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Preface

This volume contains the papers presented at the 17th International Symposium on
Functional and Logic Programming (FLOPS 2024), held during May 15–17, 2024 in
Kumamoto, Japan.

Writing down detailed computational steps is not the only way of programming.
The alternative, being used increasingly in practice, is to start by writing down the
desired properties of the result. The computational steps are then (semi-)automatically
derived from these higher-level specifications. Examples of this declarative style include
functional and logic programming, program transformation and rewriting, and extracting
programs from proofs of their correctness.

FLOPS aims to bring together practitioners, researchers, and implementers of declar-
ative programming, to discuss mutually interesting results and common problems: theo-
retical advances, their implementations in language systems and tools, and applications
of these systems in practice. The scope includes all aspects of the design, semantics, the-
ory, applications, implementations, and teaching of declarative programming. FLOPS
specifically aims to promote cross-fertilization between theory and practice and among
different styles of declarative programming.

FLOPS has a long tradition. Previous meetings were held at Fuji Susono (1995),
Shonan Village (1996), Kyoto (1998), Tsukuba (1999), Tokyo (2001), Aizu (2002),
Nara (2004), Fuji Susono (2006), Ise (2008), Sendai (2010), Kobe (2012), Kanazawa
(2014), Kochi (2016), Nagoya (2018), Akita (online, 2020), and Kyoto (online, 2022).

The call for papers resulted in 34 abstract submissions, of which 28 were finally
submitted as full papers. The subsequent reviewing process was double-blind. Each
submission was reviewed by at least three reviewers, either Program Committee (PC)
members or external referees. After careful and thorough discussions, the PC accepted
seven regular research papers, seven system descriptions, and one declarative pearl.
The program also included four invited talks by Lennart Augustsson (Epic Games),
Youyou Cong (Tokyo Institute of Technology), Katsumi Inoue (National Institute of
Informatics), and Yuliya Lierler (University of Nebraska). Katsumi Inoue provided an
extended abstract, which is included in these proceedings.

Wewould like to thank all invited speakers and authors for their contributions.We are
grateful to all PC members and external reviewers for their hard work and to EasyChair
for their conference management system, which made our work of organizing FLOPS
2024 much easier. We thank the local co-organizers, Shin-ya Katsumata and Naohiko
Hoshino, who did a great job setting up the conference and ensuring everything ran
smoothly.

Finally, we would like to thank our sponsors, the KDDI Foundation and the Japan
Software Science Society Special Interest Group on Programming and Programming
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Languages (JSSST-SIGPPL), for their continued support. We acknowledge the coop-
eration of ACM SIGPLAN and the Asian Association for Foundation of Software
(AAFS).

March 2024 Jeremy Gibbons
Dale Miller
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Verse: A New Functional Logic Language

Lennart Augustsson

Epic Games

Abstract.Verse is a new functional-logic language. It has several unusual
features and this talk will give a brief overview of the language and what
makes it different frommost other languages. Among other things, Verse
has deterministic choice, and choice is very much a first class construct.
The talk will also show a core calculus for Verse and how we can use
rewrite rules to give a semantics for the language.



Continuations from Three Angles

Youyou Cong

Tokyo Institute of Technology

Abstract. Continuations represent the rest of the computation. This
simple yet powerful concept attracted me to programming languages
research a decade ago, and since then, I have been studying continua-
tions from different angles. In this talk, I will present three pieces of my
work on continuations, focusing on applications, theory, and learning,
respectively.



Verification of Refactoring in Answer Set Programming

Yuliya Lierler

University of Nebraska

Abstract. Answer set programming is a declarative programming
paradigm for the development of knowledge intensive applications, espe-
cially those that involve combinatorial search. It is rooted in work on the
semantics of logic programs, so that syntactically answer set programs
are reminiscent of those of Prolog. Yet, the systems that process these
programs, and the art of programming in this style, differ from classical
Prolog. The process of creating an answer set program involves

1. representing a domain in the language of an answer set solver—a
system for processing logic programs,

2. making that representation safe for grounding—a process of elim-
inating variables of the program by substituting object constants,
and

3. tuning the representation to facilitate search efficiency.

