
Kayak: Safe Semantic Refactoring to Java Streams
Cristina David

University of Oxford

cristina.david@cs.ox.ac.uk

Pascal Kesseli

University of Oxford

pascal.kesseli@cs.ox.ac.uk

Daniel Kroening

University of Oxford

kroening@cs.ox.ac.uk

ABSTRACT
Refactorings are structured changes to existing software that leave

its externally observable behaviour unchanged. Their intent is to im-

prove readability, performance or other non-behavioural properties.

State-of-the-art automatic refactoring tools are syntax-driven and,

therefore, overly conservative. In this paper we explore semantics-
driven refactoring, which enables much more sophisticated refac-

toring schemata. As an exemplar of this broader idea, we present

Kayak, an automatic refactoring tool that transforms Java with

external iteration over collections into code that uses Streams, a

new abstraction introduced by Java 8. Our refactoring procedure

performs semantic reasoning and search in the space of possible

refactorings using automated program synthesis. Our experimental

results support the conjecture that semantics-driven refactorings

are more precise and are able to rewrite more complex code scenar-

ios when compared to syntax-driven refactorings.

KEYWORDS
program refactoring, program synthesis, program veri�cation

ACM Reference format:
Cristina David, Pascal Kesseli, and Daniel Kroening. 2017. Kayak: Safe

Semantic Refactoring to Java Streams. In Proceedings of 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
4–8 September, 2017 (ESEC/FSE 2017), 13 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Refactorings are structured changes to existing software which

leave its externally observable behaviour unchanged. They improve

non-functional properties of the program code, such as testability,

maintainability and extensibility while retaining the semantics of

the program. Ultimately, refactorings can improve the design of

code, help �nding bugs as well as increase development speed and

are therefore seen as an integral part of agile software engineering

processes [12, 25].

However, manual refactorings are a costly, time-intensive, and

not least error-prone process. This has motivated work on automat-

ing speci�c refactorings, which promises safe application to large

code bases at low cost. We di�erentiate in this context between

syntax-driven and semantics-driven refactorings. While the former

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE 2017, Paderborn, Germany
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

L i s t < I n t e g e r > org = ge t D a t a ( ) ;

L i s t < I n t e g e r > copy = new A r r a y L i s t < > ( ) ;

for ( in t i = 0 ; i < org . s i z e ( ) ; ++ i )

i f ( org . g e t ( i ) > 0 ) copy . add ( 2 ∗ org . g e t ( i ) ) ;

I t e r a t o r < I n t e g e r > i t = org . i t e r a t o r ( ) ;

while ( i t . hasNext ( ) ) {

in t tmp = i t . nex t ( ) ∗ 2 ;

i f ( tmp <= 0 ) continue ;

copy . add ( tmp ) ;

}

Figure 1: Limitations of pattern-based refactorings.

address structural changes to the program requiring only limited in-

formation about a program’s semantics, the latter require detailed

understanding of the program semantics in order to be applied

soundly. An example of a refactoring that requires a semantics-

driven approach is Substitute Algorithm, where an algorithm is

replaced by a clearer, but equivalent version [12]. A syntax-driven

approach is insu�cient to perform such substantial transforma-

tions. Figure 1 illustrates this using an example: Both loops in the

code implement the same behaviour. In order to recognise this

and apply Substitute Algorithm, pattern-based approaches need ex-

plicit patterns for vastly di�erent syntaxes implementing the same

semantics, which is infeasible for practical applications.

Notably, the limitations of syntax-driven refactorings have been

observed in several works, resulting in an emerging trend to incor-

porate more semantic information into refactoring decisions, such

as Abstract Syntax Tree (AST) type information, further preventing

compilation errors and behaviour changes [36–38].

In this paper, we take a step further in this direction by propos-

ing a fully semantic refactoring approach. There is a very broad

space of methods that are able to reason about program semantics.

The desire to perform refactorings safely suggests the use of tech-

niques that overapproximate program behaviours. As one possible

embodiment of semantics-driven refactoring, we leverage software

veri�cation technologies with the goal of reliably automating refac-

toring decisions based on program semantics, as in the case of

the Substitute Algorithm refactoring. Our research hypothesis is

that semantics-driven refactorings are more precise and can handle

more complex code scenarios in comparison with syntax-driven

refactorings.

Demonstrator: Refactoring Iteration over Collections. We use a

particular refactoring as demonstrator for our idea. Nearly every

modern Java application constructs and processes collections. A key

algorithmic pattern when using collections is iteration over the



ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany Cristina David, Pascal Kesseli, and Daniel Kroening

I n t e g e r r e s u l t = null ;

L i s t < I n t e g e r > d a t a = g e t D a ta ( ) ;

for ( in t e l : d a t a )

i f ( e l % 2 == 0 ) {

r e s u l t = e l ;

break ;

}

Figure 2: Find element in list using external iteration.

contents of the collection. We distinguish external from internal
iteration.

To enable external iteration, a Collection provides the means

to enumerate its elements by implementing Iterable. Clients that

use an external iterator must advance the traversal and request the

next element explicitly from the iterator. External iteration has a

few shortcomings:

• Is inherently sequential, and must process the elements in

the order speci�ed by the collection. This bars the code

from using concurrency to increase performance.

• Does not describe the intended functionality, only that

each element is visited. Readers must deduce the actual

semantics, such as �nding an element or transforming each

item, from the loop body.

The alternative to external iteration is internal iteration, where

instead of controlling the iteration, the client passes an operation

to perform to an internal iteration procedure, which applies that

operation to the elements in the collection based on the algorithm

it implements. Examples of internal iteration patterns include �nd-

ing an element by a user-provided predicate or transforming each

element in a list using a provided transformer. In order to enable

internal iteration, Java SE 8 introduces a new abstraction called

Stream that lets users process data in a declarative way. The Stream
package provides implementations of common internal iteration

algorithms such as foreach, �nd and sort using optimised iteration

orders and even concurrency where applicable. Users can thus

leverage multicore architectures transparently without having to

write multithreaded code. Internal iterations using Stream also ex-

plicitly declare the intended functionality through domain-speci�c

algorithms. A call to Java 8 �nd using a predicate immediately

conveys the code’s intent, whereas an externally iterating for loop

implementing the same semantics is more di�cult to understand.

Figures 2 and 3 illustrate this di�erence for the same �nd semantics.

Finally, external iteration using a for loop violates Thomas’ DRY
principle (“Don’t repeat yourself” [19]) if the intended functionality

is available as a Stream template. Internal iteration through Stream
thus eliminates code duplication.

For illustration, consider the example in Fig. 4 (a). This example

uses external iteration to create a new list by multiplying all the

positive values in the list list by 2. In this variant of the code, we

use a while loop to sequentially process the elements in the list.

In Fig. 4 (b), we have re-written the code using streams. This

variant of the code does not use a loop statement to iterate through

the list. Instead, the iteration is done internally by the stream. Essen-

tially, we create a stream of Integer objects via Collection . stream() ,

L i s t < I n t e g e r > newLis t = g e t D a ta ( ) ;

Opt iona l < I n t e g e r > r e s u l t = l i s t . s t ream ( )

. f i l t e r ( e l −> e l % 2 )

. f i n d F i r s t ( ) ;

Figure 3: Find element in list using Java 8 Streams.

�lter it to produce a stream containing only positive values, and

then transform it into a stream representing the doubled values of

the �ltered list.

Goal of the paper. In this paper, we are interested in refactor-

ing Java code handing collections through external iteration to

use streams. Our refactoring procedure is based on the program

semantics and makes use of program synthesis.

Contributions:

• We present a program synthesis based refactoring proce-

dure for Java code that handles collections through external

iteration.

• We present an abstraction for the Java Collection and Java

Stream interfaces. This abstraction is tailored for refactor-

ings.

• We have implemented our refactoring method in the tool

Kayak. Our experimental results support our conjecture

that semantics-driven refactorings are more precise and

can handle more complex code scenarios than syntax-

driven refactorings.

2 PRELIMINARIES
General refactorings. As we want to preserve generality, we are

interested in refactorings that are correct independent of their

context. To motivate our decision, let’s look at the example in Fig. 5.

We de�ne a method removeNeg that removes the negative values in

the list received as argument, which we later call for the list data.

However, given that data contains only positive values, applying

removeNeg does not have any e�ect.

Thus, for this particular calling context, we could refactor the

body of removeNeg to a NO-OP. While this refactoring is correct for

the code given in Fig. 5, it may cause problems during future evolu-

tion of the code as someone might use it for its original intended

functionality (that of removing negative values). As we envision

that our refactoring procedure will be used during the development

process, we choose to not perform such strict refactorings.

