On the Power of LTL_f in Assured Autonomy

Shufang Zhu

shufang.zhu@cs.ox.ac.uk

May 16, 2023

University of Oxford

Artificial Intelligence

Image from https://www.gevers.eu/blog/artificial-intelligence/video-post/

Al aims at devising systems that act autonomously

- Autonomy, one of the grand challenges in AI

- Autonomy, one of the grand challenges in Al
 - Autonomous agents/robots, operating in a changing, incompletely known, unpredictable environments

- Autonomy, one of the grand challenges in AI
 - Agents with the ability of autonomously deliberating how to act to environment changes to achieve a given task

- Al agents with the ability to self-deliberate its own behaviours carries significant risks
- Al agents with Assured Autonomy

- Al agents with the ability to self-deliberate its own behaviours carries significant risks
- Al agents with Assured Autonomy

- Formal Methods (FM), automated synthesis¹
 - Both the environment and the task are formally specified
 - Mechanical translation of human-understandable environment and task specifications to a program that is known to meet the task wrt the environment²

¹A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016

²M. Vardi - The Siren Song of Temporal Synthesis, 2018

- Formal Methods (FM), automated synthesis¹

- Both the environment and the task are formally specified

 Mechanical translation of human-understandable environment and task specifications to a program that is known to meet the task wrt the environment²

¹A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016 ²M. Vardi - The Siren Song of Temporal Synthesis, 2018

- Formal Methods (FM), automated synthesis¹
 - Both the environment and the task are formally specified
 - Mechanical translation of human-understandable environment and task specifications to a program that is known to meet the task wrt the environment²

¹A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016 ²M. Vardi - The Siren Song of Temporal Synthesis, 2018

- Formal Methods (FM), automated synthesis¹
 - Both the environment and the task are formally specified
 - Mechanical translation of human-understandable environment and task specifications to a program that is known to meet the task wrt the environment²

¹A. Pnueli, R. Rosner, POPL1989; B. Finkbeiner, 2016

²M. Vardi - The Siren Song of Temporal Synthesis, 2018

- Specification language in FM
 - Linear Temporal Logic (LTL)³, remarkable applicability
 - Interpreted over infinite traces, relating to non-terminating systems

³A. Pnueli, FOCS1977

- Specification language in FM
 - Linear Temporal Logic (LTL)³, remarkable applicability
 - Interpreted over infinite traces, relating to non-terminating systems

³A. Pnueli, FOCS1977

- Specification language in FM
 - Linear Temporal Logic (LTL)³, remarkable applicability
 - Interpreted over infinite traces, relating to non-terminating systems
- Al agents are not dedicated to a single task all their life but are supposed to accomplish one task after another

³A. Pnueli, FOCS1977

How to achieve assured autonomy?

- Specification language in FM

- Linear Temporal Logic (LTL)³, remarkable applicability
- Interpreted over infinite traces, relating to non-terminating systems
- Specification language for AI agents
 - Linear Temporal Logic on finite traces $(LTL_f)^4$

³A. Pnueli, FOCS1977

⁴G. De Giacomo, M. Vardi, IJCAI2013

Linear Temporal Logic over Finite Traces⁵

- finite set of atomic propositions $\{p, q\}$.
- Boolean connectives: \neg , \wedge , \vee , and \rightarrow .
- temporal connectives:

⁵Finite but no specific bound.

Env model: Specification of environment's behaviors

Env model: planning domain, LTL/LTL_f formula, \emptyset

Env model: planning domain, LTL/LTL_f formula, \emptyset

Agent task: Specification of desired task/goal

Env model: planning domain, LTL/LTL_f formula, \emptyset

Agent task: LTL_f formula

Env model: planning domain, LTL/LTL_f formula, \emptyset

Agent task:

Obtain: An agent strategy that is **guaranteed to realize** the task wrt the environment

- at every time step
- make an action
- for every response from the env model
- the combined play (trace consists of moves from both env. and agn.)
- satisfies φ