The processes involved inmaking the representation safe and efficient
fall into the so-called refactoring, which is a common software engineer-
ing practice. In this talk, we will discuss answer set programming and its
practices, as well as the proof assistant system called Anthem, which is
designed for the purpose of facilitating proofs of correctness of the refac-
toring process. Examples will be used to illustrate the key concepts of
answer set programming the operation of Anthem, and its logical founda-
tions based on the relationship between logic programs under the answer
set semantics and the process of converting logic programs into first-order
logic formulas called completion.
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Algebraic Connection Between Logic
Programming and Machine Learning

(Extended Abstract)

Katsumi Inoue(B)

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

inoue@nii.ac.jp

Abstract. There have been attempts to connect machine learning
and symbolic reasoning, providing interfaces between them. This work
focuses on our original approach to integrate machine learning and sym-
bolic reasoning, in the context of algebraic approaches to logic program-
ming. We here realize logical reasoning using algebraic methods, in which
algebraic data structures such as matrices and tensors are used to repre-
sent logical formulas. These reasoning methods are robust against noise,
while allowing for high parallelism and scalable computation. Algebraic
logic programming has been applied to fixponit computation, abduction,
answer set programming and inductive logic programming.

Keywords: Logic Programming · Machine Learning · Linear
Algebra · Answer Set Programming · Abduction · Inductive Logic
Programming · Neurosymbolic AI

1 Introduction

Reasoning and learning are two fundamental components in artificial intelligence
(AI), which are complementary to each other. Reasoning is based on logic and
makes decisions based on existing knowledge, while learning acquires new knowl-
edge and improves the performance through experience. Reasoning and learning
are also interconnected and can enhance each other as a robust AI system that
tackles complex tasks. The interplay between reasoning and learning becomes
more and more important in generative AI with the growing use of large language
models (LLMs), and one would expect that LLMs can do a good job in inferring
and thinking, given a query in natural language. In this context, however, cur-
rent LLMs have limitations in correct reasoning, and then active research areas
have been highlighted in improving the model’s ability to reason within LLMs
as well as extending LLMs to perform correct reasoning, e.g., [17].

On the other hand, there have been attempts to connect deep learning and
logical reasoning without involving natural language processing. The research
field called neurosymbolic AI has attracted much attention [3], many of which
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Gibbons and D. Miller (Eds.): FLOPS 2024, LNCS 14659, pp. 3–9, 2024.
https://doi.org/10.1007/978-981-97-2300-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/xxxx_1&domain=pdf
http://orcid.org/0000-0002-2717-9122
https://doi.org/10.1007/978-981-97-2300-3_1
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provide interfaces between low-level perception by neural networks and high-level
symbolic reasoning. All such research directions somehow involve integration of
machine learning and symbolic reasoning.

Here, we will present our original approach to integrate machine learning and
symbolic reasoning, which provides a foundation for realizing a series of intelli-
gent behaviors—recognition, learning, and inference—on a common mathemat-
ical ground. As a first step toward connecting machine learning and symbolic
reasoning, we focus on realization of symbolic reasoning with algebraic methods.
Algebraic data structures have been used in machine learning, so we consider that
it should be easier to connect symbolic reasoning and machine learning within
such a common numeric field. Using algebraic data structures such as matrices
and tensors to represent logical formulas and constraints, we can exploit sparse
methods of linear algebraic computation and optimization methods in contin-
uous space. We then aim to realize reasoning schemes that are robust against
noise, while allowing for high parallelism and scalable computation. Algebraic
data structures are further integratable with neural systems in real domains.

Various symbolic reasoning and learning methods have been realized in such
algebraic manners. These include: Tarskian semantics [20], Datalog evaluation
[21], fixponit computation of logic programs [10,13,18,19], computation of satis-
fiable assignments in SAT [24,25], abduction [12,14,23], answer set programming
[27–29], and inductive reasoning for propositional programs [7,15,16,22,26] and
first-order logic programs [5]. These are broadly classified in two methods: linear
algebraic methods (Sect. 2) and differentiable methods (Sect. 3).

2 Linear Algebraic Approaches to Logic Programming

Sakama, Inoue and Sato have defined notable relations between logic program-
ming and linear algebra and have proposed algorithms to compute logic pro-
grams numerically using tensors [18,19]. A common principle in this approach
is to formulate logical formulas as vectors/matrices/tensors, and linear algebraic
operations are applied on these elements for computation of logic programming.

