete.

Next we link the complexity of a finite algebra with the complexity of its sub-algebras
and homomorphic images. In many cases, we can use these results to reduce the problem
of analysing the complexity of an algebra to a similar problem involving an algebra with a
smaller universe. In such cases we can reduce the problem of analysing the complexity of
a constraint language to a similar problem for a constraint language over a smaller domain.

Definition 32. Let A = (D, F) be an algebra and/ a subset ofD such that, for any
f € F and for anyby, ..., b, € B, wherek is the arity of f, we havef(by,...,br) € B.

Then the algebrd = (B, F|g) is called asub-algebraof A, whereF|p consists of the
restrictions of all operations i#’ to B. If B # A, thenB is said to be gropersub-algebra.

Definition 33. Let A; = (Dq, Fy) and Ay = (Dy, Fy) be such thaty = {f! | i € I}
andFy = {f? | i € I}, where bothf! and f? are k;-ary, for alli € I.
A mapd : A; — A, is called ahomomorphismfrom A; to A; if

fil(al, NS ff(‘b(al), ., ®(ag,))

holds for alli € I and allay, ..., a, € A;.
If the map® is surjective, them, is said to be enhomomorphic imagef A;.

Definition 34. A homomorphic image of a sub-algebra of an algelr&s called afactor
of A.

Theorem 35 ([11]). If A is a tractable finite algebra, then so is every factordf
If A has any factor which is NP-complete, thdris NP-complete.

14 6.
6.5 Applications of the Algebraic Theory

6.5.1 A pre-processing algorithm

The theory described in the previous section has shown that many key properties of a
constraint language are determined by its polymorphisms. Hence calculating the polymor-
phisms of the constraint language used in a given CSP instance can be a useful step in
analysing that instance.

For example, using Construction 20 and Proposition 28 we can design a pre-processing
algorithm which can sometimes simplify the presentation of a constraint satisfaction prob-
lem (Algorithm 1).

Since the indicator problem of order 1 only H&¥ variables, this pre-processing step
is efficient for many problems and can result in an equivalent problem instance with a
considerably smaller domain.

Algorithm 1: Pre-processing to reduce the domain size

Input: AninstanceP = (V, D, C) of CSP(I") whereD is finite.
Output: An equivalent instancg®”’.

1. Find all unary polymorphisms df by generating and solving the indicator
problem of order 1 fof";

2. Choose a unary polymorphisyhwith the smallest number of values in its range;

3. If the range off is smaller tharD, apply f to each constraint relation iR to
obtain a new problem instan@ over a smaller domain.

6.5.2 Tractable cases: using polymorphisms as algorithm selectors

In many cases, it has been shown that the existence of a single polymorphism satisfying
certain simple conditions is sufficient to ensure the tractability of a constraint language and
to identify an appropriate polynomial-time algorithm.

Definition 36. Let f be ak-ary operation a seD.

o If £ = 2 and f satisfies the identitieg(x, f(y, z)) = f(f(z,y), z) (associativity),
f(z,y) = f(y, z) (commutativity), and (z, x) = = (idempotency), thelfi is called
a semilatticeoperation.

o If f satisfies the identity (z1,...,zx) € {z1,..., 2z}, thenf is called aconser-
vativeoperation.

e If £ > 3 and f satisfies the identitieg(y, z,...,z) = f(z,y,z,...,2) = -+ =
f(z,...,z,y) = z, thenf is called anear-unanimity operation.

e If £ = 3 and f satisfies the identitieg(y, y,z) = f(x,y,y) = z, thenf is called a
Mal'tsev operation.

David Cohen & Peter Jeavons 15

Proposition 37 ([52]). For any constraint languag€ over a finite seD, if Pol(T") con-
tains a semilattice operation, then is tractable, and all instances i@SP(I") can be
solved by enforcing generalised arc consisténcy

This result has been extended to more gersgaligroupoperations in [12, 31].

Example 38. The Boolean constraint language consisting of all relations that can be spec-
ified by Horn clauses as described in Example 5, has the binary polymorphisfoon-
junction) [54], and so is tractable by Proposition 37. Any collection of Horn clauses can
be solved byunit resolution which is a specialised form of arc consistency. O

Example 39. The max-closed constraints defined in [54] and described in Example 7 all
have the binary polymorphismax, which is a semilattice operation, so they are tractable
by Proposition 37. Any collection of max-closed constraints can be solved by enforcing
generalised arc consistency. d

Any constraint language which contaiai unary relationsover a finite set has the
property that all the operations ol(T") are conservative, by Definition 19.

Proposition 40 ([16]). For any constraint languag€ over a finite seD, if Pol(T") con-
tains a conservative commutative binary operation, theés tractable.

The algorithm for solving a collection of constraints preserved by a conservative com-
mutative binary operation is based on a generalisation of local consistency techniques [16].

Proposition 41 ([50]). For any constraint languag€ over a finite seD, if Pol(T") con-
tains ak-ary near-unanimity operation, theh is tractable, and all instances i@SP(T")
can be solved by enforcirigconsistency, which makes them globally consiétent

In fact, it is shown in [50] that thenly finite domain languages for which enforcing
k-consistency guarantees global consistency are those which have a near-unanimity poly-
morphism.

Example 42. LetI" be the Boolean constraint language consisting of all relations that can
be specified by clauses with at most 2 literals. This language has the ternary polymorphism,
d, given byd(z,y, z) = (x Ay) vV (yAz) V(2 Az), which is a near-unanimity operation, so

I" is tractable by Proposition 41. A satisfying assignment for any collection of such clauses
can be obtained in a backtrack-free way after enforcing path consistency. O

Example 43. The 0/1/all relations defined in [26] and described in Example 8 all have
the ternary polymorphismy, given byd(z,y,z) = « wheny # z andd(z,y,2) = y
otherwise, which is a near-unanimity operation, so they are tractable by Proposition 41. A
solution for any collection of 0/1/all constraints can be obtained in a backtrack-free way
after enforcing path consistency [26, 50]. |

Example 44. The connected row-convex relations defined in [35] and described in Exam-
ple 9 all have the ternary polymorphism, given bym(z, y, z) = themedianof x, y and

z, which is a near-unanimity operation, so they are tractable by Proposition 41. A solution
for any collection of connected row-convex constraints can be obtained in a backtrack-free
way after enforcing path consistency [50]. |

5See Chapter 3 for a definition of this standard procedure, and a discussion of possible algorithms.
6See Chapter 3 for definitions and algorithms.

16 6.

Example 45. The betweenness relatid, on an ordered sd?, described in Example 12,
has a ternary near-unanimity polymorphism whéy < 4, so the constraint language
containing just this relation is tractable whgp| < 4, by Proposition 41.

The projection ofBp onto its second co-ordinate is the unary relation containing all
elements ofD except the largest and smallest. Hence the algébr®ol({Bp})) has a
subalgebra of sizeD|—2. When|D| > 5 this subalgebra can be shown to be NP-complete.
Hence, by Theorem 3%,Bp } is NP-complete for finite set® with |D| > 5. O

Proposition 46 ([15, 8]). For any constraint languagé& over a finite setD, if Pol(T")
contains a Mal'tsev operation, thdnis tractable.

The algorithm for solving a collection of constraints preserved by a Mal'tsev operation
is based on a generalisation of Gaussian elimination [15]. A much more straightforward
version of the algorithm is given in [8]. Note that no fixed level of consistency is sufficient
to solve all problems involving constraints of this type.

Example 47. The linear constraints described in Example 4 all have the ternary polymor-
phismp given byp(z, y, z) = = —y+ z, which is a Mal'tsev operation, so they are tractable
by Proposition 46. A solution for any collection of linear constraints can be obtained by a
Gaussian elimination algorithm on the corresponding linear equations. |

A unified approach to Mal'tsev operations and near-unanimity operations, which gen-
eralises Proposition 41 and Proposition 46 is given in [29].