Safety invariants. We assume a generic loop with a pre- and

postcondition, guard G and transition relation T :

{Precondition}while(G)T {Postcondition}. For such a loop, we can

prove partial correctness, i.e., any terminating execution start-

ing in a state satisfying Precondition reaches a state satisfying

Postcondition, by �nding a safety invariant, Inv, with the follow-

ing properties:

∃Inv .∀x, x ′.Precondition→ Inv(x ) ∧ (1)

Inv(x ) ∧G(x ) ∧T (x, x ′) → Inv(x ′) ∧ (2)

Inv(x ) ∧ ¬G(x ) → Postcondition (3)



Kayak: Safe Semantic Refactoring to Java Streams ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

I t e r a t o r < I n t e g e r > i t = l i s t . i t e r a t o r ( ) ;

L i s t < I n t e g e r > newLis t =new A r r a y L i s t < I n t e g e r > ( ) ;

while ( i t . hasNext ( ) ) {

in t e l = i t . nex t ( ) . i n t V a l u e ( ) ;

i f ( e l > 0 )

newLis t . add ( 2 ∗ e l ) ;

} (a)

L i s t < I n t e g e r > newLis t =new A r r a y L i s t < I n t e g e r > ( ) ;

newLis t = l i s t . s t ream ( )

. f i l t e r ( e l −> e l >0 )

. map ( e l −> new I n t e g e r ( 2 ∗ e l ) ) ;

. c o l l e c t ( t o L i s t ( ) ) ;

return newLis t ; (b)

Figure 4: Filtering and mapping example with external (a) vs. internal (b) iteration.

void removeNeg ( A r r a y L i s t < I n t e g e r > l ) {

I t e r a t o r < I n t e g e r > i t = l . i t e r a t o r ( ) ;

while ( i t . hasNext ( ) )

i f ( i t . nex t ( ) < 0 ) i t . remove ( ) ;

}

L i s t < I n t e g e r > d a t a = new A r r a y L i s t < > ( ) ;

C o l l e c t i o n s . a d d A l l ( data , 1 , 2 , 3 ) ;

removeNeg ( d a t a ) ;

Figure 5: Filter example.

In this formula, (1) ensures that the safety invariant holds in the

initial state, (2) checks that the invariant is inductive with respect

to the transition relation, i.e. the transition relation maintains the

invariant, and (3) ensures that the invariant establishes the post-

condition on exit from the loop. This can be generalised to multiple,

potentially nested, loops.

Symbolic execution. Symbolic execution examines the semantics

of a given program statically by computing a symbolic model of

the program’s possible states [28]. Model checkers like CBMC [9]

employ symbolic execution to map a program’s semantics to a SAT

formula which is satis�able i� a certain property about the program

semantics holds. This technique is used to �nd bugs in programs,

such as an assertion violation or a null pointer dereference. CBMC’s

symbolic execution by default limits the number of iterations for

loops in the program in order to produce a �nite SAT formula

in the context of possibly unbounded loops. By introducing loop

invariants CBMC’s analysis can be generalised to programs with

unbounded loops. A common property to check using symbolic

execution is the functional equivalence of two programs or func-

tions under any possible input [15], which permits to prove the

soundness of refactorings and other code mutations.

3 OVERVIEW OF OUR APPROACH
Given an original code Origin, we want to infer the refactored code
Stream such that, for any initial program state Si , Origin and Stream

produce the same �nal state, i.e., they are observationally equivalent.

We consider a program state to consist of assignments to all the

scalar variables plus a heap representation mapping all the Java

reference variables to their corresponding heap addresses. Then:

∀Si .Sf =Origin(Si ) ∧ S
′
f =Stream(Si ) ⇒ Sf =S

′
f (4)

This equivalence check can be reduced to checking the partial

correctness of the triple

{Si=∗} Origin {Stream(Si )=Sf }

where Si=∗ means that we non-deterministically pick the initial

state (i.e., we non-deterministically assign all the variables and the

contents of collections). Essentially, this says that, starting with a

nondeterministic state Si , every terminating trace ends up in a state

where Stream(Si )=Sf holds (we discuss non-terminating behaviours

in the last paragraph of Sec. 6).

Note that this overapproximates the context of the initial code

in the sense that it may require us to consider more initial states

than those reachable at the start of Origin in the user code. As a

consequence, we obtain general refactorings (see Sec. 2). In the rest

of the paper we use the notation equivState to refer to the equiva-

lence postcondition Stream(Si )=Sf . Next, we explain the main steps

of our refactoring procedure:

(i) Given the original code and a nondeterministic initial state

as inputs, we generate the constraint Post(Si ,Origin) ⇒ equivState
encoding the observational equivalence check. Here, Post computes

the postcondition of Origin starting from the initial program state

Si . We compute Post by symbolically executing the code [9]. For

programs with loops we assume the existence of safety invariants

and generate constraints as shown in Sec 2. These safety invariants,

Inv , are synthesised together with equivState in the next step.

(ii) We provide the equivalence constraints to our program

synthesiser (see Sec. 6), which generates an equivalence proof

in the form of equivState and the necessary safety invariants. As

equivState captures the semantics of the refactored code, Stream can

be generated directly from it. Moreover, given that equivState is a

postcondition of the original code, the refactored code is guaranteed
to be equivalent to the original one by construction.

Logical encoding. In order to generate the constraints at point

(i), we must identify a logical encoding for our analysis, which we

use to express Inv and equivState. As equivState must capture the

semantics of the stream refactoring as well as equivalence between

program states, our logic must have the ability to express: (1) op-

erations supported by the Java Collection interface, (2) operations

supported by the Java Stream interface, as well as (3) equality be-

tween collections (for lists this implies that we must be able to

reason about both content of lists and the order of elements).

For this purpose, we de�ne the Java Stream Theory (JST). At this

point, we informally present JST in Fig. 6 (the formal description

will be given in Sec. 5). For brevity, we omit some of the operations

that have the same semantics as their direct counterpart provided



ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany Cristina David, Pascal Kesseli, and Daniel Kroening

by the Java Collection or Stream API. Additionally, we use the

notion of incomplete collection/list represented by a list segment
x→∗y, i.e., the list starting at the node pointed by x and ending at

the node pointed by y.

Throughout the paper we take the liberty of referring to collec-

tions as lists (we will explain in Sec. 5 why, for the purpose of our

analysis, lists can be used as a representation for other types of

collections as well, e.g. sets). Also note that we capture side-e�ects

by explicitly naming the current heap – heap variables h,h′ etc.

are being introduced (as a front-end transformation), denoting the

heap in which each function is to be interpreted. The mutation

operators (e.g. дet , add , set , remove) then become pure functions

mapping heaps to heaps.

We illustrate JST through the graphical representation given

in Figure 7, where the circles denote the nodes in the list with

their associated values. We use the dashed arrows to represent the

list references. Note that heap H2 returned by the �lter method

contains both the list received as argument and the result list l .

3.1 Discussion on aliasing
In the overview of our approach (Sec. 3), when expressing equiva-

lence between program states, we only consider the variables (and

collections) that are accessed by Origin (as opposed to all the live

program variables). Thus, one might wonder if there aren’t any

side-e�ects due to aliasing that we are not considering. The answer

is no, our approach is safe for reference variables as well as the

only two potential aliasing scenarios involving a reference variable

p that is not directly used by Origin, which are the following:

1. p points to a collection that is modi�ed by Origin. As the

Stream refactoring is going to perform an equivalent trans-

formation in-place, the refactoring will be transparent to p.

2. p is an iterator over a collection accessed by Origin. Then,

if Origin modi�es the collection, so will Stream, which will

result in p being invalidated in both scenarios. Contrary, if

Origin does not modify the collection, neither will Stream,

and p will not be a�ected in either one of the cases.

Next, we illustrate scenario 1 by considering again method removeNeg

in Fig. 5 with the following calling context, where we assume p
points to some list and we create an alias p′ of p:

A r r a y L i s t < I n t e g e r > p ' = p ;

removeNeg ( p ) ;

At a �rst glance, a potential refactoring for removeNeg is:

l = l . s t ream ( ) . f i l t e r ( e l −> e l >=0)

. c o l l e c t ( t o L i s t ( ) ) ;

However, this is incorrect when using the refactored function in

the calling context mentioned above: While the list p points to is

correct, the list pointed by p′ is not updated. Thus, after the call to

removeNeg, p will correctly point to the �ltered list, whereas p′ will

continue pointing to the old un�ltered list. To avoid such situations,

we perform refactorings of code that mutates collections in-place.

