
On the Power of LTLf in Assured Autonomy

Shufang Zhu

shufang.zhu@cs.ox.ac.uk

May 16, 2023

University of Oxford

1

Artificial Intelligence

Image from https://www.gevers.eu/blog/artificial-intelligence/video-post/

2

Artificial Intelligence

AI aims at devising systems that act autonomously

– Autonomy, one of the grand challenges in AI

3

Artificial Intelligence

– Autonomy, one of the grand challenges in AI

• Autonomous agents/robots, operating in a

changing, incompletely known,

unpredictable environments

3

Artificial Intelligence

– Autonomy, one of the grand challenges in AI

• Agents with the ability of autonomously

deliberating how to act to environment

changes to achieve a given task

3

AI aims at devising systems that act autonomously

– AI agents with the ability to self-deliberate its own behaviours carries significant

risks

– AI agents with Assured Autonomy

4

AI aims at devising systems that act autonomously

– AI agents with the ability to self-deliberate its own behaviours carries significant

risks

– AI agents with Assured Autonomy

4

How to achieve assured autonomy?

– Formal Methods (FM), automated synthesis1

– Both the environment and the task are formally specified

– Mechanical translation of human-understandable environment and task

specifications to a program that is known to meet the task wrt the

environment2

1A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016
2M. Vardi - The Siren Song of Temporal Synthesis, 2018

5

How to achieve assured autonomy?

– Formal Methods (FM), automated synthesis1

– Both the environment and the task are formally specified

– Mechanical translation of human-understandable environment and task

specifications to a program that is known to meet the task wrt the

environment2

1A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016
2M. Vardi - The Siren Song of Temporal Synthesis, 2018

5

How to achieve assured autonomy?

– Formal Methods (FM), automated synthesis1

– Both the environment and the task are formally specified

– Mechanical translation of human-understandable environment and task

specifications to a program that is known to meet the task wrt the

environment2

1A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016
2M. Vardi - The Siren Song of Temporal Synthesis, 2018

5

How to achieve assured autonomy?

– Formal Methods (FM), automated synthesis1

– Both the environment and the task are formally specified

– Mechanical translation of human-understandable environment and task

specifications to a program that is known to meet the task wrt the

environment2

1A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016
2M. Vardi - The Siren Song of Temporal Synthesis, 2018

5

How to achieve assured autonomy?

– Specification language in FM

– Linear Temporal Logic (LTL)3, remarkable applicability

– Interpreted over infinite traces, relating to non-terminating systems

3A. Pnueli, FOCS1977

6

How to achieve assured autonomy?

– Specification language in FM

– Linear Temporal Logic (LTL)3, remarkable applicability

– Interpreted over infinite traces, relating to non-terminating systems

3A. Pnueli, FOCS1977

6

How to achieve assured autonomy?

– Specification language in FM

– Linear Temporal Logic (LTL)3, remarkable applicability

– Interpreted over infinite traces, relating to non-terminating systems

– AI agents are not dedicated to a single task all their life but are supposed to

accomplish one task after another

3A. Pnueli, FOCS1977

6

How to achieve assured autonomy?

– Specification language in FM

– Linear Temporal Logic (LTL)3, remarkable applicability

– Interpreted over infinite traces, relating to non-terminating systems

– Specification language for AI agents

– Linear Temporal Logic on finite traces (LTLf)
4

3A. Pnueli, FOCS1977
4G. De Giacomo, M. Vardi, IJCAI2013

6

Linear Temporal Logic over Finite Traces5

– finite set of atomic propositions {p, q}.
– Boolean connectives: ¬, ∧, ∨, and →.

– temporal connectives:

X p next time
p Tail

2p always Tailp p p ppp p p p

3p eventually Tailp

pUq until Tailp pp p q

pRq release Tailq qq q p,q

5Finite but no specific bound.

7

On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: Specification of

environment’s behaviors

8

On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: planning domain,

LTL/LTLf formula, ∅

8

On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: planning domain,

LTL/LTLf formula, ∅

Agent task: Specification of

desired task/goal

8

On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: planning domain,

LTL/LTLf formula, ∅

Agent task: LTLf formula

8

On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: planning domain,

LTL/LTLf formula, ∅

Agent task:

Obtain: An agent strategy that is

guaranteed to realize the task

wrt the environment

8

Synthesized Program (Strategy)

– at every time step

– make an action

– for every response from the env model

– the combined play (trace consists of moves from both env. and agn.)