6.5.3 Towards a complete classification of complexity

We have seen that the polymorphisms of a constraint language can identify many different
tractable cases and suggest an appropriate efficient solution algorithm for those cases.

However, what can be said about a constraint langliagberePol(I") doesnot con-
tain a semilattice operation, a conservative commutative binary operation, a near-unanimity
operation or a Mal'tsev operation? We cannot in general immediately concludE that
intractable. However, using Rosenberg’s analysis of minimal clones [84, 87], we do have
the following result (adapted slightly from [49]).

Definition 48. Let f be ak-ary operation a seD.

e Ifthere exists a (non-constant) unary operatipon D and anindex € {1,2,...,k}
such thatf satisfies the identity (x1, o, ..., x;) = g(x;), thenf is called anes-
sentially unaryoperation. Ifg is the identity operation, thefis called aprojection

e If £ > 3 and f satisfies the identity(z1,...,zx) = z,; for some fixed whenever
[{x1,z2,...,21}| <k, but f is nota projection, thery is called asemiprojection

David Cohen & Peter Jeavons 17

Theorem 49. For any reduced constraint languadeon a finite setD, at least one of the
following conditions must hold:

1(T") contains a constant operation;

Po
Pol(I") contains a near-unanimity operation of arity 3;

. Po
Pol(T") contains an idempotent binary operation (which is not a projection);
Po

()
()
(T') contains a Malt'sev operation;
(™)
1(T") contains a semiprojection;

()

o0 s w N

. Pol(T") contains essentially unary surjective operations only.

If Pol(T") contains a constant operation, thers trivially tractable, since each (non-
empty) relation inl" contains a tupl€d, d, ..., d), whered is the value of the constant
operation. By Propositions 37 and 46, the second and third cases also guarantee tractability.
Hence the first three cases in Theorem 49 all guarantee tractability.

In the final case of Theorem 49 we observe that(Pol(I")) includes the disequality
relation, #p, defined in Example 11, and whe®| = 2 it includes the not-all-equal
relation, N, defined in Example 6. Hence in this case we havelafPol(T")) is NP-
complete for all finite set®, so by Theorem 21 and Corollary 17 we conclude thistNP-
complete in this case. Hence the final case of Theorem 49 guarantees NP-completeness.

A similar argument gives the following slightly more general result.

Proposition 50 ([49]). Any set of essentially unary operations over a finite set is NP-
complete.

Cases 4 and 5 of Theorem 49 are inconclusive, in general, although for a Boolean
domain there are only two binary idempotent operations which are not projections: the
two semilattice operations andV (conjunction and disjunction). Hence, over a Boolean
domain, case 4 guarantees tractability by Proposition 37. Moreover, over a Boolean domain
there are no semiprojection operations, so case 5 cannot occur. These observations mean
that Theorem 49 is sufficient to classify the complexity of any constraint language over a
Boolean domain, and hence derive Schaefer’'s Dichotomy Theorem [85] (see Example 5).

Corollary 51 ([11]). An algebra with a 2-element universe is NP-complete if all of its
basic operations are essentially unary. Otherwise it is tractable.

The single condition described in Proposition 50 is the only condition needed to estab-
lish the NP-completeness of all known NP-complete constraint languages, and has been
used to establish a dichotomy theorem for several broad classes of languages [11]. There
is a longstanding conjecture [18] that this condition is sufficient to charactatiserms
of intractability in constraint languages. We state this conjecture for the special case of
idempotent algebras, where the only essentially unary operations are projections.

Conjecture 52 ([18, 11]). Tractable algebras conjectureA finite idempotent algebra
A is NP-complete if it has a nontrivial factds all of whose operations are projections.
Otherwise it is tractable.

By Proposition 28 and Theorem 31, the problem of determining the complexity of
an arbitrary constraint language can be reduced to an equivalent problem for a certain

18 6.

idempotent algebra associated with the language. Therefore, this conjecture, if true, would
completely solve the fundamental question of analysing the complexity of any constraint
language over a finite set.

Conjecture 52 has been verified [11] for algebras with a 2-element universe, algebras
with a 3-element universe, conservative algebras (i.e., those whose operations preserve all
unary relations), and strictly simple surjective algebras (i.e. those with no non-trivial fac-
tors). If Conjecture 52 is true in general, then it yields an effective procedure to determine
whether any finite constraint language is tractable or NP-complete, as the following result
indicates.

Proposition 53 ([11]). Let D be a fixed finite set. If Conjecture 52 is true, then for any
finite constraint languagé' over D, there is a polynomial-time algorithm to determine
whetherT" is NP-complete or tractable.

In another direction, Proposition 50 was used in [70] to show that most non-trivial con-
straint languages over a finite domain are NP-complete. More preciseiy(slet:) denote
arandom-ary relation on the sdtl, . . ., k}, for which the probability thata,, . . ., a,) €
R(n, k) is equal to 1/2 independently for eaehtuple (a,,...,a,) where not alla;’s
are equal; also, séi,a,...,a) € R(n,k) for all a (this is necessary to ensure that
CSP({R(n, k)}) is non-trivial). It is shown in [70] that the probability thBbl { R(n, k) }
contains only projections tends to 1 as either & tends to infinity.

6.5.4 Search is no harder than decision

In this chapter we have formulated the constraint satisfaction problem as a decision prob-
lem in which the question is to decide whether or not a solution exists. However, the
correspondingearch problemin which the question is to find a solution, is often the real
practical question. Using the algebraic theory in Section 6.4, we can now show that the
tractable cases of these two forms of the problem coincide.

Theorem 54 ([11, 20]). LetI" be a constraint language over a finite set. The decision
problemCSP(T") is tractable if and only if the corresponding search problem can be solved
in polynomial time.

Proof. Obviously, tractability of the search problem implies tractability of the correspond-
ing decision problem.

For the converse, ldt be a tractable set of relations over a finite domain

Consider any instanc® in CSP(T"). By the choice of, we can decide in polynomial
time whetherP has a solution. If it does not then the search returns with no solution.

Otherwise, using Proposition 28 we can transform this instance to an ingtanger a
reduced languagl’ which has a solution. Furthermore we can arrange that every solution
to P’ is a solution taP.

Since’P’ has a solution we know that for each variablef P’ there must be some
domain valuex € D for which we can add the constraiffw) , {{a)}) and still have a
solvable instance. By considering each variable in turn, and each possible value for that
variable, we can add such a constraint to each variable in turn, and hence obtain a solution
to P’. Checking for solvability for each possible value at each variable requires us to solve
an instance of the decision problef$P(I" U I'coy) at most|P’| times. By Theorem 31,
this can be completed in polynomial time in the sizé”of O

David Cohen & Peter Jeavons 19

6.6 Constraint Languages Over an Infinite Set

Some computational problems can be formulated as constraint satisfaction problems only
by using a constraint language overiafinite set (see Examples 10 and 12).

Many of the results of the algebraic theory described in Section 6.4 hold for both
finite and infinite domains. However, Theorem 21 does not hold, in general, for arbi-
trary constraint languages over an infinite set. It is not hard to check that the inclusion
(') C Inv(Pol(T")) still holds. However, for constraint languages over an infinite set this
inclusion can be strict, as the next exanighows.

Example 55. Considel = {R;, Rs, R3} onN, whereR; = {{(a,b,c,d) | a =borc =

d}, Ry = {(1)}, andR3 = {{(a,a+ 1) | a« € N}. Itis not difficult to show that every
polymorphism ofl" is a projection, and hendew (Pol(I")) is the set ofall relations on

N. However, one can check that, for example, the unary relation consisting of all even
numbers does not belong {b). O

However, if we impose some additional conditions, then the required equality does
hold, as the next result indicates. r8lational structureconsists of a univers®, to-
gether with a collection of relations ovér. A relational structure with a countably infinite
universe is called -categoricalif it is determined (up to isomorphism) by its first-order
theory [46].