Thus, a correct refactoring for method removeNeg is:

A r r a y L i s t < I n t e g e r > copy = new A r r a y L i s t < >( l ) ;

l . c l e a r ( ) ;

copy . s t ream ( ) . f i l t e r ( e l −> e l >=0)

. f o r Ea ch Or de re d ( l : : add ) ;

Here, we �rst create a copy copy of l . After performing the

�ltering on copy, we use forEachOrdered, provided by the Stream

API, to add each element of the temporary stream back to the list

pointed to by l (in the order encountered in the stream). Thus, we

are not creating a new list with a new reference, but using the

original one, which makes the refactoring transparent to the rest

of the program, regardless of potential aliases.

4 MOTIVATING EXAMPLES
In this section, we illustrate our refactoring procedure on three

examples.

First example. We start with the one in Fig. 4, where we create

a new list by multiplying by 2 each positive value in the list list .

As aforementioned, we must �rst introduce heap variables that

capture the side-e�ects. For this purpose, we will use the following

naming convention: the heap before executing the code (i.e., the

initial heap for both the original and the refactored code) is called

hi . All the other heaps manipulated by the original program have

subscript o, and those manipulated by the stream in equivState have

subscript s .

I t e r a t o r < I n t e g e r > i t = i t e r a t o r ( h_i , l i s t ) ;

L i s t < I n t e g e r > newLis t ;

h_o = new A r r a y L i s t < I n t e g e r > ( h_i , newLis t ) ;

while ( hasNext ( h_o , i t ) ) {

in t ( e l , h_o ) = nex t ( h_o , i t ) . i n t V a l u e ( ) ;

i f ( e l > 0 ) {

h_o = a d d _ l a s t ( h_o , n e w l i s t , 2 ∗ e l ) ; } }

We check the program state equivalence captured by equivState
by verifying that:

• the heap states reached by executing the original code and

the refactored code, respectively, are equivalent (denoted

as h0=h
′
s below). We will formally de�ne heap equivalence

as graph isomorphism in the next section (Def. 5.2). Infor-

mally, it means that all the lists reachable from reference

variables used by the original code (except for local vari-

ables not visible outside the original code), must be equal.

• all the scalar program variables accessed by the original

code must have equal values after the execution of the orig-

inal code and the refactored one, respectively. Again, we

do not consider local variables that are not visible outside

it (e.g. el in the original code in Fig.4).

For this example, as there are no scalar variables handled by the

code and visible outside, we only check heap equivalence. Thus,

we �nd the following equivState:

equivState(hi ,ho , list) = (ho=h′s ∧

hs=�lter(hi , list,null, λv .v > 0, list ′) ∧

h′s=map(hs , list ′,null, λv .2×v, list ′′))

The above says that the heap ho generated by the original code

is equivalent to the heap h′s generated by applying �lter and map
directly. Then, the safety invariant required to prove equivState is

identical with equivState with the exception that it considers that

the list pointed by list has only been partially processed (up to the



Kayak: Safe Semantic Refactoring to Java Streams ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

alias(h,x ,y): do x and y point to the same node in heap h?

size(h,x ,y): what is the length of the list segment from x to y in h?

дet(h,x , i): what is the value stored in the i-th node of the list pointed by x in heap h?

h′ = add(h,x , i,v): obtain h′ from h by inserting value v at position i in the list pointed by x .

h′ = add_last(h,x ,v): equivalent to add(h,x , size(h,x ,null),v)
h′ = set(h,x , i,v): obtain h′ from h by setting the value of the i-th element in the list pointed by x to v .

h′ = remove(h,x): obtain h′ from h by removing the node pointed by x . In h′, x and all its aliases will point

to the successor of the removed node.

h′ = removeVal(h,x ,y,v): obtain h′ from h by removing the node with value v from the list segment x→∗y.

exists(h,x ,y, λv .P(v)): is there any value v in the list segment x→∗y such that P(v) holds?

f orall(h,x ,y, λv .P(v)): is it the case that for all values v1 . . .vn in the list segment x→∗y, P(v1) . . . P(vn ) hold?

h′ = sorted(h,x ,y, ret): obtain h′ from h by sorting the elements stored in the list segment x→∗y in the list ret
(h′ will contain both the list segment x→∗y and the list ret ).

h′ = f ilter (h,x ,y, λv .P(v), ret): obtain h′ from h by creating a new list ret containing all the elements in the list segment

x→∗y that match the predicate P .

max(h,x ,y): what is the maximum value stored in the list segment x→∗y?

min(h,x ,y): what is the minimum value stored in the list segment x→∗y?

h′ =map(h,x ,y, λv . f (v), ret): obtain h′ from h by applying the mapping function f to each value in the list segment

x→∗y and storing the result in the list pointed by ret .
h′ = skip(h,x ,y,done,n, ret): obtain h′ by creating a new list ret containing the remaining elements of the list segment

x→∗y after discarding the �rst n elements (done denotes the number of elements that

were already skipped).

h′ = limit(h,x ,y,done,n, ret): obtain h′ by creating a new list ret containing the elements of the list segment x→∗y,

after its length was truncated to n (done denotes the number of elements that were

dropped).

reduce(h,x ,y,v, λa b . f (a,b)): performs a reduction on the elements of the list segment x→∗y, using the identity value

v and the accumulation function f , and returns the reduced value.

h′ = concat(h,x ,y,a,b, ret): obtain h′ from h by creating a new list ret containing all the elements in the list segment

x→∗y followed by all the elements in the list segment a→∗b.

h′ = copy(h,x ,y, ret): obtain h′ by creating a new list ret that contains the elements of the list segment x→∗y.

h′ = new(h,x) obtain h′ from h by assigning x to point to null.
equalLists(h,x ,y,h′,a,b) is list segment x→∗y in heap h equal to list segment a→∗b in heap h′ (i.e., do they

contain the same elements in the same order)?

h′ = дetIterator (h,x , i, it) obtain heap h′ by creating a new iterator it that points to the i-th element in the list

pointed-to by x .

Figure 6: Informal Description of JST.

H1 :

3 −1 5 9 �x

y

H2 :

3 −1 5 9

3 �

�x

y

l

alias(H1,x ,y) = false

f orall(H1,x ,y, λv .v≤4) = false

exists(H1,x ,null, λv .v= − 1) = true

size(H1,x ,null) = 4

min(H1,x ,y) = −1

max(H1,x ,y) = 9

H2 = f ilter (H1,x ,y, λv .v > 0, l)

f orall(H2, l ,null, λv .v>0) = true

Figure 7: JST Example.

iterator it):

Inv(hi ,ho , list, it) = (ho=h′s ∧

hs=�lter(hi , list , it , λv .v > 0, list ′) ∧



ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany Cristina David, Pascal Kesseli, and Daniel Kroening

h′s=map(hs , list ′,null, λv .2×v, newList))

The invariant states that, given the iterator it over the list list, after

processing the list up until it , both the original code and the stream

postcondition generate the same heaps.

As JST directly models the Java Streams semantics, from a equivState
postcondition we generate stream code (see Fig 4 (b)).

Second example. Next, we provide a more involved example

where the original code has nested loops. For this purpose we

use the code for selection sort in Fig. 8 (a). First, we introduce the

heap variable as shown in Fig. 8 (b). If Invout and Invin are the

safety invariants for the outer and inner loops, respectively, then

the constraints for the outer loop are (we omit the inner loop as it

follows directly from the equations (1), (2), (3) in Sec. 2):

∀hi , ho, l, j .∃min .Invout (hi , ho, l, 0) ∧ (5)

(Invout (hi , ho, l, j) ∧ j<(size(ho, l )−1) ∧ (6)

Invin (hi , ho, l, size(ho, l ), j,min) ∧ (7)

temp=дet (ho, l, j) ∧ h′o=set (ho, l, j, дet (ho, l,min)) ∧ (8)

ho=set (h′o, l,min, temp)) ⇒ Invout (hi , ho, l, j+1) ∧ (9)

Invout (hi , ho, l, j) ∧ j≥(size(ho, l )−1) ⇒ equivState(hi , ho, l ) (10)

Constraint (5) says that the outer loop’s invariant must hold in

the initial state, constraints (6), (7), (8) and (9) check that Invout is

re-established by the outer loop’s body (by making use of Invin),

whereas (10) asserts that the equivState postcondition must hold

on exit from the outer loop. For this example, we �nd the following

solution:

Invout (hi , ho, l, j) = equalLists(h′o, l, itl j , h
′
s , ls , itl s j ) ∧

hs = sor ted (hi , l, null, ls ) ∧

h′o = дet I terator (ho, l, j, itl j ) ∧

h′s = дet I terator (hs , ls , j, itl s j ) ∧

max (h′o, l, itl j )≤min(h′o, itl j , null)

Invin (hi , h, l, i, j,min) = (min(h′′o, itl j , itl i )=min ∧

h′o=дet I terator (ho, l, j, itl j ) ∧ h
′′
o=дet I terator (ho, l, i, itl i ))

equivState(hi , ho, l ) = (ho=hs ∧

hs=sor ted (hi , l, null, l ))

The invariant of the outer loop expresses the fact that the lists

sorted through external iteration and via the stream operation, re-

spectively, are equal up until element j . As our theory JST supports

iterator-based equality between lists (rather than index-based), we

need to create iterators itls and itls j to the j-th element in the lists l
and ls , respectively. Additionally, the invariant of the outer loop

captures the fact that the maximum element in the already sorted

portion of list l is at most equal to the minimum element from the

portion still to be sorted.

