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Artificial Intelligence
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Artificial Intelligence

AI aims at devising systems that act autonomously

– Autonomy, one of the grand challenges in AI
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Artificial Intelligence

– Autonomy, one of the grand challenges in AI

• Agents with the ability of autonomously

deliberating how to act to environment

changes to achieve a given task
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How to achieve assured autonomy?

– Formal Methods (FM), automated synthesis1

– Both the environment and the task are formally specified

– Mechanical translation of human-understandable environment and task

specifications to a program that is known to meet the task wrt the

environment2

1A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016
2M. Vardi - The Siren Song of Temporal Synthesis, 2018
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How to achieve assured autonomy?

– Specification language in FM

– Linear Temporal Logic (LTL)3, remarkable applicability

– Interpreted over infinite traces, relating to non-terminating systems

– AI agents are not dedicated to a single task all their life but are supposed to

accomplish one task after another

3A. Pnueli, FOCS1977
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How to achieve assured autonomy?

– Specification language in FM

– Linear Temporal Logic (LTL)3, remarkable applicability

– Interpreted over infinite traces, relating to non-terminating systems

– Specification language for AI agents

– Linear Temporal Logic on finite traces (LTLf )
4

3A. Pnueli, FOCS1977
4G. De Giacomo, M. Vardi, IJCAI2013
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Linear Temporal Logic over Finite Traces5

– finite set of atomic propositions {p, q}.
– Boolean connectives: ¬, ∧, ∨, and →.

– temporal connectives:

X p next time
p Tail

2p always Tailp p p ppp p p p

3p eventually Tailp

pUq until Tailp pp p q

pRq release Tailq qq q p,q

5Finite but no specific bound.
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On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: Specification of

environment’s behaviors
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On the Power of LTLf in Assured Autonomy

Environment Model

Task 1

Task 2

Task 3

Task n

Env model: planning domain,

LTL/LTLf formula, ∅

Agent task:

Obtain: An agent strategy that is

guaranteed to realize the task

wrt the environment
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Synthesized Program (Strategy)

– at every time step

– make an action

– for every response from the env model

– the combined play (trace consists of moves from both env. and agn.)

– satisfies φ
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Synthesized Program (Strategy)

1 Action move block to L2

1.1 Response do-nothing

1.1.1 Action move block to L1

...

1.2 Response remove block from L2

1.2.1 Action move block to L2

...
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LTLf Synthesis

– Given: agent task φ

– Obtain: agent strategy guaranteed to realize φ against the environment
10



LTLf Synthesis and Reachability Game6

– Key point: LTLf φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

6G. De Giacomo, M. Vardi, IJCAI2013
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LTLf Synthesis and Reachability Game6

– Key point: LTLf φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Adversarial reachability

– W0 = {s2, s3}
– W1 = {s2, s3, s1}, ω(s1) = ¬o
– W2 = {s2, s3, s1, s0}, ω(s0) = o

– W3 = W2, fixpoint!

Strategy ω : Win → 2O

6G. De Giacomo, M. Vardi, IJCAI2013
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Explicit to Symbolic

Drawback of explicit DFA:

The explicit DFA can have double-exponential states

Symbolic LTLf synthesis framework7

Basic idea: binary encoding of state representation, exp fewer variables

7S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Vardi, IJCAI2017

12



Explicit to Symbolic

Drawback of explicit DFA:

The explicit DFA can have double-exponential states

Symbolic LTLf synthesis framework7

Basic idea: binary encoding of state representation, exp fewer variables

7S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Vardi, IJCAI2017

12



Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

State variables:Z = {z0, z1}
Transition function:

{ηz = Z × I ×O → {0, 1} | z ∈ Z}
ηz(Z , I ,O) ∈ {0, 1}
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Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– (¬z0, z1︸ ︷︷ ︸
s1(01)

,¬i , o) → z0,¬z1︸ ︷︷ ︸
s2(10)

– ηz0(¬z0, z1,¬i , o) evaluates to true

ηz1(¬z0, z1,¬i , o) evaluates to false
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s1(01)

, i , o) → ¬z0, z1︸ ︷︷ ︸
s1(01)

– ηz0(¬z0, z1, i , o) evaluates to false

ηz1(¬z0, z1, i , o) evaluates to true
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Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– ηz0(¬z0, z1,¬i , o) evaluates to true

ηz1(¬z0, z1,¬i , o) evaluates to false

– ηz0(¬z0, z1, i , o) evaluates to false

ηz1(¬z0, z1, i , o) evaluates to true

– . . .
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Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Only transitions evaluated to true

– ηz0(¬z0, z1,¬i , o) evaluates to true

– ηz0(¬z0, z1, i , o) evaluates to false

– . . .