Theorem 56 ([4]). LetI" = { Ry, ..., Ri} be afinite constraint language over a countably
infinite setD.
If the relational structure D, Ry, ..., Ry) is w-categorical, thenT') = Inv(Pol(T")).

Examples ofv-categorical structures, as well as remarks on the complexity of the cor-
responding constraint satisfaction problems, can be found in [3], including a complete
analysis of the countably infinite-categorical structures with a single binary relation.

6.6.1 Allen’s Interval Algebra

One form of infinite-valued CSP which has been widely studied is the case where the val-
ues taken by the variables drgervalson some totally ordered set. This setting is used
to model the temporal behaviour of systems, where the intervals represent time intervals
during which events occur. The most popular such formalisiilén’s Interval Algebra,
introduced in [1], which concerns binary qualitative relations between intervals. This al-
gebra contains 13 basic relations (see Table 6.1), corresponding to the 13 distinct ways in
which two given intervals can be related. The complete set of relations in Allen’s Interval
Algebra consists of the'? = 8192 possibleunionsof the basic relations. This set of
relations will be denotefiaa

The constraint languadén a is NP-complete, and the problem of classifying the com-
plexity of subsets of this language has attracted much attention (see, for example, [86]).

Allen’s Interval Algebra has three operations on relations: composition, intersection,
and inversion. Note that these three operations can each be represented by using con-
junction and existential quantification, so, for any sub&edf 'y, the subalgebra\’
generated byA has the property thak’ C (A). It follows from Theorem 16 thaf'SP(A)

"This example is from [3], where it is credited to FofBer.

20 6.

| Basic relation | Example | Endpoints
I precedes/ p I I <J-
J preceded by p~! JJJ
I meetsJ m 1 It =J-
J met byl m~* JJJJ
I overlaps/ 0 I I—<J <IT,
J overl. byl o ! NANA] It <J*
I duringJ d 1 I—>J,
J includes’ d-! NANNARN It <J*
I startsJ S 1 I—=J-,
J started byl st NNNRNAN I <Jt
I finishesJ f IT It =J+,
J finished byl 1 3333333 I—>J-
I equalsJ = i I—=J,

ANAK] It=J*

Table 6.1: The 13 basic relations in Allen’s Interval Algebra.

andCSP(A’) are polynomial-time equivalent. Hence it is sufficient to classify all subsets
of I'aia Which aresubalgebra®of Allen’s Interval Algebra.

Theorem 57 ([63]). For any constraint languagE C I'aja, if I' is contained in one of the
eighteen subalgebras listed in Table 6.2, then it is tractable; otherwise it is NP-complete.

The domain for Allen’s Interval Algebra can be taken to be the countably infinite set
of intervals with rational endpoints. It was noted in [4] that the relational structure asso-
ciated with Allen’s Interval Algebra (without its operations)uscategorical. Therefore,
by Theorem 56, the complexity classification problem for subsef&igf can be tackled
using polymorphisms. Such an approach might provide a route to simplifying the involved
classification proof given in [63].

6.7 Multi-Sorted Constraint Languages

In practical constraint programming it is often the case that different variables have differ-
ent domains. So far in this chapter we have considered a simplified situation in which all
of the variables are assumed to have the same domain. This apparently minor simplifica-
tion can have serious consequences for the analysis of the complexity of different forms of
constraint; it can in fact mask the difference between tractability and NP-completeness for
some languages, as we will demonstrate in this section.

The algebraic approach described in Section 6.4 has been extended to deal with the
case when different variables have different domains [10], and we will now present the
main results of the extended theory.

Definition 58. For any collection of set® = {D; | ¢ € I}, and any list of indices
(11,42, ...,1n) € I",asubsetoD;, xD;, x- - -x D, _, together with the listi1, iz, . .., in),
will be called amulti-sorted relationover® with arity n andsignature (iq, is, . . . , iy).

David Cohen & Peter Jeavons 21

Sp={r|rn(pmod= ' 1) £ 0 = (p)*' Cr}
Sq={r| 7N (pmod ')E £) = (@)= C 1}
So = {r | rN (pmod~t1)*! £ () = (0)*! C r}
A ={r|rn(pmod ' 1)E £ 0 = (sTH)F Cr}
As = {r | rn(pmod=1)*! £) = (s)*! C r}
Az = {r | 7N (pmodf)*! £) = (s)*' Cr}

Ay = {r|rn(pmodf- 1)+ £ () = (s)** C r}

Ep = {r|rn(pmods)*! # 0 = (p)*! C r}

Eq = {r|rn(pmods)*! #) = (d)*! Cr}

Eo = {r| N (pmods)*! # () = (0)*! C r}

By = {r|rn(pmods)*! # () = (FH* Cr}

By = {r | r N (pmods)*! #) = (H* C r}

Bz = {r|rn(pmod~'s™ 1)t #£ () = (f)FL Cr}
By={r|rn(pmod~ts)*! #£ () = (f-)*L Cr}

£ = {r 1) 7N (pmod)** # @(=> s)*' Cr,and }

P 1) 7N (pmod=1)*! £ () = (FH* Cr,and
TV 2rns) £0= (=) Cr

Drn(os)T #P&rn (o)* #) = (d)*! C r, and
H=<r|2)rn(ds)* 0 &rn(d) £0 = (0)** Cr,and
3)rn(pm)=t £ 0&r & (pm)*! = (0)*! C

r

A-={r|r£0= (=) Cr}

For the sake of brevity, relations are written as collections of basic relations. So, for
instance, we write(pmod) instead ofp U m U o U d. We also use the symbat,
which should be interpreted as follows: a condition involviagneans the conjunction

of two conditions, one corresponding # and one corresponding te. For example,

the condition(o)** C r < (d)*! C r means that botlfo) C r < (d) C r and
(o) Cre (d)Cr.

Table 6.2: The 18 maximal tractable subalgebras of Allen’s Interval Algebra

22 6.

For any multi-sorted relatiof, the signature of? will be denotedr(R).
In the special case whef@ contains just a single sdéd we will call a multi-sorted
relation over® aone-sortedelation overD.

Example 59. Let R be a 5-ary relation with 17 tuples defined as follows:

R={(3,1,2,¢,b),(3,3,2,¢,b),(1,0,2,¢,b),(1,2,2,¢,b) ,
<17 17 07 C) b>) <17 37 07 C? b> 3 <37 07 07 C? b>) <37 27 07 C? b> 3
<37 17 2a C, a> Y <37 37 27 Ca a>) <17 Oa 2) C, a> bl <17 27 2a Ca Cl> I
(3,1,2,a,b),(3,3,2,a,b),(1,1,0,a,b),(1,3,0,a,b),(3,3,2,a,a) }
This relation can be considered in the usual way as a one-sorted relation overfhe-set

{0,1,2,3,a,b,c}. Alternatively, it can be seen as a multi-sorted relation with signature
(1,1,1,2,2) over the collection of set® = (Dy, D), whereD; = {0,1,2,3} and

) 7 3)

Dy ={a,b,c}. O

Given any set of multi-sorted relations, we can define a corresponding class of multi-
sorted constraint satisfaction problems, in the following way.

Definition 60. LetI be a set of multi-sorted relations over a collection of $ts- {D; |
i € I'}t. Themulti-sorted constraint satisfaction probleraverT', denotedVICSP(T'), is
defined to be the decision problem with

Instance: A quadruple(V, D, §,C), where

e V is afinite set of variables;
e ¢ is a mapping fromi/ to I called thedomain function;
e Cis a set of constraints, where each constraihe C is a pair (s, R) such that

— s, is atuple of variables of length called the constraint scope, and

— Ris an element of with arity nc and signature(d(s[1]), ..., d(s[n¢]))
called the constraint relation.

