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Introduction Daseinisation States

“A theory is something nobody believes, except the person who made it.
An experiment is something everybody believes, except the person who
made it.”

(Unknown)
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The Kochen-Specker theorem

Problem: Is there a realist formulation of quantum theory?

More concretely, is there a phase space (space of hidden states) for
QT such that physical quantities are real-valued functions (hidden
variables) on this space? Self-adjoint operators Â should be
embedded into the set of these functions.

Necessary condition for the existence of a space of hidden states:
existence of valuation functions v : Rsa → R such that

(1) v(Â) ∈ sp(Â) for all Â ∈ Rsa (spectrum rule),

(2) For all bounded Borel functions g : R → R, we have
v(g(Â)) = g(v(Â)) (FUNC principle).
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The Kochen-Specker theorem

Kochen, Specker 1967: For R = B(H), where dimH ≥ 3, there
are no valuation functions and hence no phase space model of QT.

D 2005: This also holds for all unital von Neumann algebras R
without summands of type I1 and I2.

The proposition “the physical quantity A has a value in the (Borel)
set ∆”is written as “A ∈ ∆”.

In quantum theory, physical quantitities are represented by self-
adjoint operators in B(H). The spectral theorem shows that to
each proposition “A ∈ ∆”, there exists a projection
Ê [A ∈ ∆] ∈ P(H).

The KS theorem is equivalent to the fact that in quantum theory
we cannot consistently assign “true”or “false”to all propositions at
once (or 1 resp. 0 to the projections corresponding to the
propositions).
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Contexts or Weltanschauungen

• There is no model of quantum theory in which all physical
quantities have values at once. This rules out any naive realist
picture of QT.

• Not surprisingly, there is no problem for abelian algebras. The
operators in an abelian C ∗-algebra can be written as
continuous functions on the Gel’fand spectrum.

• Abelian subalgebras of B(H) are called contexts.

• Some kind of contextual model of QT is needed (but with
good control of the relations between contexts).
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The context category

We consider the category V(H) of non-trivial unital abelian von
Neumann subalgebras of B(H). This is a poset and is called the
context category.

We use von Neumann algebras (rather than C ∗-algebras) since

• They have enough projections; their projection lattices are
complete.

• The spectral theorem holds for von Neumann algebras, which
gives the connection between propositions “A ∈ ∆”and
projections.

We exclude the trivial algebra C1̂. The minimal elements in V(H)
are of the form V

bP
:= {P̂, 1̂}′′ = CP̂ + C1̂.
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The spectral presheaf

To each V ∈ V(H), assign its Gel’fand spectrum Σ(V ), i.e., the
set of algebra homomorphisms λ : V → C. Physically, the
λ ∈ Σ(V ) are multiplicative states of the algebra V .

If V ′ ⊆ V , we have a morphism iV ′V : V ′ → V and define

Σ(iV ′V ) : Σ(V ) −→ Σ(V ′)

λ 7−→ λ|V ′ .

Σ is a contravariant functor from the context category V(H) to
the category Set, i.e. a presheaf over V(H). Notation:
Σ = (Σ(V ))V∈V(H) ∈ SetV(H)op .

We regard the spectral presheaf Σ as a quantum analogue of
phase space. It represents the symbol Σ of the formal language.
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Reformulation of the KS theorem

Thm. (Isham, Butterfield ’98): The spectral presheaf Σ has no
global sections, i.e., there are no morphisms 1 → Σ. This is
equivalent to the Kochen-Specker theorem.

The terminal object 1 in SetV(H)op is the trivial presheaf. Since
mappings 1 → Σ can be seen as elements or points of Σ, this
result means that the spectral presheaf Σ has no points.
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Daseinisation of projections

Let P̂ = Ê [A ∈ ∆] ∈ P(H) be the projection corresponding to the
proposition “A ∈ ∆”.

In order to relate P̂ to all the contexts V ∈ V(H), we define a
mapping

δ : P(H) −→ (P(V ))V∈V(H)

P̂ 7−→ (δ(P̂)V )V∈V(H),

where
δ(P̂)V :=

∧
{Q̂ ∈ P(V ) | Q̂ ≥ P̂}.