- Action move block to L2
 1.1 Response do-nothing
 1.1.1 Action move block to L1
 - 1.2 **Response** remove block from *L*2 1.2.1 Action move block to *L*2

LTL_f Synthesis

- Given: agent task φ
- Obtain: agent strategy guaranteed to realize φ against the environment

– Key point: LTL_f φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

⁶G. De Giacomo, M. Vardi, IJCAI2013

– Key point: LTL_f φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

Adversarial reachability

⁶G. De Giacomo, M. Vardi, IJCAI2013

– Key point: LTL_f φ and corresponding Deterministic Finite Automata (DFA)

– A trace π satisfies φ iff π is accepted by the DFA

Adversarial reachability

$$-W_0 = \{s_2, s_3\}$$

$$- W_1 = \{s_2, s_3, s_1\}, \ \omega(s_1) = \neg o$$

-
$$W_2 = \{s_2, s_3, s_1, s_0\}, \omega(s_0) = o$$

-
$$W_3 = W_2$$
, fixpoint!

Strategy $\omega: Win \to 2^{\mathcal{O}}$

⁶G. De Giacomo, M. Vardi, IJCAI2013

Drawback of explicit DFA:

The explicit DFA can have double-exponential states

Symbolic LTL_f synthesis framework⁷

Basic idea: binary encoding of state representation, exp fewer variables

⁷S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Vardi, IJCAI2017

Drawback of explicit DFA:

The explicit DFA can have double-exponential states

Symbolic LTL_f synthesis framework⁷

Basic idea: binary encoding of state representation, exp fewer variables

⁷S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Vardi, IJCAI2017

State variables: $\mathcal{Z} = \{z_0, z_1\}$ Transition function: $\{\eta_z = \mathcal{Z} \times \mathcal{I} \times \mathcal{O} \rightarrow \{0, 1\} \mid z \in \mathcal{Z}\}$ $\eta_z(Z, I, O) \in \{0, 1\}$

$$- \underbrace{(\neg z_0, z_1}_{s_1(01)}, \neg i, o) \rightarrow \underbrace{z_0, \neg z_1}_{s_2(10)}$$

- $\eta_{z_0}(\neg z_0, z_1, \neg i, o)$ evaluates to *true* $\eta_{z_1}(\neg z_0, z_1, \neg i, o)$ evaluates to *false*

$$-(\underbrace{
egz_0,z_1}_{s_1(01)},i,o)
ightarrow \underbrace{
egz_0,z_1}_{s_1(01)}$$

- $\eta_{z_0}(\neg z_0, z_1, i, o)$ evaluates to false $\eta_{z_1}(\neg z_0, z_1, i, o)$ evaluates to true

- $\eta_{z_0}(\neg z_0, z_1, \neg i, o)$ evaluates to *true* $\eta_{z_1}(\neg z_0, z_1, \neg i, o)$ evaluates to *false*
- $\eta_{z_0}(\neg z_0, z_1, i, o)$ evaluates to false $\eta_{z_1}(\neg z_0, z_1, i, o)$ evaluates to true

Only transitions evaluated to true

- $\eta_{z_0}(\neg z_0, z_1, \neg i, o)$ evaluates to *true*
- $\eta_{z_0}(\neg z_0, z_1, i, o)$ evaluates to false

$$\eta_{z_0} = (\neg z_0 \land z_1 \land \neg i \land o) \lor \ldots$$

Only transitions evaluated to true

- $\eta_{\overline{z_1}}(\neg z_0, \overline{z_1}, \neg i, o)$ evaluates to false
- $\eta_{z_1}(\neg z_0, z_1, i, o)$ evaluates to true

$$\eta_{z_1} = (\neg z_0 \land z_1 \land i \land o) \lor \ldots$$

Reachability game on symbolic DFA $\mathcal{D} = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

- A Boolean formula w over \mathcal{Z} for winning states
- A Boolean formula t over $\mathcal{Z} \cup \mathcal{O}$ for (winning state, winning output) pairs