Question: Does there exist a solution, that is a functigrfrom V' to | J,; D; such that,
for each variablev € V,p(v) € Dy, and for each constraints, R) € C with
s = {v1,...,v,), the tuple(p(vy), ..., v(v,)) belongs to the multi-sorted relation
R.

It might be tempting to assume that the complexity of a set of multi-sorted relations
could be determined by considering each of the domains involved separately; in other
words, by separating the relations into a number of one-sorted relations, and analysing the
complexity of each of these. However, in general this simple approach does not work, as
the next example demonstrates.

Example 61. Consider the set®; = {0,1} and Dy = {a,b, ¢}, and the multi-sorted
relationsR;, R, R3 over® = {D;, Dy}, each with signaturél, 2), where
Rl:{<1’a>> R22{<07a>7 R3:{<07a>’
(0,0), (1,0), (0,0),
(0,e)} (0,¢)} (L)}

David Cohen & Peter Jeavons 23

If we divide each of these multi-sorted relations into two separate one-sorted relations, then
we obtain just the unary relatiof8, 1} and{a, b, c} over the set9, and D, respectively.
Each of these unary relations individually is clearly tractable.

However, by establishing a reduction from the NP-complete prol@®erm-IN-THREE
SATISFIABILITY (see Example 6), it can be shown that the set of multi-sorted relations
I' = {Ry, Rs, R3} is NP-complete. (Details of this reduction are given in [10].) O

It is often desirable to convert a multi-sorted constraint satisfaction problem into a one-
sorted problem. The most straightforward way to do this for a given multi-sorted problem
instance(V, D, 6,C), is to takeD = |J,, .5 D, and replace each constraint relation with
a one-sorted relation ovéd containing exactly the same tuples.

However, this straightforward conversion method doesnecessarily preserve the
tractability of a multi-sorted constraint langualgeas the next example indicates.

Example 62. Let D; and D, be two distinct supersets of a s, and letl” be the con-
straint language containing the single binary disequality relatipp, as defined in Exam-
ple 11, but now considered as a multi-sorted relation ¢¥er, D, } with signature(1, 2).

Because of the signature, this constraint can only be imposed between two variables
when one of them has domail; and the other has domaiR,. Hence, in this case
MCSP(T") corresponds to the problem of colourindipartite graphwith | Dy| colours,
which is clearly tractable for any sé2,. Note that the tractability is entirely due to the
signature of the relation rather than the tuples it contains.

If we convertI’ to a one-sorted constraint language by considering the relgtign
as a one-sorted relation over the &= D; U D», then we obtain the usual disequality
relation overDy, which for|Dy| > 2 is NP-complete (see Example 11). O

To ensure that we do preserve tractability when converting a multi-sorted constraint
language to a one-sorted constraint language, we make use of a more sophisticated conver-
sion technique, based on the following definition.

Definition 63. Let® = {D,,...,D,} be a finite collection of sets, and defil¥ =
Dy x Dy X --- X D,

For any n-ary relation R over® with signatures(R) = (i1,...,i,), we define the
one-sortech-ary relation x(R) over D* as follows:

X(R) = {{t1,t2, ..., tn) € (D)™ | (t1[i1], talial, - .., tm[im]) € R}.
Note that for any one-sorted relatidt) we havex(R) = R.

Example 64. Let R be the binary disequality relatiofp, over { D, D>} with signa-
ture (1,2), as in Example 62. In this casgR) is the relation consisting of all pairs
({a,a’y ,{b,b')) € (D1 x D3) x (D1 x D) such thai,b’ € Dy anda # b'. O

Proposition 65 ([10]). LetI" be a multi-sorted constraint language over a finite collection
of finite sets. The languagdeé is tractable if and only if the corresponding one-sorted
constraint languagé x(R) | R € I'} is tractable.

To extend the algebraic results of Section 6.4 to the multi-sorted case, we need to define
a suitable extension of the notion of a polymorphism. As we have shown in Example 61,
we cannot simply separate out different domains and consider polymorphisms on each one

24 6.

separately; we must ensure that all of the domains are treated in a co-ordinated way. In
the following definition, this is achieved by defining differémterpretationsfor the same
operation symbol applied to different sets.

Definition 66. Let® = {D; | i € I} be a collection of sets. A-ary multi-sorted
operation f on® is defined by a collection affiterpretations{ f: | i € I}, where each
fPiis ak-ary operation on the corresponding sBf.

For any multi-sorted relatiork with signature(iy, . . . , i,,), and any collection of tuples
t1,...,t € R, definef(tq,...,t) to be

<fDi1 (t1[1], ... te[1]), ..., fPin (tl[n},...,tk[n]».

Definition 67. A k-ary multi-sorted operatiory on ® is said to be amulti-sorted poly-
morphism of a multi-sorted relationk over ® if f(t1,...,tx) € R for all choices of
t1,...,t; € R.

For any given multi-sorted constraint langudgethe set of all multi-sorted polymor-
phisms ofeveryrelation inT" is denotedVIPol(T").

The next theorem is the main result of this section. It establishes the remarkable fact
that many of the polymorphisms that ensure tractability in the one-sorted case can be com-
bined in almost arbitrary ways to obtain new tractable multi-sorted constraint languages.

Note that a multi-sorted operatio), is said to bedempotentif all of its interpretations
[P satisfy the identityf” (z, z,...,z) = z.

Theorem 68 ([10]). LetI" be a multi-sorted constraint language over a finite collection of
finite sets® = {Dy, ..., D, }.
If, for eachD; € ©, MPol(T") contains a multi-sorted operatiofy such that

e fPiis a constant operation; or

fPiis a semilattice operation; or

K2

fP# is a near-unanimity operation; or

K2

fi is idempotent ang“iDi is an affine operation,
thenMCSP(T') is tractable.

Example 69. Recall the relatiorz defined in Example 59.

If we considerR as a one-sorted relation over the domé@ini, 2,3, a,b, ¢}, then it
does not fall into any of the many known (one-sorted) tractable classes described in Sec-
tion 6.5.2 abov&

However if we consideR? as a multi-sorted relation with signatufg 1, 1,2, 2) over
the setsD; = {0,1,2,3} and D, = {a,b,c}, then we can use Theorem 68 to show
that { R} is tractable. To see this, it is sufficient to check tfathas two multi-sorted
polymorphismsf (x, y, z) andg(x, y), where

e D1 is the affine operation of the group,, and fP2 is the (ternary) maximum
operation onD-, with respect to the order < b < ¢ (which is idempotent).

8This was established by using the progrdtalyanna described in [39], which is available from
http://www.comlab.ox.ac.uk/oucl/research/areas/constraints/software/.

David Cohen & Peter Jeavons 25

o gPi(z,y) = y, andg?”? is the (binary) maximum operation db,, with respect to
the ordera < b < ¢ (which is a semilattice operation).

O

Further developments in the algebraic approach to multi-sorted constraints, and applica-
tions to the standard one-sorted CSP where the constraints limit the domain of each vari-
able, are given in [10].

6.8 Alternative Approaches

6.8.1 Homomorphism problems

An important reformulation of the CSP is titoMOMORPHISM problem: the question of
deciding whether there exists a homomorphism betweendlational structuregsee [3,
37,41, 58]). Recall that a relational structure is simply a set, together with a list of relations
over that set.

