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ITT - AES

• One of the largest providers of technology solutions and 
research services to the US Department of Defense.
• Sensors, communication, information processing, cryptology, C4I, 

radar, sonar, electronic warfare, tracking, guidance, NBCR, and 
night vision systems.

• Selected as the Top Performing Aerospace / Defense 
Company by Aviation Week & Space Technology magazine in 
2007.

• Quantum Technologies Group
• Quantum Sensing and Communications. 
• Mathematics and Algorithmics of Quantum Information.
• Quantum Effects in Biological Systems.
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Outline

• Noisy Quantum Computation and the Threshold Theorem

• Constant Errors Change Algorithmic Complexity

• Error Scaling Avoids Algorithmic Complexity Penalties

• Circuit Size Complexity Overheads and Tradeoffs

• Quantum Errors as Complexity Sinks

• Noisy Entanglement as a Resource/Sink in Teleportation

• Conclusions
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Noisy Quantum Computation

• Quantum information is very susceptible to noise.

• In order to exploit all the advantages of QIS, we require 
protocols and systems that guarantee fault tolerance.
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FTQC: Typical Assumptions

• Physical Error Models
• Random Errors
• Uncorrelated Errors
• Error Rate Independent on 

Number of Qubits
• No Leakage Errors

• Error Correction Protocols
• Perfect Parallelism
• Gate Non-Locality
• Large Supply of Ancilla 

Qubits
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• Redundancy: encode logical qubit states in multi-qubit states. 

• QEC does not cancels out errors, it merely reduces them.

Quantum Error Correction
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Concatenated QEC
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Fault Tolerant Gates

• Fault tolerant quantum gates operate on 
h-layers of encoded logical qubit states.

• Syndrome measurement and recovery 
procedures applied after the FT gate.

• c is the total number of places where a 
failure may occur.
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The Threshold Theorem

• Further layers of QEC will decrease the net error probability as 
long as:

• Therefore, FTQC is only possible if the probability of error p is 
under a certain threshold value. 

• In practice:
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Fault Tolerant Quantum Computing

• To achieve algorithmic accuracy        with a circuit of s noisy 
gates we require:

• Circuit size overhead:
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d is the maximum number 
of operations used in FT 
for a single gate.
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Beyond the Threshold Theorem

• LHS has received lots of attention:
• More realistic physical error models (p).
• Improved quantum error correction protocols (c).

• RHS usually ignored:
• First order approximation incompatible with complexity theory. 
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Full Error Model

• Complexity theory: take the asymptotic limit of the scaling 
variable and do not make any assumptions about constants.

• Assume a quantum algorithm made of m repeated applications 
of an unitary operator U.

• State after 1 iteration:

• State after m iterations:

(1) (0) † (0) †ˆ ˆ ˆ ˆ(1 )  f fU U U U     

( ) ( 1) † ( 1) †ˆ ˆ ˆ ˆ(1 )  m m m
f fU U U U      

( ) (0) †ˆ ˆ(1 )  ...m m m mU U    
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Constant Error Probability Analysis

• We define P(j) as the probability that after m iterations the 
algorithm is completed with j errors.

• Then, the probability that the algorithm will be completed with 
at least one error is:
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Probability Amplification

• Error will diminish the accuracy of the algorithm. How many 
times do we need to run it to obtain a target accuracy?

• In the asymptotic limit:
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Algorithmic Complexity

• It can be observed that k is a non-trivial function of m (unless 
the constant uncorrected error is exactly zero)

• Also, m is a scaling function that depends on the number of 
qubits, gates, and iterations.

• The “true” algorithmic complexity for noisy circuits is:

• As a consequence, even if they are arbitrarily small, 
constant uncorrected errors affect algorithmic complexity.

)( ) (f f k  
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Grover’s Algorithm – Complexity

• The values of m and k are:

• The overall complexity is:
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Error Scaling

• If we demand that the algorithmic complexity remains the 
same in the presence of errors, then we need to include a 
functional dependency between the uncorrected error 
probability and m.
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Grover’s Algorithm – Error Scaling

• The error scaling in Grover’s algorithm looks like:
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Circuit Complexity Bounds

• A more adequate expression for the inequality in the threshold 
theorem, consistent with complexity theory, is:

• The circuit size overhead is given by:
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Grover’s Algorithm – Circuit Size

• The scaling of the circuit size overhead looks like:
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“Negligible” Complexity Overheads

• QC constantly requires poly-logarithmic circuit size overheads
• FTQC.
• Approximation of an arbitrary unitary operator using a finite 

universal set.

• Most of the time these terms are considered as “negligible” (in 
comparison to leading order polynomial or exponential terms).

• These terms are commonly omitted when talking about the 
potential physical realization of a general purpose quantum 
computer.