– satisfies φ

9

Synthesized Program (Strategy)

1 Action move block to L2

1.1 Response do-nothing

1.1.1 Action move block to L1

...

1.2 Response remove block from L2

1.2.1 Action move block to L2

...

9

LTLf Synthesis

– Given: agent task φ

– Obtain: agent strategy guaranteed to realize φ against the environment
10

LTLf Synthesis and Reachability Game6

– Key point: LTLf φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

6G. De Giacomo, M. Vardi, IJCAI2013

11

LTLf Synthesis and Reachability Game6

– Key point: LTLf φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o
Adversarial reachability

6G. De Giacomo, M. Vardi, IJCAI2013

11

LTLf Synthesis and Reachability Game6

– Key point: LTLf φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Adversarial reachability

– W0 = {s2, s3}
– W1 = {s2, s3, s1}, ω(s1) = ¬o
– W2 = {s2, s3, s1, s0}, ω(s0) = o

– W3 = W2, fixpoint!

Strategy ω : Win → 2O

6G. De Giacomo, M. Vardi, IJCAI2013

11

Explicit to Symbolic

Drawback of explicit DFA:

The explicit DFA can have double-exponential states

Symbolic LTLf synthesis framework7

Basic idea: binary encoding of state representation, exp fewer variables

7S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Vardi, IJCAI2017

12

Explicit to Symbolic

Drawback of explicit DFA:

The explicit DFA can have double-exponential states

Symbolic LTLf synthesis framework7

Basic idea: binary encoding of state representation, exp fewer variables

7S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Vardi, IJCAI2017

12

Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

State variables:Z = {z0, z1}
Transition function:

{ηz = Z × I ×O → {0, 1} | z ∈ Z}
ηz(Z , I ,O) ∈ {0, 1}

13

Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– (¬z0, z1︸ ︷︷ ︸
s1(01)

,¬i , o) → z0,¬z1︸ ︷︷ ︸
s2(10)

– ηz0(¬z0, z1,¬i , o) evaluates to true

ηz1(¬z0, z1,¬i , o) evaluates to false

13

Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– (¬z0, z1︸ ︷︷ ︸
s1(01)

, i , o) → ¬z0, z1︸ ︷︷ ︸
s1(01)

– ηz0(¬z0, z1, i , o) evaluates to false

ηz1(¬z0, z1, i , o) evaluates to true

13

Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– ηz0(¬z0, z1,¬i , o) evaluates to true

ηz1(¬z0, z1,¬i , o) evaluates to false

– ηz0(¬z0, z1, i , o) evaluates to false

ηz1(¬z0, z1, i , o) evaluates to true

– . . .

13

Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Only transitions evaluated to true

– ηz0(¬z0, z1,¬i , o) evaluates to true

– ηz0(¬z0, z1, i , o) evaluates to false

– . . .

ηz0 = (¬z0 ∧ z1 ∧ ¬i ∧ o) ∨ . . .

13

Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Only transitions evaluated to true

– ηz1(¬z0, z1,¬i , o) evaluates to false

– ηz1(¬z0, z1, i , o) evaluates to true

– . . .

ηz1 = (¬z0 ∧ z1 ∧ i ∧ o) ∨ . . .

13

Symbolic LTLf Synthesis – Symbolic Reachability Game

Reachability game on symbolic DFA D = (I ,O,Z , ι, η, f)

– A Boolean formula w over Z for winning states

– A Boolean formula t over Z ∪O for (winning state, winning output) pairs

14

Symbolic LTLf Synthesis – Symbolic Reachability Game

Reachability game on symbolic DFA D = (I ,O,Z , ι, η, f)

– w0 = f every accepting state is a winning state

– t0 = f the task is accomplished (true) after reaching accepting states

14

Symbolic LTLf Synthesis – Symbolic Reachability Game

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– (Z ,O) satisfies ti

– Z was not yet a winning state, and for every I we can move from Z to an

already-identified winning state

14

Symbolic LTLf Synthesis – Symbolic Reachability Game

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

wi+1 = ∃O.ti+1

– Z satisfies wi

– Z was not yet a winning state, and there exists O such that for every I we can

move from Z to an already-identified winning state

14

Symbolic LTLf Synthesis – Symbolic Reachability Game

Reachability game on symbolic DFA D = (I ,O,Z , ι, η, f)