Reachability game on symbolic DFA $\mathcal{D} = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

- $w_0 = f$ every accepting state is a winning state
- $-t_0 = f$ the task is accomplished (*true*) after reaching accepting states

$$t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$$

- (Z, O) satisfies t_i
- Z was not yet a winning state, and for every I we can move from Z to an already-identified winning state

$$t_{i+1} = t_i \lor (\neg w_i \land \forall I.w_i(\eta))$$

 $w_{i+1} = \exists O.t_{i+1}$

- Z satisfies w_i
- Z was not yet a winning state, and there exists O such that for every I we can move from Z to an already-identified winning state

Reachability game on symbolic DFA $\mathcal{D} = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

- $w_{i+1} \equiv w_i$, fixpoint w_{∞}

Function $\omega: \operatorname{Win} \to 2^{\mathcal{O}}$

- Input: winning state s
- Output: winning output O of s

Function $\omega: \operatorname{Win} \to 2^{\mathcal{O}}$

- Input: winning state s
- Output: winning output O of s

We have Boolean formula t over $\mathcal{Z} \cup \mathcal{O}$

$$(Z \cup O) \models t$$
 iff Z is a winning state and O is a winning output of Z

t over $\mathcal{Z} \cup \mathcal{O}$ as the input formula to a Boolean synthesis procedure

- function
$$\tau: 2^{\mathcal{Z}} \to 2^{\mathcal{O}}$$

Symbolic LTL_f Synthesis

Symbolic LTL_f Synthesis with Env Model

Synthesis with Environment Models

- Markovian environment behaviours
 - Planning domain⁸
- Non-Markovian environment behaviours, e.g., specified in LTL formulas
 - Simple Fairness and Stability⁹
 - Generalized Reactivity (1) and Safety¹⁰
 - General LTL formula¹¹

- ⁹S. Zhu, G. De Giacomo, G. Pu, M. Vardi, AAAI2020
- ¹⁰G. De Giacomo, A. Di Stasio, L. M. Tabajara, M. Vardi, **S. Zhu**, IJCAI2021
- ¹¹G. De Giacomo, A. Di Stasio, M. Vardi, **S. Zhu**, KR2020

⁸K. He, A. M. Wells, L. E. Kavraki, M. Vardi, ICRA2019

Synthesis of LTL_f with environment model in LTL

Step-1: task in LTL_f , abstract winning region of the agent task in LTL_f **Step-2:** environment model in LTL, with respect to the winning region Synthesis of LTL_f with environment model in LTL

Step-1: task in LTL_f, abstract winning region of the agent task in LTL_f **Step-2:** environment model in LTL, with respect to the winning region

Practically diminish the difficulty of reasoning the mix of LTL/LTLf specifications

- Backward fixpoint computation on constructed DFA
- **Pros:** Computing the winning region of the task in LTL_f
 - Keep the expressiveness of environment models
 - Maintain the simplicity of reasoning LTL_f specifications
- **Cons:** double-exponential blowup of LTL_f-to-DFA construction

- Backward fixpoint computation on constructed DFA
- **Pros:** Computing the winning region of the task in LTL_f
 - Keep the expressiveness of environment models
 - Maintain the simplicity of reasoning LTL_f specifications
- **Cons:** double-exponential blowup of LTL_f-to-DFA construction

- Backward fixpoint computation on constructed DFA
- **Pros:** Computing the winning region of the task in LTL_f
 - Keep the expressiveness of environment models
 - Maintain the simplicity of reasoning LTL_f specifications
- **Cons:** double-exponential blowup of LTL_f-to-DFA construction

- Backward fixpoint computation on constructed DFA
- **Cons:** double-exponential blowup of LTL_f-to-DFA construction
 - Limits the scalability in Markovian Decision Process (MDP)-solving problems, e.g., planning with LTL_f tasks