Suppose that P is a propositional logic program and H is the propositional
atoms (the Herbrand base). We construct a program matrix MP for the program
P in a way that the rules in P are represented as multiple row vectors in MP :
each row in MP corresponds to the if-and-only-if rule defining each head atom
from H in P , and each column represents the existence of a literal from H in
the body of rules. For an interpretation I ⊆ H, we associate a vector vI such
that an atom a ∈ H has the value 1 in vI if a ∈ I; otherwise a has the value 0
in vI . Then, the immediate consequences J of I with respect to P [30]:

J = TP (I) = {h ∈ H | (h ← b1, . . . , bm) ∈ P and {b1, . . . , bm} ⊆ I }
can be represented using the matrix-vector product:

vJ = θ(MP · vI),

where θ is a binary thresholding function for vectors [19].
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For a simple example, suppose H = {p, q, r}, and let P be a program con-
sisting of a single rule p ← q ∧ r and I be the Herbrand interpretation {q, r} (in
which p is false and q and r are true). Then, TP (I) = {p}, which is the immedi-
ate consequences of (p ← q ∧ r) ∧ (q ∧ r). This is computed as the matrix-vector
product:

MP · vI =

⎛
⎝

p q r

p 0 1/2 1/2
q 0 0 0
r 0 0 0

⎞
⎠ ·

⎛
⎝

p 0
q 1
r 1

⎞
⎠ =

⎛
⎝

p 1
q 0
r 0

⎞
⎠

Here, the value 1/2 is chosen for the row p with columns q and r, since each
literal q, r contributes the same amount of information to deduce p. When P is
a definite logic program, starting from the initial vector v0 associated with the
facts in P , the least fixpoint vk+1 = θ(MP ·vk) = vk (k ≥ 0) yields the least model
of P [19,30]. Stable models [8] of normal logic programs can be computed in a
similar way, but several interpretation vectors corresponding to guesses of stable
models can be given at once as an initial matrix [19]. Alternatively, supported
models [1] of normal logic programs have been computed with a dualized program
in [27]. The computational complexity of converting logic programs into matrices
by these methods is analyzed and a linear-time algorithm is proposed in [11].

Algebraic computation of logic programs can maximally exploit the sparsity
of program matrices, and scalability can be further enhanced by parallelism using
GPU computation. In fact, Nguyen, Inoue and Sakama [13] have analyzed the
sparsity level of program matrices and have employed sparse representation for
scalable model computation of logic programs, resulting in an order of magnitude
faster than state-of-the-art solvers. As another technique that can be useful
with this representation, we can realize partial evaluation (1-step unfolding) in
parallel by self-multiplication of the program matrix MP , i.e., MP ·MP = MP

2,
which would then lead to an exponential speedup by unfolding it repeatedly:
MP

2 · MP
2 = MP

4, MP
8, MP

16, MP
32, . . . [10].

Nguyen, Inoue and Sakama [12] have applied the linear algebraic method to
propositional abduction by considering an abductive matrix, which is just the
transpose of a program matrix. Given an observation vector, the matrix-vector
product is computed as a 1-step explanation vector. This process and minimal
hitting set computation are repeatedly alternated until a vector consisting of
only abducible literals is found. Sparse representation is shown to be effective
for abduction too. Partial evaluation has also been applied to abduction in [14].

For first-order logic programs, Sato illustrated tensorized quantification to
formalize Tarskian semantics of first-order logic in vector spaces [20], and realized
efficient computation of Datalog programs by translating them into matrices with
binary predicates and converting linear recursion into linear matrix equations
[21]. Sato, Inoue and Sakama [23] introduced matrix-based abduction in Datalog
programs and applied it to relation discovery (predicate invention) in knowledge
graphs. In contrast to the linear algebraic methods for propositional cases, these
studies exploit a matrix to represent a binary predicate with a finite domain.
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Although the deductive and abductive techniques in this section are not
directly connected to machine learning, the essential ideas to represent logic
programs as tensors and matrices and to transform logical reasoning to numeric
computation can be the basis of the differentiable methods in Sect. 3.