• Are they really negligible from a practical standpoint?
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A Lesson from Computational Geometry

• Linear space multi-dimensional searches require:

• Space-time tradeoff: 

• In most real-time systems of interest, the “small” space 
overhead makes the tradeoff unfeasible and impractical.

• Quantum algorithmic efficiency could be offset by poly- 
logarithmic overheads or could be rendered impractical.

( ) spaceN ) im( t eN

( ) space ( ) space ( ) timelog logN N NN    
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Smart Quantum Compilers

• Assigning levels of QEC independently of the algorithm leads 
to a waste of valuable resources.

• Dynamic quantum compilers should be able to decide at run 
time the optimal amount of QEC required to accomplish a 
specific algorithmic task.

• If circuit size overheads are non-trivial expenses, then the 
compiler should decide the most optimal algorithmic accuracy 
given hardware constraints.

• Error scaling formula provides a general guideline to establish 
optimal space-time tradeoffs in noisy QC.
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Complexity Resources and Sinks

• Complexity theory attempts to describe how easy or how 
difficult is to find the solution of a computational problem. 

• Complexity resources are those necessary to carry out a 
computation (space, time, and circuit size): they reflect the 
theoretical difficulty of solving a computational problem.

• Errors act as “Complexity Sinks”: they consume nontrivial 
amounts of resources and do not reflect the theoretical 
difficulty of solving a computational problem. 

• What about entanglement? Is it a complexity resource? Or is it 
a complexity sink?
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Quantum Teleportation with Imperfect (Noisy) 
Entanglement

• The state to be teleported is:

• The imperfectly entangled state is:

10  

1100 ba 
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Communication Using Teleportation

• We use qubits to encode classical bits:

• Alice teleports these qubits to Bob. The probability that Alice 
sends a “XL ” and Bob measures a “YL ” is given by P(XL ,YL ):
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Entanglement as a Complexity Resource

• Conventional thinking leads one to believe that that the degree 
of entanglement is an accurate measure of a teleportation 
device’s ability to transmit information. 

• This implies that entanglement should be considered as a 
complexity resource.

• Note, however, that Gross et.al. (2009) showed that high 
degrees of entanglement may actually reduce the 
computational power in the measurement-based quantum 
computing model.
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Degree of Entanglement

• The standard measure of entanglement in a bipartite state is 
the Shannon entropy of the moduli squared of the  Schmidt 
coefficients:

• For the state:

the Schmidt coefficients are given by:

   
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The Circle as a Domain: Entanglement

• Entanglement decreases as we move up in the order.
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Probability of Success on the Circle

• Probability of success decreases in odd quadrants as we move up in the order.

• Probability of success increases in even quadrants as we move up in the order.
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Entanglement and Capacity

• As we have seen, in the even quadrants, the degree of 
entanglement and the probability of success do not move in 
the same direction.
• Entanglement always decreases as we move up in the order.
• The success probability decreases in the odd quadrants as we 

move up in the order.
• The success probability increases in the even quadrants as we 

move up in the order.

• As a consequence, in the even quadrants, the degree of 
entanglement and the channel capacity do not move in the 
same direction.
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Noisy Entanglement: Resource and Sink

• Entanglement as a resource: there are cases where as the 
degree of entanglement increases, so too does the amount of 
information we can transmit. 

• Entanglement as a sink: there are cases where as the 
degree of entanglement increases, the amount of information 
we can transmit decreases.

• Furthermore, it is possible to teleport information with an 
acceptable error rate despite the fact that the entangled states 
posses a degree of entanglement that is near zero.

• Therefore, noisy entanglement acts as a complexity resource, 
but also as a complexity sink.
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Conclusions

• Even if they are arbitrarily small, constant uncorrected errors 
affect algorithmic complexity. To avoid such an algorithmic 
penalty, uncorrected errors have to depend on the scaling 
variable.

• Error scaling requires a substantially larger circuit size 
overhead for FTQC. Then, scaling errors act as non-trivial 
“complexity sinks”. 

• Entanglement: it can be considered as a complexity resource, 
but also as a sink (at least within the context of noisy 
teleportation).

• The complexity of noisy QC is still not well understood.
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Advertisement

• Synthesis Lectures on Quantum Computing (Morgan & 
Claypool).

• Graduate level books on almost anything related to “quantum 
stuff”. 

• Current and upcoming titles:
• Quantum Walks for Computer Scientists by S. Venegas
• Quantum Computer Science by M. Lanzagorta & J. Uhlmann
• Broadband Quantum Cryptography by D. Rogers
• Quantum Simulators by S. Venegas, F. Delgado, & J.L. Gomez
• Relativistic Quantum Information by P. Alsing
• Algebraic Quantum Information Theory by K. Martin
• Nonlinear Quantum Filtering by S. Julier, M. Lanzagorta & J. Uhlmann

• Currently looking for new book proposals.
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