That is, we approximate P̂ from above in each context. If P̂ ∈ V ,
then δ(P̂)V = P̂.
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Daseinisation of projections

Each projection δ(P̂)V ∈ P(V ) defines a subset of the Gel’fand
spectrum Σ(V ) by

δ(P̂)V 7−→ {λ ∈ Σ(V ) | λ(δ(P̂)V ) = 1}.

In fact, for each V , we get a clopen subset of Σ(V ). One can
easily show that these subsets fit together to form a subobject of
Σ. We obtain a mapping

δ : P(H) −→ Sub Σ

from the projection lattice into the subobjects of Σ, which we call
the daseinisation of P.

Daseinisation is injective and order-preserving.
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Daseinisation and the topos of presheaves

Daseinisation sends projections to subobjects of Σ. We can now
use the fact that SetV(H)op is a topos, which implies that the
subobjects of a given object (here Σ) form a Heyting algebra.

Hence, daseinisation maps propositions about a quantum system
to a distributive lattice in a contextual manner.

One can show that

δ(P̂ ∨ Q̂) = δ(P̂) ∨ δ(Q̂),

but
δ(P̂ ∧ Q̂) ≤ δ(P̂) ∧ δ(Q̂).

Not every subobject of Σ comes from a projection. For example,
the subobject δ(P̂) ∧ δ(Q̂) is not of the form δ(R̂) for any pro-
jection R̂ in general.
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Natural transformations from operators

We want to represent physical quantities as natural transfor-
mations from the spectral presheaf to some presheaf related to the
real numbers. Whenever V ′ ⊆ V , this will give a commutative
diagram

R(V ) R(V ′)-
ρ(iV ′V )

Σ(V ) Σ(V ′)-Σ(iV ′V )

?

δ̆(Â)V

?

δ̆(Â)V ′
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At each stage V , the mapping

δ̆(Â)V : Σ(V ) 7−→ R(V )

will be an evaluation, sending λV ∈ Σ(V ) to a real number
λV (ÂV ).

We construct ÂV from a given Â ∈ B(H)sa by a certain
approximation, generalising the daseinisation of projections.
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Daseinisation of self-adjoint operators

Let Â ∈ B(H)sa. From the spectral family ÊA = (ÊA
λ )λ∈R, we

obtain a new spectral family in P(V ) by defining

∀λ ∈ R : Ê
δ(bA)V
λ :=

∨
{Q̂ ∈ P(V ) | Q̂ ≤ ÊA

λ }.

This gives a self-adjoint operator δ(Â)V , which is the smallest
operator in V larger than Â in the so-called spectral order.

Similarly, we can define

∀λ ∈ R : Ê
δi (bA)V
λ :=

∧
{Q̂ ∈ P(V ) | Q̂ ≥ ÊA

λ }.

The corresponding operator δi (Â)V approximates Â from below in
the spectral order.
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Spectral order

Def. (Olson ’71, de Groote ’04): Let Â, B̂ ∈ B(H)sa with spectral

families ÊA, ÊB . The spectral order is defined by

Â ≤s B̂ :⇐⇒ ∀λ ∈ R : ÊA
λ ≥ ÊB

λ .

• The spectral order is a partial order on the self-adjoint
operators in B(H).

• On projections, the spectral order <s and the usual order <
coincide.

• Equipped with the spectral order, B(H)sa becomes a
boundedly complete lattice.

• The spectral order is coarser than the usual order on
self-adjoint operators, i.e. Â <s B̂ =⇒ Â < B̂.

• If Â and B̂ commute, then Â <s B̂ ⇐⇒ Â < B̂.
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The mapping

δV : B(H)sa −→ Vsa

Â 7−→ δ(Â)V

adapts Â to the context V . The mapping δV is non-linear. We
have

• sp(δ(Â)V ) ⊆ sp(Â).

• If Â = P̂ is a projection, then δ(Â)V is a projection, too,
namely δ(Â)V =

∧
{Q̂ ∈ P(V ) | Q̂ ≥ P̂}.

• δ(Â + αÎ )V = δ(Â)V + αÎ .

• If α ≥ 0, then δ(αÂ)V = αδ(Â)V .

• δ(Â)V is not a function of Â in general.