3 Differentiable Approaches to Logic Programming

Linear algebraic representation of logic programs by program matrices in Sect. 2
can be exploited for computation in more numeric ways using continuous opti-
mization. A common principle in this approach is abstracted by cost minimiza-
tion of a differentiable function with a parameter tensor [24].

Suppose that P is a propositional logic program. For deduction, our goal
is to seek a particular interpretation that satisfies the conditions for stable or
supported models. To this end, we consider a vector x in a continuous domain
rather than a Boolean domain. Then, we define a loss function L(x) with respect
to x such that L(x) = 0 iff x is an intended model of P . Else, if L is continuous,
the gradient of loss is computed: ∂L(x)

∂x . Stochastic gradient descent or Newton’s
method is then used to compute a minimum x of L. At the end of computation,
x is thresholded to a binary vector representing a logical solution.

Using the differentiable method, we obtain several computational advantages.
First, the robustness to noise is obtained by continuity. Second, the scalability
is expected by multi-core/GPU parallelism. Third, it is easy to integrate the
method with neural learning systems. In fact, continuous optimization is typi-
cally used in learning model parameters in continuous domains.

The differentiable semantics of answer set programming (ASP) was proposed
by Aspis et al. [2] for computing supported models by adopting the form of pro-
gram matrices in [18]. This method has been more elaborated in [29]. Computing
stable models is enabled by further putting constraints on supported models,
which are embedded in the loss function [28].

Similar techniques can be applied to SAT by constructing a matrix MS for a
set S of propositional clauses and associating a vector xI for an assignment I. To
compute a satisfiable assignment of S, local search is performed with minimizing
the loss LS such that LS(xI) = 0 iff θ′(MS · xI) is an 1-vector [24,25].

Now, cost minimization can be used to induce a program matrix from pairs
of input and output vectors. That is, given a set of interpretation pairs (I, J)
such that J = TP (I), a program P is constructed as a real-valued matrix MP

such that the loss L is minimized by computing the distance between L(xI) and
xJ = θ(MP ·xI). This is a matricized version of learning from interpretation tran-
sition (LFIT) [9] in inductive logic programming (ILP). Boolean networks can be
differentiably computed from state transitions in this way, and an unprecedented
scale (with 104 genes) of AND/OR Boolean networks were constructed in [26].
In a more general setting, a differentiable LFIT (D-LFIT) has been designed to
provide robust and scalable learning of propositional normal logic programs [7].

Differentiable learning of logic programs has also been realized by matrix
representations that are different from program matrices in Sect. 2. Evans and
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Grefenstette [4] proposed ∂ILP, which uses program templates to generate the
set of candidate clauses. Phua and Inoue learned the class of logic programs
instead of learning a single program, and used LSTM for a differentiable LFIT
(δLFIT) [15] and then applied transformers to its improvement δLFIT+ [16].
Sato and Inoue have learned a program matrix in DNF instead of CNF by cost
minimization that corresponds to a logic-based ReLU neural network [22].

Finally, first-order rule learning is possible by ∂ILP [4] when a program size
is limited. D-LFIT has been extended to perform first-order ILP from mislabeled
and noisy data [5], enabling scalable rule learning based on sampling [6].

Beyond improvements and applications of the methods presented above, our
next goal is to deeply combine the two approaches in Sects. 2 and 3 into one,
by extending differentiable methods to obtain knowledge from raw data and by
exploiting matrix-based computation for more correct reasoning, for example.
Another direction is to explore new methods for commonsense reasoning by
connecting these algebraic methods with LLMs.

Acknowledgements. This work has been supported by JSPS KAKENHI Grant
Number JP21H04905 and JST CREST Grant Number JPMJCR22D3. I would like
to thank all members related to these projects for their continuous supports and long
years of discussions.
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Abstract. Abstract categorial grammars (ACGs) is an expressive gram-
matical framework whose formal properties have been extensively stud-
ied. While it can provide its own account, as a grammar, of linguistic phe-
nomena, it is known to encode several grammatical formalisms, includ-
ing context-free grammars, but also mildly context-sensitive formalisms
such as tree-adjoining grammars or m-linear context-free rewriting sys-
tems for which parsing is polynomial. The ACG toolkit we present pro-
vides a compiler, acgc, that checks and turns ACGs into representations
that are suitable for testing and parsing, used in the acg interpreter.
We illustrate these functionalities and discuss implementation features,
in particular the Datalog reduction on which parsing is based, and the
magic set rewriting techniques that can further be applied.
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1 Introduction