– wi+1 ≡ wi , fixpoint w∞

14

Symbolic LTLf Synthesis – Abstract Winning Strategy

Function ω : Win → 2O

– Input: winning state s

– Output: winning output O of s

15

Symbolic LTLf Synthesis – Abstract Winning Strategy

Function ω : Win → 2O

– Input: winning state s

– Output: winning output O of s

We have Boolean formula t over Z ∪O

– (Z ∪ O) |= t iff Z is a winning state and O is a winning output of Z

15

Symbolic LTLf Synthesis – Abstract Winning Strategy

t over Z ∪O as the input formula to a Boolean synthesis procedure

– function τ : 2Z → 2O

15

Symbolic LTLf Synthesis

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

so
lv

e
d

 c
a
se

s

Length of the formula

Symbolic Explicit

16

Symbolic LTLf Synthesis with Env Model

Environment Model

Task 1

Task 2

Task 3

Task n

17

Symbolic LTLf Synthesis with Env Model

Synthesis with Environment Models

– Markovian environment behaviours

• Planning domain8

– Non-Markovian environment behaviours, e.g., specified in LTL formulas

• Simple Fairness and Stability9

• Generalized Reactivity (1) and Safety10

• General LTL formula11

8K. He, A. M. Wells, L. E. Kavraki, M. Vardi, ICRA2019
9S. Zhu, G. De Giacomo, G. Pu, M. Vardi, AAAI2020

10G. De Giacomo, A. Di Stasio, L. M. Tabajara, M. Vardi, S. Zhu, IJCAI2021
11G. De Giacomo, A. Di Stasio, M. Vardi, S. Zhu, KR2020

17

Symbolic LTLf Synthesis with Env Model

Synthesis of LTLf with environment model in LTL

Step-1: task in LTLf , abstract winning region of the agent task in LTLf

Step-2: environment model in LTL, with respect to the winning region

17

Symbolic LTLf Synthesis with Env Model

Synthesis of LTLf with environment model in LTL

Step-1: task in LTLf , abstract winning region of the agent task in LTLf

Step-2: environment model in LTL, with respect to the winning region

Practically diminish the difficulty of reasoning the mix of LTL/LTLf specifications

17

Symbolic LTLf Synthesis: Limitation

– Backward fixpoint computation on constructed DFA

– Pros: Computing the winning region of the task in LTLf

• Keep the expressiveness of environment models

• Maintain the simplicity of reasoning LTLf specifications

– Cons: double-exponential blowup of LTLf -to-DFA construction

18

Symbolic LTLf Synthesis: Limitation

– Backward fixpoint computation on constructed DFA

– Pros: Computing the winning region of the task in LTLf

• Keep the expressiveness of environment models

• Maintain the simplicity of reasoning LTLf specifications

– Cons: double-exponential blowup of LTLf -to-DFA construction

18

Symbolic LTLf Synthesis: Limitation

– Backward fixpoint computation on constructed DFA

– Pros: Computing the winning region of the task in LTLf

• Keep the expressiveness of environment models

• Maintain the simplicity of reasoning LTLf specifications

– Cons: double-exponential blowup of LTLf -to-DFA construction

18

Symbolic LTLf Synthesis: Limitation

– Backward fixpoint computation on constructed DFA

– Cons: double-exponential blowup of LTLf -to-DFA construction

• Limits the scalability in Markovian Decision Process (MDP)-solving problems,

e.g., planning with LTLf tasks

18

Forward LTLf Synthesis

– Diminish the double-exponential blowup practically

– Synthesis on the fly8

• Abstract a strategy while constructing the DFA

• Construct the complete DFA only in the worst case

8G. De Giacomo, M. Favorito, J. Li, S. Xiao, M. Vardi, S. Zhu, IJCAI2022

19

Forward LTLf Synthesis

– Diminish the double-exponential blowup practically

– Synthesis on the fly8

• Abstract a strategy while constructing the DFA

• Construct the complete DFA only in the worst case

8G. De Giacomo, M. Favorito, J. Li, S. Xiao, M. Vardi, S. Zhu, IJCAI2022

19

Forward LTLf Synthesis: DFA construction

Construct search space on-the-fly via formula progression

– LTLf formula φ, as a DFA state, what happens now (label), what should happen

next accordingly (successor state)

– φ = a Ub, a stays true until b holds

20

Forward LTLf Synthesis: DFA construction

Construct search space on-the-fly via formula progression

– LTLf formula φ, as a DFA state, what happens now (label), what should happen

next accordingly (successor state)