ηz0 = (¬z0 ∧ z1 ∧ ¬i ∧ o) ∨ . . .
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Symbolic LTLf Synthesis – Symbolic DFA Representation

s0start
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Symbolic LTLf Synthesis – Symbolic Reachability Game

Reachability game on symbolic DFA D = (I ,O,Z , ι, η, f )

– A Boolean formula w over Z for winning states

– A Boolean formula t over Z ∪O for (winning state, winning output) pairs
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Symbolic LTLf Synthesis – Symbolic Reachability Game

Reachability game on symbolic DFA D = (I ,O,Z , ι, η, f )

– w0 = f every accepting state is a winning state

– t0 = f the task is accomplished (true) after reaching accepting states
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Symbolic LTLf Synthesis – Symbolic Reachability Game

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– (Z ,O) satisfies ti

– Z was not yet a winning state, and for every I we can move from Z to an

already-identified winning state

14



Symbolic LTLf Synthesis – Symbolic Reachability Game

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

wi+1 = ∃O.ti+1

– Z satisfies wi

– Z was not yet a winning state, and there exists O such that for every I we can

move from Z to an already-identified winning state
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Symbolic LTLf Synthesis – Symbolic Reachability Game

Reachability game on symbolic DFA D = (I ,O,Z , ι, η, f )

– wi+1 ≡ wi , fixpoint w∞

14



Symbolic LTLf Synthesis – Abstract Winning Strategy

Function ω : Win → 2O

– Input: winning state s

– Output: winning output O of s
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Symbolic LTLf Synthesis – Abstract Winning Strategy

Function ω : Win → 2O

– Input: winning state s

– Output: winning output O of s

We have Boolean formula t over Z ∪O

– (Z ∪ O) |= t iff Z is a winning state and O is a winning output of Z
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Symbolic LTLf Synthesis – Abstract Winning Strategy

t over Z ∪O as the input formula to a Boolean synthesis procedure

– function τ : 2Z → 2O
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Symbolic LTLf Synthesis
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Symbolic LTLf Synthesis with Env Model

Environment Model

Task 1

Task 2

Task 3

Task n
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Symbolic LTLf Synthesis with Env Model

Synthesis with Environment Models

– Markovian environment behaviours

• Planning domain8

– Non-Markovian environment behaviours, e.g., specified in LTL formulas

• Simple Fairness and Stability9

• Generalized Reactivity (1) and Safety10

• General LTL formula11

8K. He, A. M. Wells, L. E. Kavraki, M. Vardi, ICRA2019
9S. Zhu, G. De Giacomo, G. Pu, M. Vardi, AAAI2020

10G. De Giacomo, A. Di Stasio, L. M. Tabajara, M. Vardi, S. Zhu, IJCAI2021
11G. De Giacomo, A. Di Stasio, M. Vardi, S. Zhu, KR2020
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Symbolic LTLf Synthesis with Env Model

Synthesis of LTLf with environment model in LTL

Step-1: task in LTLf , abstract winning region of the agent task in LTLf

Step-2: environment model in LTL, with respect to the winning region
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Symbolic LTLf Synthesis with Env Model

Synthesis of LTLf with environment model in LTL

Step-1: task in LTLf , abstract winning region of the agent task in LTLf

Step-2: environment model in LTL, with respect to the winning region

Practically diminish the difficulty of reasoning the mix of LTL/LTLf specifications
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Symbolic LTLf Synthesis: Limitation

– Backward fixpoint computation on constructed DFA

– Pros: Computing the winning region of the task in LTLf

• Keep the expressiveness of environment models

• Maintain the simplicity of reasoning LTLf specifications

– Cons: double-exponential blowup of LTLf -to-DFA construction
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Symbolic LTLf Synthesis: Limitation

– Backward fixpoint computation on constructed DFA

– Cons: double-exponential blowup of LTLf -to-DFA construction

• Limits the scalability in Markovian Decision Process (MDP)-solving problems,

e.g., planning with LTLf tasks

18



Forward LTLf Synthesis

– Diminish the double-exponential blowup practically

– Synthesis on the fly8

• Abstract a strategy while constructing the DFA

• Construct the complete DFA only in the worst case

8G. De Giacomo, M. Favorito, J. Li, S. Xiao, M. Vardi, S. Zhu, IJCAI2022
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Forward LTLf Synthesis: DFA construction