The inner loop’s invariant captures the fact that the minimum

element in the list segment between the j-th and the i-th element is

min (program variable). The postcondition equivState captures the

equality between the �nal heap in the original program, ho , and

the �nal heap in the refactored code, hs .

From postcondition equivState we generate the following refac-

tored code, where we modify l in-place by using a local copy.

L i s t < I n t e g e r > s o r t i n g ( L i s t < I n t e g e r > l ) {

L i s t < I n t e g e r > copy = new L i s t < >( l ) ;

l . c l e a r ( ) ;

copy . s t ream ( ) . s o r t e d ( )

. f o r Ea ch Or de re d ( l : : add ) ; }

Third example. In this example, we illustrate an aggregate refac-

toring, as well as the importance of checking equivalence between

heap states. For this purpose, we use the code below, where we

compute the sum of all the elements in the list pointed-to by l , while

at the same time removing from the list pointed-to by p a number

of elements equal to the size of l .

I t e r a t o r < I n t e g e r > i t = p . i t e r a t o r ( ) ;

in t sum = 0 ;

for ( i = 0 ; i < l . s i z e ( ) ; i ++) {

sum += l . g e t ( i ) ;

i f ( i t . hasNext ( ) ) {

i t . nex t ( ) ;

i t . remove ( ) ;

} }

If we were to only verify that the scalar variables after executing

the original and the refactored code, respectively, are equal, and

omit checking heap equivalence, then the following refactoring

would be considered correct:

sum = l . s t ream ( ) . r educe ( 0 , ( a b)−>a+b ) ;

This refactoring ignores the modi�cations performed to list p
and only computes the sum of elements in the list pointed-to by

l . In our case, we correctly �nd this refactoring to be unsound as

the heap state reached after executing the original code (where

p points to a modi�ed list) is not equivalent to the one reached

after executing this refactoring (where p points to the unmodi�ed

list). Instead, we �nd the following refactoring, where we correctly

capture the mutation of p:

sum = l . s t ream ( ) . r educe ( 0 , ( a b)−>a+b ) ;

A r r a y L i s t < I n t e g e r > copy = new A r r a y L i s t < >(p ) ;

p . c l e a r ( ) ;

copy . s t ream ( ) . s k i p ( l . s i z e ( ) )

. f o r Ea ch Or de re d ( p : : add ) ;

5 JAVA STREAM THEORY
We designed JST such that it meets several criteria:

1. Express operations allowed by the Java Collection interface, op-

erations allowed by the Java Stream interface as well as equality

between collections (for lists this implies that we must be able to

reason about both content of lists and the order of elements).

2. JST must be able to reason about the content and size of par-

tially constructed lists (i.e., list segments), which are required when

expressing safety invariants. For illustration, in Fig. 4, the safety

invariant captures the fact that hs is obtained from hi by �ltering

the list segment list→∗it .
3. JST must enable concise equivState postconditions and invariants

as we use program synthesis to infer these. Thus, the smaller they

are, the easier to synthesise.



Kayak: Safe Semantic Refactoring to Java Streams ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

void s o r t i n g ( L i s t < I n t e g e r > l ) { (a)

in t min , temp ;

for ( in t j = 0 ; j < l . s i z e ( ) − 1 ; j ++) {

min = j ;

for ( in t i = j + 1 ; i < l . s i z e ( ) ; i ++)

i f ( l . g e t ( i ) < l . g e t ( min ) ) min = i ;

temp = l . g e t ( j ) ;

l . s e t ( j , l . g e t ( min ) ) ;

l . s e t ( min , temp ) ; } }

void s o r t i n g ( L i s t < I n t e g e r > l ) { (b)

in t min , temp ;

h_o = copyHeap ( h _ i ) ;

for ( in t j = 0 ; j < s i z e ( h_o , l ) −1 ; j ++) {

min = j ;

for ( in t i = j + 1 ; i < s i z e ( h_o , l ) ; i ++)

i f ( g e t ( h_i , l , i ) < l . g e t ( h_o , l , min ) ) min = i ;

temp = g e t ( h_o , l , j ) ;

h_o ' = s e t ( h_o , l , j , g e t ( h_o , l , min ) ) ;

h_o = s e t ( h_o ' , l , min , temp ) ; } }

Figure 8: Selection sort: (a) original code (b) with explicit heap variables.

To the best of our knowledge, there is no existing logic that meets

all the criteria above. The majority of recently developed decidable

heap logics are not expressive enough (fail points 1 and 2) [5, 6,

11, 21, 29, 32], whereas very expressive logics such as FOL with

transitive closure are not concise and easily translatable to stream

code (fail point 3).

While our theory is undecidable, we found it works well for our

particular use case.

Semantics. We �rst de�ne the model used to interpret JST for-

mulae. The set of reference variables is denoted by PV . Note that,

as already mentioned in the paper, these reference variables are

those accessed in the code to be refactored (as opposed to all the

reference variables in the program).

De�nition 5.1 (Heap). A heap over reference variables PV is a

tuple H = 〈G,LP ,LD 〉. G is a graph with vertices V (G) and edges

E(G), LP : PV → V (G) is a labelling function mapping each refer-

ence variable to a vertex of G and LD : V (G) → D is a labelling

function associating each vertex to its data value (where D is the

domain of the data values).

Given that we are interested in heaps managed by Java Collec-

tions, we restrict the class of models to those where each vertex

has outdegree 0 or 1 (i.e. we cannot have multiple edges coming

out of a node). We assume that the reference variables include a

special name null.
Function val(h,x) returns the value stored in the node pointed

by x , next(h,x) returns a reference to the next node after the

one pointed by x and it is de�ned as the unique vertex such that

(x ,next(x)) ∈ E(h), and add0(h, e,x) returns the heap obtained by

appending element e at the beginning of the list pointed by x . For

the latter we provide the pointwise de�nition:

add0V (h, e,x)
def

= V (h) ∪ {q} where q is a fresh vertex

add0LD (h, e,x)
def

= LD (h)[q 7→ e]

add0E (h, e,x)
def

= E(h) ∪ {(q,LP (h)(x))}

The semantics of JST is de�ned recursively in Fig. 9. Note that

functionsminimum andmaximum return the minimum and maxi-

mum between the values receives as arguments, respectively. While

in Fig. 9 we provide the semantics for index-based operations (e.g.

set(x ,y, i,v)), we also support iterator-based ones (e.g.h′=set(h, it ,v)
returns the heap obtained by setting the value of the node pointed

by it to v in heap h).

One important check that we must be able to perform in order

to prove equivalence between program states is is that of heap

equivalence. In order to de�ne this notion we �rst assign PV∩ to

be the set of reference variables that are used by both the original

code and the refactored one (this excludes local variables such as

iterators that are used by only one of the codes). Then:

De�nition 5.2. Heap h and h′ are equivalent, written as h=h′, i�

the underlying graphs reachable from PV∩ are isomorphic.

Intuitively, this means that all the lists in h and h′ pointed-to by

the same variable from PV∩, respectively, are equal.

Set collections. For our refactoring procedure, we use lists as the

internal representation for collections denoting sets, meaning that

we impose an order on the elements of sets. While we may miss

some refactorings, this procedure is sound: if two collections are

equal with respect to some ordering, they are also equal when no

order is imposed.