- Diminish the double-exponential blowup practically
- Synthesis on the fly⁸
 - Abstract a strategy while constructing the DFA
 - Construct the complete DFA only in the worst case

⁸G. De Giacomo, M. Favorito, J. Li, S. Xiao, M. Vardi, **S. Zhu**, IJCAI2022

- Diminish the double-exponential blowup practically
- Synthesis on the fly^8
 - Abstract a strategy while constructing the DFA
 - Construct the complete DFA only in the worst case

⁸G. De Giacomo, M. Favorito, J. Li, S. Xiao, M. Vardi, **S. Zhu**, IJCAI2022

Construct search space on-the-fly via formula progression

- LTL_f formula φ, as a DFA state, what happens **now** (label), what should happen **next** accordingly (successor state)
- $\varphi = a \ \mathcal{U}b$, a stays true until b holds

Construct search space on-the-fly via formula progression

- LTL_f formula φ, as a DFA state, what happens **now** (label), what should happen **next** accordingly (successor state)
- $-\varphi = a Ub \equiv b \lor (a \land X(a Ub)), a stays true until b holds$

Forward LTL_f Synthesis: DFA construction

Construct search space on-the-fly via formula progression

- LTL_f formula φ, as a DFA state, what happens now (label), what should happen next accordingly (successor state)
- $\varphi = a \ \mathcal{U}b \equiv b \lor (a \land \mathcal{X}(a \ \mathcal{U}b))$, a stays true until b holds

- FOND planning, state space only single-exponential
- LTL_f synthesis, state space is double-exponential
- Existing planners cannot directly solve LTL_f synthesis on-the-fly

LTL_f Synthesis as AND-OR graph search

Knowledge compilation techniques, e.g., Sentential Decision Diagrams (SDDs)⁹

- Compress labels leading to the same nodes, reduce the branching factor

⁹A. Darwiche, IJCAI2011

Experimental Results on Until-Patterns

- LTL_f synthesis adopting AND-OR graph search
- Uninformed search, promising synthesis performance
- Move from uninformed search to informed search exploiting heuristics

Assured Autonomy through LTL_f synthesis

- Backward symbolic LTL_f synthesis
 - Synthesize strategy based on the winning region computation
 - Separate the reasoning of the environment model and the agent task
- Forward LTL_f synthesis adopting AND-OR graph search
 - Synthesize strategy on-the-fly, without computing the winning region
 - Applicable to MDP-solving problems, e.g., planning with LTL_f tasks

Resilience: the ability to recover from unexpected circumstances

 "Creating resilient systems means thinking hard in advance about what could go wrong and incorporating effective countermeasures into designs."¹⁰

¹⁰W. A. Galston. WSJ, March 10, 2020.

How to appropriately model the contingencies? How to handle contingencies?

- 1 Structured model to describe contingencies
 - Combining Markovian and non-Markovian dynamics
- 2 Contingencies in the environment behavior
- 3 Contingencies in the agent behavior

- Best-Effort strategy: a program to handle both expected and contingent environment dynamics¹¹
 - Symbolic best-effort LTL_f synthesis, both env and task are in LTL_f¹²
- Maximally permissive strategy: all possible strategies to meet the task
 - Maximally permissive strategy of LTL_f specifications¹³

¹¹B. Aminof, G. De Giacomo, S. Rubin, IJCAI2021

¹²G. De Giacomo, G. Parretti, **S. Zhu**, GenPlan2022

¹³S. Zhu, G. De Giacomo, IJCAI2022

- Expected move, optional tasks
 - Complete optional agent tasks while guaranteeing mandatory tasks¹⁴
- Unexpected move, an agent with a trembling hand
 - 2-player game becomes 2.5-player game

¹⁴**S. Zhu**, G. De Giacomo, KR2022

Assured Autonomy through LTL_f synthesis

- Backward LTL_f synthesis
- Forward LTL_f synthesis

Assured Autonomy with resilience

- Structured specification model
- Resilience against environment contingencies
- Resilience against agent contingencies