Abstract categorial grammars [5, ACGs] is an expressive grammatical frame-
work, designed to account both for the syntax and the semantics of natural lan-
guages. ACGs derive from type-theoretic grammars in the tradition of [3,22,24].
While they can provide their own account of linguistic phenomena, they can
also be considered as a framework in which several grammatical formalisms
may be encoded [6,10,25], including context-free grammars, but also mildly
context-sensitive formalisms such as tree-adjoining grammars [12,13] or m-linear
context-free rewriting systems [30,31] for which parsing is polynomial. Its formal
properties have been extensively studied [10,16,18,28].

The definition of an ACG is based on a small set of mathematical primi-
tives from type theory, λ-calculus, and linear logic. These primitives combine
via simple composition rules, offering ACGs a good flexibility. In particular,
ACGs generate languages of linear λ-terms, which generalize both string and
tree languages, but also allow for using higher-order logic to express semantic
representations.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Gibbons and D. Miller (Eds.): FLOPS 2024, LNCS 14659, pp. 13–30, 2024.
https://doi.org/10.1007/978-981-97-2300-3_2
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A key feature of ACGs is to provide the user direct control over the parse
structures of the grammar, the abstract language, defined over an abstract vocab-
ulary (i.e., a higher-order signature), which can be seen as the set of admissi-
ble parse structures of the grammar. Such structures are later on interpreted
by a morphism, the lexicon, to get the object language, defined over an object
vocabulary (i.e., a higher-order signature). The process of recovering an abstract
structure from an object term is called ACG parsing and consists in inverting
the lexicon.

In this article, we present the ACG toolkit, ACGtk, which provides a com-
piler, acgc, that checks and turns ACGs into representations that are suitable
for testing and parsing, used in the acg interpreter. It is implemented in OCaml
and distributed under a free license. We illustrate its functionalities and discuss
implementation features, in particular the Datalog reduction on which parsing
is based, and the magic set rewriting techniques that can further be applied.

2 Abstract Categorial Grammars

The syntax we use in ACGtk to define grammars is very faithful to their math-
ematical definitions we introduce next. In order to illustrate the definitions,
concepts, and functionalities, we elaborate on an example made very simple on
purpose. More involved ones were for instance proposed in [23,25]. Formal def-
initions are illustrated with examples of ACGtk source listings, to be compiled
using acgc (as in Grammar 1), and with ACGtk commands, to be run with acg
(as in Commands 1).1

Definition 1 (Types). Let A be a set of atomic types. The set T (A) of
implicative types built upon A is defined with the following grammar:

T (A) ::= A |T (A) → T (A) |T (A) ⇒ T (A)

where → is the linear implication and ⇒ is the intuitionistic implication. They
are usually denoted by � and →, resp. However, because ACGtk use the ASCII
-> (or UTF-8 →) and the ASCII => (or UTF-8 ⇒) arrows, we use this notation
in this article.

Definition 2 (Higher-Order Signatures). A higher-order signature Σ is a
triple Σ = 〈A,C, τ〉 where:

– A is a finite set of atomic types;
– C is a finite set of constants;
– τ : C → T (A) is a function assigning types to constants.

As for the implication that comes with the two linear and intuitionistic fla-
vors, the λ-terms also feature two abstractions: the linear one (lambda in ASCII
and λo in UTF-8) and the regular one (Lambda in ASCII and λ in UTF-8).
1 Grammars and command files used in this article are available at https://inria.hal.
science/hal-04479621/file/acg-examples.zip.

https://gitlab.inria.fr/ACG/dev/ACGtk
https://ocaml.org/
https://inria.hal.science/hal-04479621/file/acg-examples.zip
https://inria.hal.science/hal-04479621/file/acg-examples.zip
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Definition 3 (λ-Terms). Let X be an infinite countable set of λ-variables.
The set Λ(Σ) of λ-terms built upon a higher-order signature Σ = 〈A,C, τ〉 is
inductively defined as follows (the typing rules are provided in Appendix A):

– if c ∈ C then c ∈ Λ(Σ);
– if x ∈ X then x ∈ Λ(Σ);
– if x ∈ X and t ∈ Λ(Σ) and x occurs free in t exactly once, then λox.t ∈ Λ(Σ)

( linear abstraction);
– if x ∈ X and t ∈ Λ(Σ), then λx.t ∈ Λ(Σ) (abstraction);
– if t, u ∈ Λ(Σ) then (t u) ∈ Λ(Σ).