Construct search space on-the-fly via formula progression

– LTLf formula φ, as a DFA state, what happens now (label), what should happen

next accordingly (successor state)

– φ = a Ub, a stays true until b holds

20



Forward LTLf Synthesis: DFA construction

Construct search space on-the-fly via formula progression

– LTLf formula φ, as a DFA state, what happens now (label), what should happen

next accordingly (successor state)

– φ = a Ub ≡ b ∨ (a ∧ X (a Ub)), a stays true until b holds

20



Forward LTLf Synthesis: DFA construction

Construct search space on-the-fly via formula progression

– LTLf formula φ, as a DFA state, what happens now (label), what should happen

next accordingly (successor state)

– φ = a Ub ≡ b ∨ (a ∧ X (a Ub)), a stays true until b holds

• now = a ∧ b, next = tt

• now = a ∧ ¬b, next = a Ub

• now = ¬a ∧ b, next = tt

• now = ¬a ∧ ¬b, next = ⊥

ϕ tt

⊥

a ∧ ¬b

a ∧ b || ¬a ∧ b

¬a ∧ ¬b

20



Forward LTLf Synthesis: Abstract Strategy

LTLf Synthesis
Adv. reachability

game

FOND

planning

– FOND planning, state space only single-exponential

– LTLf synthesis, state space is double-exponential

– Existing planners cannot directly solve LTLf synthesis on-the-fly
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Forward LTLf Synthesis: Abstract Strategy

LTLf Synthesis as AND-OR graph search

s1

s0

s2

s3

o ∧ i

¬o ∧ ¬i

o ∧ ¬i||¬o ∧ i

s0

s1 s3s3 s2

o ¬o

i ¬i i ¬i
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LTLf Synthesis as AND-OR Graph Search

Knowledge compilation techniques, e.g., Sentential Decision Diagrams (SDDs)9

– Compress labels leading to the same nodes, reduce the branching factor

9A. Darwiche, IJCAI2011
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Experimental Results on Until-Patterns
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U(n) = p1U(p2U(. . . pn−1Upn))
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Forward LTLf Synthesis

– LTLf synthesis adopting AND-OR graph search

– Uninformed search, promising synthesis performance

– Move from uninformed search to informed search exploiting heuristics
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Conclusions

Assured Autonomy through LTLf synthesis

– Backward symbolic LTLf synthesis

• Synthesize strategy based on the winning region computation

• Separate the reasoning of the environment model and the agent task

– Forward LTLf synthesis adopting AND-OR graph search

• Synthesize strategy on-the-fly, without computing the winning region

• Applicable to MDP-solving problems, e.g., planning with LTLf tasks
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Assured Autonomy with Resilience

Resilience: the ability to recover from unexpected circumstances

– “Creating resilient systems means thinking hard in advance about what could go

wrong and incorporating effective countermeasures into designs.”10

10W. A. Galston. WSJ, March 10, 2020.

26



Assured Autonomy with Resilience - Challenges

How to appropriately model the contingencies?

How to handle contingencies?
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Assured Autonomy with Resilience - Directions

1 Structured model to describe contingencies

– Combining Markovian and non-Markovian dynamics

2 Contingencies in the environment behavior

3 Contingencies in the agent behavior
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Assured Autonomy with Resilience - Resilience Against Env Contingencies

– Best-Effort strategy: a program to handle both expected and contingent

environment dynamics11

• Symbolic best-effort LTLf synthesis, both env and task are in LTLf
12

– Maximally permissive strategy: all possible strategies to meet the task

• Maximally permissive strategy of LTLf specifications13

11B. Aminof, G. De Giacomo, S. Rubin, IJCAI2021
12G. De Giacomo, G. Parretti, S. Zhu, GenPlan2022
13S. Zhu, G. De Giacomo, IJCAI2022
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Assured Autonomy with Resilience - Resilience Against Agn Contingencies

– Expected move, optional tasks

– Complete optional agent tasks while guaranteeing mandatory tasks14

– Unexpected move, an agent with a trembling hand

– 2-player game becomes 2.5-player game

14S. Zhu, G. De Giacomo, KR2022
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Questions?

Assured Autonomy through LTLf synthesis

– Backward LTLf synthesis

– Forward LTLf synthesis

Assured Autonomy with resilience

– Structured specification model

– Resilience against environment contingencies

– Resilience against agent contingencies

31