Definition 70. Let Ay = (D1, R}, R},...,R}) and A, = (D,, R}, R3,...,R2) be
relational structures where botR} and R? aren;-ary, foralli = 1,2,...,q.
A mapping® : D; — D, is called ahomomorphismfrom A, to A, if it has the prop-
erty that(®(ay), ..., ®(an,)) € R? whenevefay,...,a,,) € R}, foralli=1,2,...q.
TheHOMOMORPHISM PROBLEMfor (A1, .As) is to decide whether there exists a ho-
momorphism fromd; to A,

To see that thélOMOMORPHISM PROBLEMIS the same as the CSP, think of the el-
ements inA; as variables, the elements #y as values, tuples in the relations 4f as
constraint scopes, and the relationsdafas constraint relations. With this correspondence,
the solutions to this CSP instance are precisely the homomorphisms4rdm.As.

Example 71. A relational structure with a single binary relatioW, E) is usually known
as a (directedyraph.

An instance of the&GRAPH H-COLORING problem consists of a finite graghi. The
guestion is whether there is a homomorphism fi@io H. WhenH is the complete graph
on k vertices, theGRAPH H-COLORING problem corresponds to the stand#&eAPH
COLORABILITY problem withk colours (see Example 11). For an arbitrary gradph=
(V, E), theGRAPH H-COLORING problem precisely corresponds to the probléfP ({ £'}).

For undirectedgraphsH, where the edge relatioR' is symmetric, the complexity
of GRAPH H-COLORING has been completely characterised [44]: it is tractabld ifs
bipartite or contains a loop; otherwise it is NP-complete. (Note that this characterisation
also follows from Conjecture 52, see [7].) However, if we alléivandG to be directed
graphs, then the complexity &RAPH H-COLORING has not yet been fully characterised.
Moreover, it was shown in [37] that every probleB$P(T") with finite T" is polynomial-
time equivalent td&SRAPH H-COLORING for some suitable directed grapgh. O

6.8.2 Constraint languages and logic

In the field ofdescriptive complexitj47] the computational complexity of a problem is
investigated by studying the formslofyic which can be used to express that problem. The

26 6.

use of descriptive complexity techniques to analyse the complexity of constraint languages
was initiated by the pioneering work of Feder and Vardi [37].

As shown in Section 6.8.1, for any finite constraint languBige {R;, ..., R,} over
a setD, the problemCSP(T") can be represented as the problem of deciding whether a
given relational structure has a homomorphism to the relational strugiu®,, . . ., R,),
Hence the class of instances@3$P(I") which do have a solution can be viewed as a class
of relational structures (sometimes called the “yes-instances”). If this class of relational
structures can be characterised in some restricted logic, then this can sometimes be used to
show thatCSP(T") is tractable, as the following example illustrates.

Example 72. Recall from Example 11 thatSP({#p}) is equivalent to the problem of
colouring a graph withD| colours. The class of instances which have a solution is the class
of | D|-colourable graphs, which is a class of relational structures with a single symmetric
binary relationE (specifying which vertices are connected by edges).

Now assume thab = {0,1}. It is well-known that a grapliV, E) is 2-colourable
if and only if it does not have any odd-length cycles. The property of having an odd-
length cycle can be expressed in the logic programming langDatgog [37] using the
following set of rules:

P(x7y) ‘T E(m,y)
P(z,y) :— P(z,2) NE(z,u) A E(u,y)
Q :— P(z,x)

These rules give a recursive specification of two predicd®eand). PredicateP(z,y)
holds exactly when there exists an odd-length pattVinZ) from z to y. Predicate Q,
which acts as goal predicate, holds if there exists any odd-length cycle.

Hence, the class of structures for whicBP ({#(0,1} }) has a solution can be charac-
terised as the set of structurdg E) for which the goal predicate in this Datalog program
does not hold. It was shown in [37] that any CSP problem whose yes-instances can be
characterised by a Datalog program in this way is tractable.

It has recently been shown that any CSP problem whose yes-instances can be char-
acterised in first-order logic can be characterised by a Datalog program in this way [2].

(I

The techniques of descriptive complexity can also be used to obtain a more refined de-
scription of the complexity of a constraint language. For example, Dalmau has shown [30]
that if a finite constraint languade has a logical property which he calls “bounded path
duality”, then the problenCSP(T") is in the complexity class NL, and so can be solved
very efficiently using parallel algorithms.

6.8.3 Disjunctive combinations of constraint languages

Another approach to the analysis of constraint languages has been to consider how they
can be built up from combinations of simpler languages whose properties are more eas-
ily analyzed [25, 6]. This approach has successfully unified several important classes of
tractable languages including five of the six tractable Boolean languages (Example 5), the
max-closed constraints (Example 7), the 0/1/all constraints (Example 8), the connected
row-convex constraints (Example 9) and the linear Horn constraints (Example 13). One

David Cohen & Peter Jeavons 27

advantage of this constructive approach is that it works equally well for both finite and
infinite domains.
The key step in this approach is to define how relations can be combined disjunctively.

Definition 73. Let R, be ann-ary relation andR, anm-ary relation over a common set
D. Thedisjunctionof R; and R,, denotedR; V Rs, is the relation of arityn + m over D
defined as follows:

RV Ry = <<$1, ... ,$n+m> | (<l‘1, . ,$n> S Rl) V (<.’L‘n+1, . 7xn+m> S Rg)})
This definition of disjunction can be extended to constraint languages as follows.

Definition 74. For any two constraint languagdsand A, over the same domaif, define
the constraint languagEY A as follows:

FGA:FUAU{Rl\/RQ|R1€F,R2€A}

The constraint languade&r A (pronounced” “or-times” A) contains all of the relations
inT"andA, together with the disjunction of each possible pair of relations froamd A.

The next example shows that when tractable constraint languages are combined using
the disjunction operation defined in Definition 74 the resulting constraint language may or
may not be tractable.

Example 75. Let A be the set of all relations over the dom&irRUE, FALSE} which can
be specified by a formula of propositional logic consisting of a siligleal (where a literal
is either a variable or a negated variable).

The constraint languagkis clearly tractable, as it is straightforward to verify in linear
time whether a collection of simultaneous single literals has a solution.

Now consider the constraint languagé&®> = A¥A. This set contains all Boolean
constraints specified by a disjunction of (at most) 2 literals. The prokl8i(AV?2) cor-
responds to th2-SATISFIABILITY problem, which is well-known to be tractable [38] (see
Example 42).

Finally, consider the constraint languag&® = (AV2)¥A. This set of relations con-
tains all Boolean relations specified by a disjunction of (at most) 3 literals. The problem
CSP(AY3) corresponds to th8-SATISFIABILITY problem, which is well-known to be
NP-complete [38, 77]. O

Definition 76. For any constraint language), define the seA* as follows:
A*=[JAY, where
=1

AV = A
AV = (AVOSA for i=1,2,...

In the remainder of this section we identify a number of simple conditions on constraint
languaged” and A which are necessary and sufficient to ensure that various disjunctive
combinations of* andA are tractable.

Definition 77. For any constraint languageB and A over a common domaif, define
CSP A<k (T'UA) to be the subproblem 6fSP(T'UA) consisting of all instances containing
at mostk constraints whose relations are memberg\of

28 6.

Using this definition, we now define what it means for one set of constraints to be
‘k-independent’ with respect to another.

Definition 78. For any constraint languagel and A over a setD, we say thatA is k-
independent with respect tB if the following condition holds: any instanc®, D,C) in
CSP(I'UA) has a solution provided that any instan@é D, C’) in CSPa<(I'UA) with
C’ C C has a solution.

The intuitive meaning of this definition is that the satisfiability of any set of constraints
with relations chosen chosen from the getan be determined by considering those con-
straintsk at a time, even in the presence of arbitrary additional constraintsIifrom

Theorem 79 ([25, 6]). LetI" and A be constraint languages over a sBY, such that
CSPa<1(I"U A) is tractable.

The constraint languag€¥A* is tractable if A is 1-independent with respect fa
Otherwise it is NP-complete.