6 SYNTHESISING REFACTORINGS
We compute the postcondition equivState and safety invariants

by using a program synthesis engine. Such engines are used in-

creasingly in program veri�cation [11, 34]. Our program synthe-

siser makes use of Counter-Example Guided Inductive Synthesis

(CEGIS) [35] for stream refactoring. We present its general architec-

ture followed by a description of the parts speci�c to refactoring.

General architecture of the program synthesiser. The design of our

synthesiser is given in Fig. 10 and consists of two phases, Synthe-

sise and Verify. We will illustrate each of these phases by using as

running example the �rst motivational example in Sec. 4. Our goal

is to synthesise a solution (equivState, Inv).
We start with a vacuous synthesise phase, where we generate

a random candidate solution, which we pass to the verify phase.

For this example, let’s assume that the random solution says that

the stream manipulated heap is the same as the initial one (i.e. the

stream code does not a�ect the heap): equivState(hi ,ho , list , it) =
ho=h

′
s ∧ h

′
s=hs=hi .



ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany Cristina David, Pascal Kesseli, and Daniel Kroening

alias(h,x ,y) = (LP (h)(x)==LP (h)(y)) val(h,x) = LD (h)(x)

alias(h,x ,y)
size(h,x ,y) = 0

¬alias(h,x ,y)
size(h,x ,y) = 1+size(h,next(h,x),y)

i == 0

дet(h,x , i)=val(h,x)

i > 0

дet(h,x , i)=дet(h,next(h,x), i−1)

alias(h,x ,y)
exists(h,x ,y, λv .P(v)) = f alse

¬alias(h,x ,y)
exists(h,x ,y, λv .P(v)) = P(val(h,x)) ∨ exists(h,next(h,x),y, λv .P(v))

alias(h,x ,y)
forall(h,x ,y, λv .P(v)) = true

¬alias(h,x ,y)
forall(h,x ,y, λv .P(v)) = P(val(h,x)) ∧ forall(h,next(h,x),y, λv .P(v))

alias(h,x ,y)
max(h,x ,y) = −∞

¬alias(h,x ,y)
max(h,x ,y) =maximum(P(val(h,x)),max(h,next(h,x),y))

alias(h,x ,y)
min(h,x ,y) = ∞

¬alias(h,x ,y)
min(h,x ,y) =minimum(P(val(h,x)),min(h,next(h,x),y))

alias(h,x ,y) ∧ h′=h[Lp (h
′)=LP (h) ∪ {ret 7→ null}]

copy(h,x ,y, ret)=h′
¬alias(h,x ,y) ∧ h′ = copy(h,next(h,x),y, ret)

copy(h,x ,y, ret)=add0(h′,val(h,x), ret)

h′ = copy(h,x ,null, l)
add(h,x , 0,v)=add0(h′,v, l)

i > 0 ∧ h′ = add(h,next(h,x), i−1,v)

add(h,x , i,v)=add0(h′,val(h,x),next(h′,x))

h′ = copy(h,next(h,x),null, l)
set(h,x , 0,v)=add0(h′,v, l)

i > 0 ∧ h′ = set(h,next(h,x), i−1,v)

set(h,x , i,v)=add0(h′,val(h,x),next(h′,x))

alias(h,x ,y) ∧ h′=h[Lp (h′)=LP (h)∪{ret 7→null}]
sorted(h,x ,y, ret) = h′

¬alias(h′,x ,y) ∧ h′=sorted(removeVal(h,x ,y,min(h,x ,y)),x ,y, ret)

sorted(h,x ,y, ret) = add0(h′,min(h,x ,y), ret)

alias(h,x ,y) ∧ h′=h[Lp (h′)=LP (h)∪{ret 7→null}]
�lter(h,x ,y, λv .P(v), ret)=h′

¬alias(h,x ,y) ∧ ¬P(val(h,x))
�lter(h,x ,y, λv .P(v), ret)=�lter(h,next(h,x),y, λv .P(v), ret)

¬alias(h,x ,y) ∧ P(val(h,x)) ∧ h′=�lter(h,next(h,x),y, λv .P(v), ret)
�lter(h,x ,y, λv .P(v), ret) = add0(h′,val(h,x), ret)

alias(h,x ,y) ∧ h′=h[Lp (h′)=LP (h)∪{ret 7→null}]
map(h,x ,y, λv . f (v), ret)=h′

¬alias(h,x ,y) ∧ h′=map(h,next(h,x),y, λv . f (v), ret)
map(h,x ,y, λv . f (v), ret) = add0(h′, f (val(h,x)), ret)

alias(h,x ,y)
reduce(h,x ,y,v, λa b . f (a,b)) = v

¬alias(h,x ,y)
reduce(h,x ,y,v, λa b . f (a,b)) = f (v, reduce(h,next(h,x),y,v, λa b . f (a,b)))

¬alias(h,x ,y) ∧ n=0 ∧ h′=h[Lp (h′)=LP (h)∪{ret 7→LP (h)(x)}]

skip(h,x ,y,done,n, ret)=h′
alias(h,x ,y)∧h′=h[Lp (h′)=LP (h)∪{ret 7→null}]

skip(h,x ,y,done,n, ret)=h′

¬alias(h,x ,y) ∧ n>0
skip(h,x ,y,done,n, ret)=skip(h,next(h,x),y,done+1,n−1, ret)

(alias(h,x ,y) ∨ n=0) ∧ h′=h[Lp (h′)=LP (h)∪{ret 7→null}]
limit(h,x ,y,done,n, ret)=h′

¬alias(h,x ,y) ∧ n>0 ∧ h′=limit(h,next(h,x),y,done+1,n−1, ret)

limit(h,x ,y,done,n, ret)=add0(h′,val(h,x), ret)

alias(h1,x ,y) ∧ ¬alias(h2,a,b)
equalLists(h1,x ,y,h2,a,b) = f alse

¬halias(h1,x ,y) ∧ alias(h2,a,b)
equalLists(h1,x ,y,h2,a,b) = f alse

halias(h1,x ,y) ∧ alias(h2,a,b)
equalLists(h1,x ,y,h2,a,b) = true

¬alias(h1,x ,y) ∧ ¬alias(h2,a,b)
val(h1,x) == val(h2,a) ∧ equalLists(h1,next(h1,x),y,h2,next(h2,a),b)

Figure 9: Inference rules for Java Collection Theory.



Kayak: Safe Semantic Refactoring to Java Streams ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

Synthesise Verify Done

Program Search BMC-based Veri�er

Candidate

solution

Counter-

example

Candidate P
UNSAT/

model

Inputs
UNSAT/

candidate

Figure 10: The refactoring re�nement loop.

In the verify phase, we check whether the candidate solution

is indeed a true solution for our synthesis problem (then we are

“Done”), or compute a counterexample. We �nd such a counterex-

ample by building a program Pverif , on which we run Bounded

Model Checking (BMC) [4]. BMC employs symbolic execution to

map program semantics to a SAT instance [9] which veri�es our

equivalence constraints. If we manage to prove partial correctness

of Pverif , then we are done. Otherwise, we provide the counterexam-

ple returned by BMC to the synthesise phase. Note that it is sound

to use BMC because the program Pverif does not contain loops as it

uses loop invariants. For the running example, BMC returns a coun-

terexample with initial heap h′ce where the candidate equivState
is not a true postcondition when list contains value 1 (added at

position 0 through add(hce , list, 0, 1)): hce = new(hi , list) ∧ h′ce =
add(hce , list , 0, 1).

Next, in the synthesise phase, we add the counterexample from

the previous phase to Inputs and search for a new candidate solu-

tion by constructing a program Psynth on which we run in parallel

BMC and a genetic algorithm (GA) to �nd a new candidate solution

that holds for all the Inputs. GA simulates an evolutionary process

using selection, mutation and crossover operators. Its �tness func-

tion is determined by the number of passed tests. GA maintains

a large population of programs which are paired using crossover

operation, combining successful program features into new solu-

tions. In order to avoid local minima, the mutation operator replaces

instructions by random values at a comparatively low probability.