– φ = a Ub ≡ b ∨ (a ∧ X (a Ub)), a stays true until b holds

20

Forward LTLf Synthesis: DFA construction

Construct search space on-the-fly via formula progression

– LTLf formula φ, as a DFA state, what happens now (label), what should happen

next accordingly (successor state)

– φ = a Ub ≡ b ∨ (a ∧ X (a Ub)), a stays true until b holds

• now = a ∧ b, next = tt

• now = a ∧ ¬b, next = a Ub

• now = ¬a ∧ b, next = tt

• now = ¬a ∧ ¬b, next = ⊥

ϕ tt

⊥

a ∧ ¬b

a ∧ b || ¬a ∧ b

¬a ∧ ¬b

20

Forward LTLf Synthesis: Abstract Strategy

LTLf Synthesis
Adv. reachability

game

FOND

planning

– FOND planning, state space only single-exponential

– LTLf synthesis, state space is double-exponential

– Existing planners cannot directly solve LTLf synthesis on-the-fly

21

Forward LTLf Synthesis: Abstract Strategy

LTLf Synthesis as AND-OR graph search

s1

s0

s2

s3

o ∧ i

¬o ∧ ¬i

o ∧ ¬i||¬o ∧ i

s0

s1 s3s3 s2

o ¬o

i ¬i i ¬i

21

LTLf Synthesis as AND-OR Graph Search

Knowledge compilation techniques, e.g., Sentential Decision Diagrams (SDDs)9

– Compress labels leading to the same nodes, reduce the branching factor

9A. Darwiche, IJCAI2011

22

Experimental Results on Until-Patterns

1 2 3 4 5 6 7 8 9 1011121314151617181920
Parameter: Number of variables

10°3

10°1

101
T

im
e

co
st

(s
ec

on
ds

)

Lydia

Cynthia

Ltlfsyn

Lisa-symbolic

Lisa

Lisa-explicit

U(n) = p1U(p2U(. . . pn−1Upn))

23

Forward LTLf Synthesis

– LTLf synthesis adopting AND-OR graph search

– Uninformed search, promising synthesis performance

– Move from uninformed search to informed search exploiting heuristics

24

Conclusions

Assured Autonomy through LTLf synthesis

– Backward symbolic LTLf synthesis

• Synthesize strategy based on the winning region computation

• Separate the reasoning of the environment model and the agent task

– Forward LTLf synthesis adopting AND-OR graph search

• Synthesize strategy on-the-fly, without computing the winning region

• Applicable to MDP-solving problems, e.g., planning with LTLf tasks

25

Assured Autonomy with Resilience

Resilience: the ability to recover from unexpected circumstances

– “Creating resilient systems means thinking hard in advance about what could go

wrong and incorporating effective countermeasures into designs.”10

10W. A. Galston. WSJ, March 10, 2020.

26

Assured Autonomy with Resilience - Challenges

How to appropriately model the contingencies?

How to handle contingencies?

27

Assured Autonomy with Resilience - Directions

1 Structured model to describe contingencies

– Combining Markovian and non-Markovian dynamics

2 Contingencies in the environment behavior

3 Contingencies in the agent behavior

28

Assured Autonomy with Resilience - Resilience Against Env Contingencies

– Best-Effort strategy: a program to handle both expected and contingent

environment dynamics11

• Symbolic best-effort LTLf synthesis, both env and task are in LTLf
12

– Maximally permissive strategy: all possible strategies to meet the task

• Maximally permissive strategy of LTLf specifications13

11B. Aminof, G. De Giacomo, S. Rubin, IJCAI2021
12G. De Giacomo, G. Parretti, S. Zhu, GenPlan2022
13S. Zhu, G. De Giacomo, IJCAI2022

29

Assured Autonomy with Resilience - Resilience Against Agn Contingencies

– Expected move, optional tasks

– Complete optional agent tasks while guaranteeing mandatory tasks14

– Unexpected move, an agent with a trembling hand

– 2-player game becomes 2.5-player game

14S. Zhu, G. De Giacomo, KR2022

30

Questions?

Assured Autonomy through LTLf synthesis

– Backward LTLf synthesis

– Forward LTLf synthesis

Assured Autonomy with resilience

– Structured specification model

– Resilience against environment contingencies

– Resilience against agent contingencies

31