A polynomial-time algorithm for solving instances 6P (I'¥ A*), for any constraint
language§® and A satisfying the conditions of Theorem 79 is given in [25].

Example 80. Let D be the set of real numbers (or the rationals). Ldte the constraint
language oveD consisting of all constraints specified by a single (weak) linear inequality
(e.9.,3z1 + 222 — x3 < 6). Let A be the constraint language ovBrconsisting of all
constraints specified by a single linear disequality (e:g+ 4x2 + z3 # 0).

To show thatCSPa<; (I' U A) is tractable, we note that the consistency of a set of
inequalitiesC, can be decided in polynomial time, using Khachian’s linear programming
algorithm [56]. Furthermore, for any single disequality constraiitwe can detect in
polynomial time whethe€ U {C'} is consistent by simply running Khachian’s algorithm
to determine whetha? implies the negation of’.

To show thatA is 1-independent with respect Iy we consider the geometrical inter-
pretation of the constraints as half spaces and excluded hyperplabéygee [61]).

Hence, we can apply Theorem 79 and concludelthidt* is tractable. This set consists
of the linear Horn realtions described in Example 13.

Note that the probler@SP(I'UA*) is much simpler tha@SP(I'¥ A*) - it corresponds
to deciding whether a convex polyhedron, possibinusthe union of a finite number of
hyperplanes, is the empty set. This simpler problem was shown to be tractable in [68],
using a more restrictive notion of independence which has been widely used in the devel-
opment of consistency checking algorithms and canonical forms [67, 68]. However, the
much larger set of linear Horn constraintsist independent in the sense defined in [68]
(see [61]). O

Theorem 81 ([6]). LetT" and A be constraint languages over a g8t such thatCSP(I" U
A) is tractable.

The constraint languagE U AV? is tractable ifA is 2-independent with respect o
Otherwise it is NP-complete.

Note thatA is 2-independent with respect bif and only if for every(V, D,C) €
CSP(A) which has no solution, there exists a pair of (not necessarily distinct) constraints
C;,C; € CsuchthatV, D, {C;,C;}) has no solution.

A polynomial-time algorithm for solving instances@8P (I'UA V2), for any constraint
languaged® and A satisfying the conditions of Theorem 81 is given in [6].

David Cohen & Peter Jeavons 29

Example 82. Consider the class of connected row-convex constraints over B siet
scribed in Example 9. In this example we will show that the tractability of connected
row-convex constraints is a simple consequence of Theorem 81. Furthermore, by using
Theorem 81 we are able to generalise this result to obtain tractable constraints over infinite
sets of values.

Note that the 0-1 matrices defining binary connected row-convex constraints have a
very restricted structure. If we eliminate all rows and columns consisting entirely of zeros,
and then consider any remaining zero in the matrix, all of the ones in the same row as the
chosen zero must lie one side of it (because of the connectedness condition on the row).
Similarly, all of the ones in the same column must lie on one side of the chosen zero. Hence
there is a complete path of zeros from the chosen zero to the edge of the matrix along both
the row and column in one direction. But this means there must be a complete rectangular
sub-matrix of zeros extending from the chosen zero to one corner of the matrix (because
of the connectedness condition).

This implies that the whole matrix can be obtained as the intersection (conjunction) of
0-1 matrices that contain all ones except for a submatrix of zeros in one corner (simply
take one such matrix, obtained as above, for each zero in the matrix to be constructed).

There are four different forms of such matrices, depending on which corner submatrix
is zero, and they correspond to constraints expressed by disjunctive expressions of the four
following forms:

(z: 2 di) V(= dj)
(i = di) Vv (z; <dj)
(z: <di) V(25 > d;)
(z: <di) vV (25 <dj)

In these expressions, «; are variables and;, d; are constants.

Finally, we note that a row or column consisting entirely of zeros corresponds to a
constraint of the fornfx; < dy) V (z; > ds) for an appropriate choice @f andd,.

Hence, any connected row-convex constraint is equivalent to a conjunction of expres-
sions of these forms.

Now defineA to be the set of all unary constraints ou@rspecified by a single in-
equality of the forme; < d; orz; > d;, for somed; € D.

It is easily shown thaf\ is 2-independent with respect floand CSP(A) is tractable,
since each instance consists of a conjunction of upper and lower bounds for individual
variables. Hence, by Theorem 8AJA is tractable. By the alternative characterisation
described above, this establishes that connected row-convex constraints are tractable.

Unlike the arguments used previously to establish that connected row-convex con-
straints are tractable [35, 50], the argument above can still be applied when the set of
valuesD is infinite. a

Many further examples of constraint languages over both finite and infinite domains
which can be shown to be tractable by constructing them from simpler languages are given
in [25].

Disjunctive combinations of constraint languages aliferentdomains are discussed
in [24, 13]. These papers make use of the algebraic methods discussed in Section 6.4
above.

30 6.
6.9 Future Directions

We have shown in this chapter that considerable progress has been made in analysing
the complexity of constraint problems with specified constraint languages. The algebraic
approach described in Section 6.4 has led to a complete classification for many special
cases of constraint languages, and has prompted the conjectuak toaistraint languages

can be classified as either tractable or NP-complete on the basis of their algebraic properties
(Conjecture 52).

Even greater progress has been made in analysing the complexity of constraint prob-
lems with specified structure, where the constraint language is unrestricted. A number
of powerful structural decomposition algorithms have been developed for constraint satis-
faction problems, often based on ideas from relational database theory [40]. A complete
classification of the complexity of constraint satisfaction problems where the structure of
the constraints is fixed but the constraint relations are unrestricted is given in [42].

However, there is currently very little analytical work which combines these two ap-
proaches. The most promising result of this kind shows that a certain level of local con-
sistency (see Chapter 3), which depends on the constighthessand the maximum
constraint arity, is sufficient to ensure global consistency [88]. In general, enforcing the
required level of local consistency will increase the constraint arity, and so increase the
required level of consistency still further, which means that this result can only be used
to establish the tractability of classes of problems involving particular languages applied
on particular restricted structures [88]. Other “hybrid” results of this kind, involving both
structural and language properties, are discussed in [78] and in Chapter 12 of [32].

In many practical problems it will be the case that some constraints fall into one
tractable class and some fall into another. Can this fact be exploited to obtain an efficient
solution strategy? Does this depend on the structural way in which the different forms of
constraint overlap? There is currently no suitable theoretical framework to address this
question. One promising approach would be to incorporate ideas of space complexity, as
well as time complexity. The ability to construct solutions using only a limited amount
of working space and stored information seems to be a unifying principle between many
disparate techniques in constraint programming such as bucket elimination [32], hypertree
decomposition [40], and several forms of tractable constraint language [52].

Another direction of future work is to extend the analysis presented here to other
forms of constraint problem, such geantifiedconstraint problemssoftconstraint prob-
lems, overconstrainegroblems, or problems where we wishdountthe number of so-
lutions [62]. There has been considerable progress in analysing variations of this kind for
Boolean constraint problems [27]. For larger finite domains there have been some initial
studies of the complexity of quantified constraint problems [5] and counting constraint
problems [9] based on extensions to the algebraic theory described in this chapter: for ex-
ample, it has been shown that for both of these problems the complexity of a constraint
language is determined by its polymorphisms [5, 9].

A rather more substantial extension of the algebraic theory presented here is required to
analyse the complexity of soft constraints, because in this form of problem the constraints
are represented as functions from tuples of domain values to some measure of desirability
(see Chapter 9, “Soft Constraints”). Many forms of combinatorial optimisation problems
can be represented in this very general framework [27, 57]. Aninitial approach to analysing

David Cohen & Peter Jeavons 31

the complexity of such problems using algebraic techniques is developed in [21, 22] and a
tractable soft constraint language is presented in [23].