Moreover, we use a biased crossover operation, selecting parents

that solve distinct counterexample sets for reproduction. We use

the result of either BMC or GA, depending on which one returns

�rst. Again, it is sound to use BMC as the program Psynth does not

contain loops. For the running example, BMC returns �rst with a

candidate solution saying that the heap h′s after the stream code is

the following (for brevity, we omit the general equivState as, similar

to before, it only denotes the fact that the original and the stream

heaps are equivalent; we also omit the invariant which is very sim-

ilar to equivState): hs = �lter(hi , list,null, λv .true, list ′) ∧ h′s =
map(hs , list,null, λv .2×v, list ′′)

This solution is almost correct, apart from the �lter predicate,

which does no actual �ltering as the predicate is true . Returning

to the verify phase, we �nd one further counterexample denot-

ing a list with value 0 (which should be �ltered out but it isn’t):

hce=new(hi , list) ∧ h′ce=add(hce , list , 0, 0).
Back in the synthesise phase, this counterexample re�nes the

f ilter predicate, leading to the next solution:

hs = �lter(hi , list,null, λv .v , 0, list ′) ∧
h′s = map(hs , list,null, λv .2×v, list ′′)

Still not matching the original algorithm, the verify phase pro-

vides one �nal counterexample (a list containing value −2 that

should be �ltered out, but it isn’t):

hce=new(hi , list) ∧ h′ce=add(hce , list , 0,−2)

In the �nal synthesise phase we get the solution provided in

Sec. 4.

Elements speci�c to stream refactoring. In order to use program

synthesis for stream refactoring, we required the following:

(i) The target instruction set is JST, which requires both the ver-

ify and synthesise phases in the program synthesiser to support

the JST transformers. JST directly models Java Streams such that,

once the synthesiser �nds a solution equivState, we only require

very light processing to generate valid Java Stream code. In partic-

ular, this processing involves the stream generation (see examples

below).

Some examples of the generated stream code are provided be-

low, where the LHS denotes either the stream heap hs or some

other scalar variable r captured by equivState (expressed in JST),

and the RHS represents the corresponding stream refactoring. For

illustration, in the �rst example, after the synthesiser �nds that

hs in equivState is hs=f ilter (hi , l ,null, λv .P(v), l ′), we generate

the stream refactoring by adding the stream generation l .stream()
before the stream �ltering f ilter (λv .P(v)).

Note that ≡ stands for reference equality. This means that, as

shown in Sec. 3.1, we must generate Java code that modi�es the

original collection in place.

hs=f il ter (hi , l, null, λv .P (v), l ′) ⇒ l ′ ≡ l .str eam().f il ter (λv .P (v))

hs=sor ted (hi , l, null, l ′) ⇒ l ′ ≡ l .str eam().sor ted ()

hs=skip(hi , l, null, k, 0, l ′) ⇒ l ′ ≡ l .str eam().skip(k )

r=f orall (hi , l, null, λv .P (v)) ⇒ r=l .str eam().allMatch(v → P (v))

r=max (h, l, null) ⇒ r=l .str eam().max ()

(ii) The search strategy: we parameterise the solution language,

where the main parameter is the length of the solution program,

denoted by l . At each iteration we synthesise programs of length

exactly l . We start with l = 1 and increment l whenever we de-

termine that no program of length l can satisfy the speci�cation.

When we do successfully synthesise a program, we are guaranteed
that it is of minimal length since we have previously established

that no shorter program is correct. This is particularly useful for

our setting, where we are biased towards short refactorings (see

Sec. 8).

Terminating and exceptional behaviour. Next, we discuss how

our refactoring interacts with non-terminating and exceptional

behaviours of the original code.

If the original code throws an exception, then the same happens

for our modelling, and thus we fail to �nd a suitable refactoring.

The non-terminating behaviour can be due to either iterating over

a collection with an unbounded number of elements or to a bug

in the code that does not properly advance the iteration through

the collection. Regarding the former, we assume that the code to



ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany Cristina David, Pascal Kesseli, and Daniel Kroening

be refactored handles only collections with a bounded number of

elements. With respect to the second reason for non-termination,

if such a bug exists in the original code, then it will also exist in

our modelling. Thus, we will fail to �nd a suitable refactoring.

7 EXPERIMENTS
Benchmark Selection. We provide an implementation of our refac-

toring decision procedure, which we have named Kayak. We em-

ployed the GitHub Code Search to �nd relevant Java classes that con-

tain integer collections with refactoring opportunities to streams.

Kayak currently supports refactorings from Java external iterators

to Streams for integer collections only. This limitation is not con-

ceptual, but rather due to our Java front-end based on CBMC [9],

which will be extended in future work. The queries were speci�ed

conservatively as to not exceed the CBMC front-end capabilities

and we manually ruled out search results which cannot be imple-

mented using the Java 8 Stream speci�cation. We used the following

search queries on 8/8/2016:

• List <Integer>+for+if+break++language%3AJava&type=Code

• List <Integer>+while+it+remove&type=Code

• List <Integer>+while+add

We found 50 code snippets with loops from the results that �t these

restrictions.

Experimental Setup. In order to validate our hypothesis that

semantics-driven refactorings are more precise than syntax-driven

ones, we compare Kayak against the Integrated Development Envi-

ronments IntelliJ IDEA 2016.1
1

and NetBeans 8.2
2
, as well as against

LambdaFicator by Franklin et al. [13]. These tools all provide a “Re-

place with collect” refactoring, which matches Java code against

pre-con�gured external iteration patterns and transforms the code

to a stream expression if they concur. We manually inspect each

transformation for both tools to con�rm correctness. Since Kayak’s

software synthesis can be a time-consuming process, we impose a

time limit of 300 s for each benchmark. All experiments were run

on a 12-core 2.40 GHz Intel Xeon E5-2440 with 96 GB of RAM.

Genetic Algorithm Con�guration. We implemented a steady state

genetic algorithm implementation in CEGIS, whose �tness func-

tion is determined by the number of passed tests. We employ a

biased crossover operation, selecting parents which solve distinct

counterexamples in the CEGIS counterexample set for reproduction.

The intent is to have parent refactorings which work for distinct

intput sets produce o�spring which behave correctly for both in-

put sets. The population size, replacement and mutation rates are

con�gurable and were set to 2000, 15% and 1% respectively for our

experimental evaluation.

Results. Our results show that Kayak outperforms IntelliJ, Net-

Beans 8.2 and LambdaFicator by a signi�cant margin: Kayak �nds

39 out of 50 (78%) possible refactorings, whereas IntelliJ only trans-

forms 10 (20%) and both NetBeans 8.2 and LambdaFicator transform

11 benchmarks (22%) successfully. IntelliJ, NetBeans and LambdaFi-

cator combined �nd 15 (30%) refactorings. This is due to the fact

that there are many common Java paradigms, such as ListIterator or

1
https://www.jetbrains.com/idea/

2
https://netbeans.org/

Iterator :: remove, for which none of the tools contain pre-con�gured

patterns and thus have no way of refactoring. The fact that none of

the pattern-based tools provide for these situations suggests that it

is impractical to try to enumerate every possible refactoring pattern

in IDEs.

If the pattern-based tools �nd a solution, they transform the

program safely and instantaneously, even in cases where Kayak

fails to synthesise a refactoring within the allotted time limit. Where

Kayak synthesised a valid refactoring, it did so within an average

of 8.5 s. It is worth mentioning that the syntax-driven tools and

Kayak complement each other very well in our experiments, which

is illustrated by the fact that both approaches combined would have

solved 44 out of the 50 refactorings (88%) correctly. Loops which

match the expected patterns of syntax-driven tools are handled

with ease by such tools, regardless of semantic complexity. Kayak

on the other hand abstracts away even stark syntactical di�erences

and recognizes equivalent semantics instead, but is limited by the

computational complexity of its static analysis engine.

Kayak’s maximum memory usage (heap+stack) was 125MB over

all benchmarks according to valgrind massif. We found that the

majority of timeouts for Kayak are due to an incomplete instruction

set in the synthesis process. We plan to implement missing instruc-

tions as the program progresses out of its research prototype phase

into an industrial refactoring tool set. A link to all benchmarks used

in the experiment is provided in the footnote
3
.

8 THREATS TO VALIDITY
Our hypothesis is that we have given exemplary evidence that

semantics-based refactoring can be soundly applied, are more pre-

cise and enable more complex refactoring schemata. As we use

program analysis technology, all standard threats to validity in this

domain apply here as well; we summarise these only brie�y.

Selection of benchmarks. Our claim relates to “usual” programs

written by human programmers, and our results may be skewed by

the choice of benchmarks. We address this concern by collecting

our benchmarks from GitHub, which hosts a representative and

exceptionally large set of open-source software packages. Commer-

cial software may have di�erent characteristics, was not covered by

our benchmarks, and thus our claim may not extend to commercial,

closed-source software. Furthermore, all our benchmarks are Java

programs, and our claim may not extend to any other programming

language. We focused our experimental work on the exemplar of

refactoring iteration over collections, and our technique may not

be more widely applicable. Finally, our Java front-end is still in-

complete, only supporting lists of integers and lacking models for

many Java system classes. This restricts our selection to a subset of

the benchmarks in our GitHub search results, which may be biased

in favour of our tool. We will address this issue by extending the

front-end to accept additional Java input.