Analogous properties hold for δiV .
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The presheaf of order-reversing functions

We saw that for all V ′ ⊆ V , we have δ(Â)V ′ ≥ δ(Â)V .

We define

δ̆(Â)V : Σ(V ) −→ R(V )

λ 7−→ {λ|V ′(δ(Â)V ′) | V ′ ⊆ V }.

This is an order-reversing, real-valued function on the set
↓V = {V ′ ∈ V(H) | V ′ ⊆ V }.

These functions form a presheaf (Jackson ’06) which we denote by
R�. The restriction is simply given by restriction of the
order-reversing functions.

By construction, δ̆(Â) is a natural transformation from Σ to R�.
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The k-construction on R�

The presheaf R� is a candidate for the quantity value object for
quantum theory, representing the linguistic symbol R.

The sum of two order-reversing functions is order-reversing and the
zero function acts as a neutral element for addition. Using these
facts, one can see that R� is a commutative monoid-object in
SetV(H)op

.

Applying Grothendieck’s k-construction, we obtain an abelian
group-object k(R�). One can show that k(R�) incorporates both
the approximation from above (daseinisation δ) and the one from
below (δi ) that we can apply to self-adjoint operators.

For that reason, we consider the presheaf k(R�) as the quantity
value-object for QT.
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Subobjects from pullbacks

A proposition of the form “A ∈ ∆”refers to the real numbers, since
∆ ⊂ R. The real numbers lie outside the formal language.

The real numbers are a part of the representation of the formal
language in Set, i.e., when we describe the system as a classical
system, but they are not contained in the representation in
SetV(H)op

, i.e., when we choose a quantum description.

Now that we have defined R�, we can construct subobjects of Σ
by pullback: let Θ be a subobject of R�, then δ̆(Â)−1(Θ) is a
subobject of Σ.

In this way, we get a topos-internal construction of propositions
that do not refer to the real numbers. The ’meaning’ of such
propositions must be discussed from ’within the topos’.
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Pure states and truth objects

In classical theory, a pure state is nothing but a point of phase
space, i.e., a point of the state object that represents the symbol Σ.

Since the spectral presheaf Σ has no points, we must use another
description for (pure) states, namely by certain elements of
P(PΣ). (In classical theory, both descriptions agree.)

Let ψ be a unit vector in Hilbert space. For each V ∈ V(H), we
define

Tψ(V ) := {S ⊆ Σ(V ) | 〈ψ|P̂S |ψ〉 = 1}
= {S ⊆ Σ(V ) | P̂S ≥ δ(P̂ψ)V }.

We call Tψ = (Tψ(V ))V∈V(H) the truth object corresponding to
ψ.
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The subobject classifier in SetV(H)op

The subobject classifier Ω in a topos of presheaves is the presheaf
of sieves.

A sieve in a poset like V(H) is particularly simple: let V ∈ V(H).
A sieve α on V is a collection of subalgebras V ′ ⊆ V such that,
whenever V ′ ∈ α and V ′′ ⊂ V ′, then V ′′ ∈ α (so α is a downward
closed set).

The maximal sieve on V is ↓V = {V ′ ∈ V(H) | V ′ ⊆ V }.

A truth value is a global section of the presheaf Ω.

The global section consisting entirely of maximal sieves is inter-
preted as ’totally true’, the global section consisting of empty
sieves as ’totally false’.
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Truth values from truth objects

We saw that subobjects of Σ represent propositions about the
physical system under consideration, and that states are
represented by truth objects.

Let S ∈ Sub Σ be such a subobject, and let Tψ be a truth object.

Let
ν(pSq ∈ Tψ)V := {V ′ ⊆ V | S(V ′) ∈ Tψ(V ′)}.

One can show that this is a sieve on V . Moreover, for varying V ,
these sieves form a global section

ν(pSq ∈ Tψ) ∈ ΓΩ.

This is the truth value of the proposition represented by S , given
by the truth object Tψ.
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Open problems and goals

There are many interesting open questions. Some of the things we
are working on are:

• Description of commutators within the topos SetV(H)op .

• Topos formulation of uncertainty relations.

• Superposition of states.

• Composite systems and entanglement.

• Internal vs. external formulations.

• ...
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