Bibliography

[1] J.F. Allen. Maintaining knowledge about temporal interv&smmunications of the
ACM, 26:832—-843, 1983.

[2] A. Atserias. On digraph coloring problems and treewidth duality.Ptaceedings
20th IEEE Symposium on Logic in Computer Science (LICS 2@dges 106-115,
2005.

[3] M. Bodirsky and J. Ngefil. Constraint satisfaction with countable homogeneous
templates. To appear in tlBeurnal of Logic and Computation

[4] M. Bodirsky and J. Ngefil. Constraint satisfaction with countable homogeneous
templates. IrProceedings of Computer Science Logic and the 8th KadebCollo-
quium volume 2803 oL ecture Notes in Computer Sciengages 44-57. Springer-
Verlag, 2003.

[5] F. Boerner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints: Algo-
rithms and complexity. IfProceedings of Computer Science Logic and the 8th Kurt
Godel Colloguiumvolume 2803 of_ecture Notes in Computer Scienpages 58—70.
Springer, 2003.

[6] M. Broxvall, P. Jonsson, and J. Renz. Disjunctions, independence, refinegnts.
ficial Intelligence 140(1-2):153-173, 2002.

[71 A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science
349(1):31-39, 2005.

[8] A. Bulatov and V. Dalmau. Mal'tsev constraints are tractab®AM Journal on
Computing (To appear).

[9] A.Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. IRProceedings 44th Symposium on Foundations of Computer
Science (FOCS 2003)ages 562-573. IEEE Computer Society, 2003.

[10] A. Bulatov and P. Jeavons. An algebraic approach to multi-sorted constraints. In
Proceedings 9th International Conference on Constraint Programming—CP’03 (Kin-
sale, September 20Q3)olume 2833 of_ecture Notes in Computer Sciengmges
183-198. Springer-Verlag, 2003.

[11] A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the complexity of constraints
using finite algebrasSIAM Journal on Computing4(3):720-742, 2005.

[12] A. Bulatov, Jeavons P., and M. Volkov. Finite semigroups imposing tractable con-
straints. InProceedings of the School on Algorithmic Aspects of the Theory of Semi-
groups and its Applications, Coimbra, Portugal, 20@ages 313—-329. World Scien-
tific, 2002.

[13] A. Bulatov and E. Skvortsov. Amalgams of constraint satisfaction problen3ron
ceedings of the 18th International Joint Conference on Artificial Intelligence (1JCAI
2003) pages 197-202. Morgan Kaufmann, 2003.

[14] A.A. Bulatov. A dichotomy theorem for constraints on a three-element se®rdn
ceedings 43rd IEEE Symposium on Foundations of Computer Science (FOCS’02)
pages 649-658, Vancouver, Canada, 2002.

32 6.

[15] A.A. Bulatov. Mal'tsev constraints are tractable. Technical Report PRG-RR-02-05,
Computing Laboratory, University of Oxford, Oxford, UK, 2002.

[16] A.A. Bulatov. Tractable conservative constraint satisfaction problem&rdoeed-
ings 18th IEEE Symposium on Logic in Computer Science (LICS¥a8s 321-330,
Ottawa, Canada, 2003. IEEE Press.

[17] A.A. Bulatov and P.G. Jeavons. Tractable constraints closed under a binary opera-
tion. Technical Report PRG-TR-12-00, Computing Laboratory, University of Oxford,
Oxford, UK, 2002.

[18] A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. Constraint satisfaction problems and
finite algebras. IfProceedings 27th International Colloquium on Automata, Lan-
guages and Programming (ICALP’Q0jolume 1853 ol_ecture Notes in Computer
Sciencepages 272-282. Springer-Verlag, 2000.

[19] A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. The complexity of maximal con-
straint languages. IRroceedings 33rd ACM Symposium on Theory of Computing
(STOC'01) pages 667—674, 2001.

[20] D. Cohen. Tractable decision for a constraint language implies tractable s€arch.
straints 9:219-229, 2004.

[21] D. Cohen, M. Cooper, and P. Jeavons. A complete characterization of complexity
for Boolean constraint optimization problems. Mmoceedings 10th International
Conference on Constraint Programming—CRP'@élume 3258 ol ecture Notes in
Computer Scieng@ages 212—-226. Springer-Verlag, 2004.

[22] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Soft constraints: Complexity
and multimorphisms. IProceedings 9th International Conference on Constraint
Programming—CP’03 (Kinsale, September 2Q88Jume 2833 ol ecture Notes in
Computer Scienc@ages 244—258. Springer-Verlag, 2003.

[23] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. A maximal tractable class of soft
constraints.Journal of Artificial Intelligence Research (JAIRR:1-22, 2004.

[24] D.A. Cohen, P.G. Jeavons, and R.L. Gault. New tractable classes fronCala:
straints 8:263-282, 2003.

[25] D.A. Cohen, P.G. Jeavons, P. Jonsson, and M. Koubarakis. Building tractable dis-
junctive constraintsJournal of the ACM47:826—-853, 2000.

[26] M.C. Cooper, D.A. Cohen, and P.G. Jeavons. Characterising tractable constraints.
Artificial Intelligence 65:347—-361, 1994.

[27] N. Creignou, S. Khanna, and M. Suda@omplexity Classification of Boolean Con-
straint Satisfaction Problemsgolume 7 ofSIAM Monographs on Discrete Mathemat-
ics and Applications Society for Industrial and Applied Mathematics, Philadelphia,
PA., 2001.

[28] V. Dalmau. A new tractable class of constraint satisfaction problenBrdeeedings
6th International Symposium on Atrtificial Intelligence and Mathemafi6§0.

[29] V. Dalmau. Generalized majority-minority operations are tractablé?raceedings
20th IEEE Symposium on Logic in Computer Science, (LICS 2p@ges 438-447.
IEEE Computer Society, 2005.

[30] V. Dalmau. Linear datalog and bounded path duality of relational structuoggcal
Methods in Computer Sciencke1-32, 2005.

[31] V. Dalmau, R. Gavald, P. Tesson, and D. &hen. Tractable clones of polynomi-
als over semigroups. IRroceedings 11th International Conference on Constraint
Programming—CP’05 (Sitges, October 200%plume 3709 ofLecture Notes in

David Cohen & Peter Jeavons 33

Computer Scienggages 196-210. Springer-Verlag, 2005.

[32] R. Dechter.Constraint ProcessingMorgan Kaufmann, 2003.

[33] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-
lems. Artificial Intelligence 34(1):1-38, 1988.

[34] K. Denecke and S.L. WismatHJniversal Algebra and Applications in Theoretical
Computer ScienceChapman and Hall/CRC Press, 2002.

[35] Y. Deville, O. Barette, and P. van Hentenryck. Constraint satisfaction over connected
row convex constraints. IRroceeedings of IJCAI'9pages 405-411, 1997.

[36] T. Drakengren and P Jonsson. A complete classification of tractability in Allen’s
algebra relative to subsets of basic relatiodstificial Intelligence 106:205-219,
1998.

[37] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group th8o#yv Journal
on Computing28:57-104, 1998.

[38] M. Garey and D.S. Johnso@omputers and Intractability: A Guide to the Theory of
NP-Completenes$reeman, San Francisco, CA., 1979.

[39] R.L Gault and P. Jeavons. Implementing a test for tractabitynstraints 9:139—

160, 2004.

[40] G. Gottlob, L. Leone, and F. Scarcello. A comparison of structural CSP decomposi-
tion methods Artificial Intelligence 124:243-282, 2000.

[41] G. Gottlob, L. Leone, and F. Scarcello. Hypertree decomposition and tractable
queries.Journal of Computer and System Sciené&eg3):579-627, 2002.