Not supported. We exclude transformers such as peek and foreach,

which are included in the Stream API. The reason is that such

transformers enable an equivalent transformation for virtually any

loop processing a collection in iteration order. Fig. 11 illustrates

such a transformation.

3
https://drive.google.com/open?id=0ByIexo3Z5N91ZlNFZTNpdU5USjQ

https://drive.google.com/open?id=0ByIexo3Z5N91ZlNFZTNpdU5USjQ


Kayak: Safe Semantic Refactoring to Java Streams ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

for ( in t e : c ) { foo ( e ) ; } (a)

c . s t ream ( ) . f o r e a c h ( e −> { foo ( e ) ; } ) ; (b)

Figure 11: Foreach example with original (a) and stream (b).

Transformations as illustrated in Fig. 11 do not improve expres-

siveness and readability of the program and are, at best, a matter of

pure foreach transformations. As a note, we do use them to perform

in-place transformations of the collections (as shown in Sec. 3.1),

but they are introduced only after the actual synthesis, when we

generate code using streams.

Quality of refactorings. Refactorings need to generate code that

remains understandable and maintainable. Syntax-driven refactor-

ing has good control over the resulting code; the code generated

by our semantic method arises from a complex search procedure,

and may be di�cult to read or maintain.

It is di�cult to assess how well our technique does with respect to

this subjective goal. Firstly, we conjecture that small refactorings are

preferable to larger ones (measuring the number of operations). Our

method guarantees that we �nd the shortest possible refactoring

due to the way we parameterise and search the space of candidate

programs (as described in Sec. 6). It is unclear whether human

programmers indeed prefer the shortest possible refactoring.

Secondly, our method can exclude refactorings that do not im-

prove readability of the program. For instance, as mentioned in

Sec. 3, we exclude transformations that include only peek and fore-

ach, which are o�ered by the Stream API. A refactoring that uses

these transformers (Fig. 11) can be applied to virtually any loop

processing a collection in iteration order but is generally undesir-

able.

Finally, we manually inspected the refactorings obtained with

our tool and found them to represent sensible transformations.

E�ciency and scalability of the program synthesiser. We apply

heavy-weight program analysis. This implies that our broader claim

is threatened by scalability limits of these techniques. The scalabil-

ity of our particular refactoring procedure is gated by the program

synthesiser. While for the majority of our experiments the synthe-

siser was able to �nd a solution quickly, there were a few cases

where it failed to �nd one at all. The problem was that the synthe-

sise portion of the CEGIS loop failed to return with a candidate

solution. Di�erent instruction sets for the synthesis process can

help mitigate this e�ect.

Better syntax-driven refactoring. Our hypothesis relates semantics-

driven refactoring to syntax-driven refactoring. While we have

undertaken every e�ort to identify and benchmark the existing

syntax-driven refactoring methods, there may be means to achieve

comparable or better results by improving syntax-driven refactor-

ing.

9 RELATEDWORK
Program refactoring. Cheung et al. describe a system that au-

tomatically transforms fragments of application logic into SQL

queries [7]. Moreover, similar to our approach, the authors rely

on synthesis technology to generate invariants and postconditions

that validate their transformations (a similar approach is presented

in [22]). The main di�erence (besides the actual goal of the work,

which is di�erent from ours) to our work is that the lists they oper-

ate on are immutable and do not support operations such as remove.

Capturing the potential side e�ects caused by such operations is

one of our work’s main challenges.

In syntax-driven refactoring engines, program transformation

decisions are based on observations on the program’s syntax tree.

Visser presents a purely syntax-driven framework [39]. The pre-

sented method is intended to be con�gurable for speci�c refactoring

tasks, but cannot provide guarantees about semantics preservation.

The same holds for [10] by Cordy et al., [26] by Sawin et al., [23]

by Bae et al. and [8] by Christopoulou et al. In contrast to these

approaches, our procedure constructs an equivalence proof before

transforming the program. In [18], Gyori et al. present a similar

refactoring to ours but performed in a syntax-driven manner.

Steimann et al. present Constraint-Based Refactoring in [36],

[37] and [38]. Their approach generates explicit constraints over

the program’s abstract syntax tree to prevent compilation errors

or behaviour changes by automated refactorings. This gives rise to

a �exible framework of customisable refactorings, implementable

through a refactoring constraint speci�cation language (cf. [38]).

The approach is limited by the information a program’s AST pro-

vides and thus favours conservative implementations of syntax-

focused refactorings such as Pull Up Field.

Fuhrer et al. implement a type constraint system to introduce

missing type parameters in uses of generic classes (cf. [14]) and

to introduce generic type parameters into classes which do not

provide a generic interfaces despite being used in multiple type

contexts (cf. [27]).

Raychev et al. present a semi-automatic approach where users

perform incomplete refactorings manually and then employ a con-

straint solver to �nd a sequence of default refactorings such as

move or rename which include the users’ changes. The engine is

limited to syntactic matching with the users’ partial changes and

does not consider program semantics [33].

Weissgerber and Diehl rely on meta information to classify

changes between software versions as refactorings [40]. The tech-

nique aims to identify past refactorings performed by programmers,

but is not a decision procedure for automated refactorings.

O’Ke�e and Cinnéide present search-based refactoring [30, 31],

which is similar to syntax-driven refactoring. They rephrase refac-

toring as an optimisation problem, using code metrics as �tness

measure. As such, the method optimises syntactical constraints and

does not take program semantics into account.

Bavota et al. implement refactoring decisions in [2] using seman-

tic information limited to identi�ers and comments, which may

di�er from the actual semantics (e.g. due to bugs). Kataoka et al.

also interpret program semantics to apply refactorings [24], but use

dynamic test execution rather than formal veri�cation, and hence

their transformation lacks soundness guarantees.

Franklin et al. implement a pattern-based refactoring approach

transforming statements to stream queries [17]. Their tool LambdaFi-

cator [13] is available as a NetBeans branch. We compared Kayak

against it in our experimental evaluation in Sec. 7.



ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany Cristina David, Pascal Kesseli, and Daniel Kroening

Heap Logics. While many decidable heap logics have been devel-

oped recently, none are expressive enough to capture operations

allowed by the Java Collection interface, operations allowed by the

Java Stream interface as well as equality between collections (for

lists this implies that we must be able to reason about both content

of lists and the order of elements) [5, 6, 11, 21, 29, 32]. On the other

hand, very expressive transitive closure logics [20] are not concise

and easily translatable to stream code.

Program synthesis. An approach to program synthesis very simi-

lar to ours is Syntax Guided Synthesis (SyGuS) [1]. SyGuS synthe-

sisers supplement the logical speci�cation with a syntactic template

that constrains the space of allowed implementations. Thus, each se-

mantic speci�cation is accompanied by a syntactic speci�cation in

the form of a grammar. Other second-order solvers are introduced

in [3, 16]. As opposed to ours, these focus on Horn clauses.

10 CONCLUSION
We conjecture that refactorings driven by the semantics of programs

have broader applicability and are able to address more complex

refactoring schemata in comparison to conventional syntax-driven

refactorings, thereby increasing the bene�ts of automated refactor-

ing. The space of possible semantic refactoring methods is enor-

mous; as an instance, we have presented a method for refactoring

iteration over Java collection classes based on program synthesis

methods. Our experiments indicate that refactoring using this spe-

ci�c instance is feasible, sound and su�ciently performant. Future

research must broaden the evidence for our general hypothesis by

considering other programming languages, further, ideally more

complex refactoring schemata, and other semantics-based analysis

techniques.

REFERENCES
[1] R. Alur et al. Syntax-guided synthesis. In FMCAD, 2013.

[2] G. Bavota, A. De Lucia, and R. Oliveto. Identifying extract class refactoring

opportunities using structural and semantic cohesion measures. J. Syst. Softw.,
84(3):397–414, Mar. 2011. ISSN 0164-1212.

[3] T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quanti�ed

Horn clauses. In CAV, LNCS, pages 869–882. Springer, 2013.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:117–148, 2003.

[5] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant checking

for programs manipulating lists and arrays with in�nite data. In Automated
Technology for Veri�cation and Analysis (ATVA), LNCS. Springer, 2012.

[6] M. Brain, C. David, D. Kroening, and P. Schrammel. Model and proof generation

for heap-manipulating programs. In European Symposium on Programming
(ESOP), LNCS, pages 432–452. Springer, 2014.