[42] M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Proceedings 44th Annual IEEE Symposium on Founda-
tions of Computer Science, (FOCS’0Bages 552-561, 2003.

[43] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction
problems using database techniquéstificial Intelligence 66(1):57—89, 1994.

[44] P. Hell and J. Ngefil. On the complexity ofH -coloring. Journal of Combinatorial
Theory, Ser.B48:92-110, 1990.

[45] D. Hobby and R.N. McKenzieThe Structure of Finite Algebrasolume 76 ofCon-
temporary MathematicsAmerican Mathematical Society, Providence, R.I., 1988.

[46] W. Hodges.A Shorter Model TheoryCambridge University Press, 1997.

[47] N. ImmermanDescriptive ComplexityTexts in Computer Science. Springer-Verlag,
1998.

[48] P.G. Jeavons. Constructing constraintsPtaceedings 4th International Conference
on Constraint Programming—CP’98 (Pisa, October 199&)lume 1520 ot ecture
Notes in Computer Sciengeages 2—16. Springer-Verlag, 1998.

[49] P.G. Jeavons. On the algebraic structure of combinatorial problérhsoretical
Computer Scienc00:185-204, 1998.

[50] P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure.
Artificial Intelligence 101(1-2):251-265, 1998.

[51] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A unifying framework for tractable con-
straints. InProceedings 1st International Conference on Constraint Programming,
CP’95, volume 976 oLecture Notes in Computer Scienpages 276—291. Springer-
Verlag, 1995.

[52] P.G.Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of consaimisl
of the ACM 44:527-548, 1997.

34 6.

[53] P.G. Jeavons, D.A. Cohen, and M. Gyssens. How to determine the expressive power
of constraints Constraints 4:113-131, 1999.

[54] P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered doreifisial
Intelligence 79(2):327-339, 1995.

[55] P.Jonsson and C.d@8kstbm. A unifying approach to temporal constraint reasoning.
Artificial Intelligence 102:143-155, 1998.

[56] L.G. Khachian. A polynomial time algorithm for linear programmirg@pviet Math.
Dokl., 20:191-194, 1979.

[57] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of con-
straint satisfaction problem&IAM Journal on Computing0(6):1863—-1920, 2001.

[58] Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint satis-
faction. Journal of Computer and System Sciené&ds302-332, 2000.

[59] M. Koubarakis. Dense time and temporal constraints within B. Nebel, C. Rich,
and W. Swartout, editorRrinciples of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (KR;98)ges 24-35, San Mateo,
CA, 1992. Morgan Kaufmann.

[60] M. Koubarakis. From local to global consistency in temporal constraint networks.
In Proceedings 1st International Conference on Constraint Programming—CP’95
(Cassis, France, September 199%lume 976 ofLecture Notes in Computer Sci-
ence pages 53-69. Springer-Verlag, 1995.

[61] M. Koubarakis. Tractable disjunctions of linear constraintsPioceedings 2nd In-
ternational Conference on Constraint Programming—CP’96 (Boston, August,1996)
volume 1118 of_ecture Notes in Computer Scienpages 297-307. Springer-Verlag,
1996.

[62] A. Krokhin, A. Bulatov, and P. Jeavons. Functions of multiple-valued logic and the
complexity of constraint satisfaction: A short survey. Rroceedings 33rd IEEE
International Symposium on Multiple-Valued Logic (ISMVL 20@#ges 343—-351.
IEEE Computer Society, 2003.

[63] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The
tractable subalgebras of Allen’s interval algebdaurnal of the ACM50:591-640,
2003.

[64] A. Krokhin, P. Jeavons, and P. Jonsson. Constraint satisfaction problems on intervals
and lengthsSIAM Journal on Discrete Mathematick7:453-477, 2004.

[65] P.B. Ladkin and R.D. Maddux. On binary constraint probledwirnal of the ACM
41:435-469, 1994.

[66] R.E. Ladner. On the structure of polynomial time reducibililgurnal of the ACM
22:155-171, 1975.

[67] J-L. Lassez and K. McAloon. A constraint sequent calculusCdémstraint Logic
Programming, Selected Researpages 33—-43. MIT Press, 1991.

[68] J-L. Lassez and K. McAloon. A canonical form for generalized linear constraints.
Journal of Symbolic Computatiph3:1-24, 1992.

[69] D. Lesaint, N. Azarmi, R. Laithwaite, and P. Walker. Engineering dynamic scheduler
for Work ManagerBT Technology Journall6:16—29, 1998.

[70] T.tuczak and J. N&efil. A probabilistic approach to the dychotomy problem. Tech-
nical Report 2003-640, KAM-DIMATIA Series, Charles University, Prague, 2003.

[71] A.K. Mackworth. Consistency in networks of relatiorstificial Intelligence 8:99—
118, 1977.

David Cohen & Peter Jeavons 35

[72] A.K. Mackworth. Constraint satisfaction. In S.C. Shapiro, ediErcyclopedia of
Artificial Intelligence volume 1, pages 285-293. Wiley Interscience, 1992.

[73] A.K. Mackworth and E.C. Freuder. The complexity of constraint satisfaction revis-
ited. Artificial Intelligence 59:57-62, 1993.

[74] R.N. McKenzie, G.F. McNulty, and W.F. TaylorAlgebras, Lattices and Varieties
volume |. Wadsworth and Brooks, California, 1987.

[75] U. Montanari. Networks of constraints: Fundamental properties and applications to
picture processingnformation Sciences:95-132, 1974.

[76] B. Nebeland H.-J. Brckert. Reasoning about temporal relations: a maximal tractable
subclass of Allen’s interval algebrdournal of the ACM42:43—-66, 1995.

[77] C.H. PapadimitriouComputational ComplexityAddison-Wesley, 1994,

[78] J.K. Pearson and P.G. Jeavons. A survey of tractable constraint satisfaction problems.
Technical Report CSD-TR-97-15, Royal Holloway, University of London, July 1997.

[79] N. Pippenger.Theories of ComputabilityCambridge University Press, Cambridge,
1997.

[80] R. Poschel and L.A. Kalanin. Funktionen- und RelationenalgebreBVW, Berlin,
1979.

[81] E.L. Post.The two-valued iterative systems of mathematical logitume 5 ofAn-
nals Mathematical Studie®rinceton University Press, 1941.

[82] L. Purvis and P. Jeavons. Constraint tractability theory and its application to the
product development process for a constraint-based schedulmndeedings of 1st
International Conference on The Practical Application of Constraint Technologies
and Logic Programming - PACLP'9®ages 63—79. Practical Applications Company,
1999.

[83] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A max-
imal tractable fragment of the Region Connection Calcul@sificial Intelligence
108:69-123, 1999.

[84] I.G. Rosenberg. Minimal clones I: the five types. Uactures in Universal Algebra
(Proc. Conf. Szeged 1983)olume 43 ofCollog. Math. Soc. Janos Bolyapages
405-427. North-Holland, 1986.

[85] T.J. Schaefer. The complexity of satisfiability problems.Phoceedings 10th ACM
Symposium on Theory of Computing, STOCa&yes 216-226, 1978.

[86] E. Schwalb and L. Vila. Temporal constraints: a survépnstraints 3(2—3):129-
149, 1998.

[87] A. Szendrei. Clones in Universal Algebravolume 99 ofSeminaires de Mathema-
tiques SuperieuredJniversity of Montreal, 1986.

[88] P. van Beek and R. Dechter. Constraint tightness and looseness versus local and
global consistencyJournal of the ACM44:549-566, 1997.

[89] P. van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency algorithm
and its specializationdrtificial Intelligence 57:291-321, 1992.

[90] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for temporal
reasoning: A revised report. In D.S. Weld and J. de Kleer, ediResdings in
Qualitative Reasoning about Physical Systepages 373-281. Morgan Kaufmann,
1989.