[7] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed appli-

cations with query synthesis. In Conference on Programming Language Design
and Implementation, PLDI, pages 3–14, 2013.

[8] A. Christopoulou, E. Giakoumakis, V. E. Zafeiris, and S. Vasiliki. Automated

refactoring to the strategy design pattern. Information and Software Technology,

54(11):1202 – 1214, 2012. ISSN 0950-5849.

[9] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

Tools and Algorithms for the Construction and Analysis of Systems, pages 168–176.

Springer, 2004.

[10] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider. Source transformation

in software engineering using the TXL transformation system. Information and
Software Technology, 44(13):827 – 837, 2002. ISSN 0950-5849.

[11] C. David, D. Kroening, and M. Lewis. Using program synthesis for program

analysis. In Logic for Programming, Arti�cial Intelligence, and Reasoning (LPAR-
20), LNCS, pages 483–498. Springer, 2015.

[12] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999. ISBN 0-201-48567-2.

[13] L. Franklin, A. Gyori, J. Lahoda, and D. Dig. LAMBDAFICATOR: from imperative

to functional programming through automated refactoring. In 35th International

Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-
26, 2013, pages 1287–1290, 2013. doi: 10.1109/ICSE.2013.6606699. URL http:

//dx.doi.org/10.1109/ICSE.2013.6606699.

[14] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller. E�ciently refactoring java

applications to use generic libraries. In ECOOP 2005 - Object-Oriented Program-
ming, 19th European Conference, Glasgow, UK, July 25-29, 2005, Proceedings, pages

71–96, 2005. doi: 10.1007/11531142_4. URL http://dx.doi.org/10.1007/11531142_4.

[15] B. Godlin and O. Strichman. Inference rules for proving the equivalence of

recursive procedures. In Time for Veri�cation, Essays in Memory of Amir Pnueli,
pages 167–184, 2010.

[16] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing

software veri�ers from proof rules. In PLDI, pages 405–416, 2012.

[17] A. Gyori, L. Franklin, D. Dig, and J. Lahoda. Crossing the gap from imperative to

functional programming through refactoring. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 543–553,

New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2237-9. doi: 10.1145/2491411.

2491461. URL http://doi.acm.org/10.1145/2491411.2491461.

[18] A. Gyori, L. Franklin, D. Dig, and J. Lahoda. Crossing the gap from imperative

to functional programming through refactoring. In ESEC/SIGSOFT FSE, pages

543–553. ACM, 2013.

[19] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN

0-201-61622-X.

[20] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary

between decidability and undecidability for transitive-closure logics. In Computer
Science Logic (CSL), pages 160–174, 2004.

[21] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M. Sagiv. E�ectively-

propositional reasoning about reachability in linked data structures. In Computer
Aided Veri�cation (CAV), LNCS, pages 756–772. Springer, 2013.

[22] M. Iu, E. Cecchet, and W. Zwaenepoel. JReq: Database queries in imperative

languages. In Compiler Construction (CC), pages 84–103, 2010.

[23] S.-U. Jeon, J.-S. Lee, and D.-H. Bae. An automated refactoring approach to

design pattern-based program transformations in Java programs. In Asia-Paci�c
Software Engineering Conference (APSEC), pages 337–345, 2002.

[24] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold. Automated support for

program refactoring using invariants. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), ICSM ’01. IEEE Computer Society,

2001.

[25] J. Kerievsky. Refactoring to patterns. In Extreme Programming and Agile Methods,
volume 3134 of LNCS, page 232. Springer, 2004.

[26] R. Khatchadourian, J. Sawin, and A. Rountev. Automated refactoring of legacy

Java software to enumerated types. In Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on, pages 224–233, 2007.

[27] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer. Refactoring for parameterizing

java classes. In 29th International Conference on Software Engineering (ICSE 2007),
Minneapolis, MN, USA, May 20-26, 2007, pages 437–446, 2007. doi: 10.1109/ICSE.

2007.70. URL http://dx.doi.org/10.1109/ICSE.2007.70.

[28] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):

385–394, July 1976. ISSN 0001-0782. doi: 10.1145/360248.360252. URL http:

//doi.acm.org/10.1145/360248.360252.

[29] P. Madhusudan, G. Parlato, and X. Qiu. Decidable logics combining heap struc-

tures and data. In Principles of Programming Languages (POPL), pages 611–622,

2011.

[30] M. O’Kee�e and M. Cinnéide. Search-based refactoring: an empirical study.

Journal of Software Maintenance and Evolution: Research and Practice, 20(5):345–

364, 2008. ISSN 1532-0618.

[31] M. O’Kee�e and M. Cinnéide. Search-based refactoring for software maintenance.

Journal of Systems and Software, 81(4):502 – 516, 2008. ISSN 0164-1212.

[32] R. Piskac, T. Wies, and D. Zu�erey. Automating separation logic using SMT. In

Computer Aided Veri�cation (CAV), LNCS, pages 773–789. Springer, 2013.

[33] V. Raychev, M. Schäfer, M. Sridharan, and M. T. Vechev. Refactoring with synthe-

sis. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of
SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pages 339–354, 2013.

doi: 10.1145/2509136.2509544. URL http://doi.acm.org/10.1145/2509136.2509544.

[34] R. Sharma and A. Aiken. From invariant checking to invariant inference using

randomized search. In Computer Aided Veri�cation (CAV), pages 88–105, 2014.

[35] A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.

[36] F. Steimann. Constraint-based model refactoring. In J. Whittle, T. Clark, and

T. Kühne, editors, Model Driven Engineering Languages and Systems: 14th In-
ternational Conference (MODELS), pages 440–454. Springer, 2011. ISBN 978-3-

642-24485-8. doi: 10.1007/978-3-642-24485-8_32. URL http://dx.doi.org/10.1007/

978-3-642-24485-8_32.

[37] F. Steimann and J. von Pilgrim. Constraint-based refactoring with Foresight.

In J. Noble, editor, ECOOP 2012 – Object-Oriented Programming: 26th European
Conference, pages 535–559. Springer, 2012. ISBN 978-3-642-31057-7. doi: 10.1007/

978-3-642-31057-7_24. URL http://dx.doi.org/10.1007/978-3-642-31057-7_24.

http://dx.doi.org/10.1109/ICSE.2013.6606699
http://dx.doi.org/10.1109/ICSE.2013.6606699
http://dx.doi.org/10.1109/ICSE.2013.6606699
http://dx.doi.org/10.1007/11531142_4
http://dx.doi.org/10.1007/11531142_4
http://dx.doi.org/10.1145/2491411.2491461
http://dx.doi.org/10.1145/2491411.2491461
http://doi.acm.org/10.1145/2491411.2491461
http://dx.doi.org/10.1109/ICSE.2007.70
http://dx.doi.org/10.1109/ICSE.2007.70
http://dx.doi.org/10.1109/ICSE.2007.70
http://dx.doi.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://dx.doi.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://dx.doi.org/10.1007/978-3-642-24485-8_32
http://dx.doi.org/10.1007/978-3-642-24485-8_32
http://dx.doi.org/10.1007/978-3-642-24485-8_32
http://dx.doi.org/10.1007/978-3-642-31057-7_24
http://dx.doi.org/10.1007/978-3-642-31057-7_24
http://dx.doi.org/10.1007/978-3-642-31057-7_24


Kayak: Safe Semantic Refactoring to Java Streams ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

[38] F. Steimann, C. Kollee, and J. von Pilgrim. A refactoring constraint language

and its application to Ei�el. In M. Mezini, editor, ECOOP 2011 – Object-Oriented
Programming: 25th European Conference, pages 255–280. Springer, 2011. ISBN

978-3-642-22655-7. doi: 10.1007/978-3-642-22655-7_13. URL http://dx.doi.org/10.

1007/978-3-642-22655-7_13.

[39] E. Visser. Program transformation with Stratego/XT. Rules, strategies, tools, and

systems in Stratego/XT 0.9. Technical Report UU-CS-2004-011, Department of

Information and Computing Sciences, Utrecht University, 2004.

[40] P. Weissgerber and S. Diehl. Identifying refactorings from source-code changes.

In Automated Software Engineering (ASE), pages 231–240, Sept 2006.

http://dx.doi.org/10.1007/978-3-642-22655-7_13
http://dx.doi.org/10.1007/978-3-642-22655-7_13
http://dx.doi.org/10.1007/978-3-642-22655-7_13

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview of our approach
	3.1 Discussion on aliasing

	4 Motivating Examples
	5 Java Stream Theory
	6 Synthesising Refactorings
	7 Experiments
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References