Example 1 (Trees). Let us assume a ranked alphabet A1 = {John,Mary, saw,
everyone,NP1,Vt1,S2,VP2} with the arity given by the subscript (the arity is 0
if there is no subscript). Trees such as the ones of Fig. 1 can be expressed using
this alphabet.

A signature describing the trees that can be built over this ranked alphabet
is Trees = 〈{τ}, {John,Mary, saw, everyone,NP1,Vt1,S2,VP2}, τtrees〉, with

τtrees =

⎧
⎪⎪⎨

⎪⎪⎩

John �→ τ NP1 �→ τ → τ
Mary �→ τ Vt1 �→ τ → τ
saw �→ τ VP2 �→ τ → τ → τ

everyone �→ τ S2 �→ τ → τ → τ

Grammar 1 shows how such a signature is declared in ACGtk. For instance, in
such a signature, the trees of Fig. 1 are encoded by:

t1a = S2(NP1John)(VP2(Vt1saw)NP1Mary)) : τ

t1b = S2(NP1John)(Vt1saw) : τ

The interpreter acg can check they are well typed, as Commands 1 shows.

S2

NP1

John

VP2

Vt1

saw

NP1

Mary

(a)

S2

NP1

John

Vt1

saw

(b)

Fig. 1. Sample of trees built over the ranked alphabet A1 of Example 1

Example 2 (Strings). Strings build over an alphabet T are encoded in a higher-
order signature Σstr = 〈{o}, T, τstr〉 where for all s ∈ T, τstr(s) = o → o. It is
then easy to check that if we define the type σ

Δ= o → o, the infix operator
+ Δ= λx y.λ◦z.x(y z) and the empty string ε

Δ= λ◦x.x, + is associative and ε
neutral for +.
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Grammar 1: A higher-order signature for representing the trees that can be built
over the ranked alphabet A1 of Example 1

Commands 1: Checking well-formedness and well-typedness of a term against a
signature

So we can define a string signature Strings corresponding to the yields of the
trees built over the ranked alphabet A1 as in Grammar 2 (a string constant is
introduced for each symbol of arity 0, while the other symbols are not present
anymore). The string John + saw + Mary will then be represented by the term
λ◦z.John(saw(Mary z)).

Grammar 2: A higher-order signature for representing strings built over the
alphabet {John,Mary, saw, everyone}

Definition 4 (Lexicon). Let Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two
higher-order signatures, a lexicon L = 〈F,G〉 from Σ1 to Σ2 is such that:

– F : A1 → T (A2). We also note F : T (A1) → T (A2) its homomorphic
extension;

– G : C1 → Λ(Σ2). We also note G : Λ(Σ1) → Λ(Σ2) its homomorphic exten-
sion;

– F and G are such that for all c ∈ C1, �Σ2 G(c) : F (τ1(c)) is provable.

We also use L instead of F or G.
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The lexicon is the interpreting device of ACGs. If L(t) = u, also denoted by
t:= u, we say that u is the interpretation or the realization of t.

Example 3 (Relating the signature Trees and the signature Strings). We can now
relate the signature Trees and the signature Strings with the lexicon Yield to
interpret the trees built over the ranked alphabet as strings. The lexicon we use
is defined in Grammar 3. Note that the lexicon satisfies the condition ensuring
that the type of the interpretation of a constant is the interpretation of the type
of the constant.

It is then straightforward to check that the term t1a = S2(NP1John)
(VP2(Vt1saw)(NP1Mary)) : τ is interpreted as the string John + saw + Mary =
λ◦z.John(saw(Mary z)).

Grammar 3: A lexicon for interpreting the trees as strings

The formal definition of ACGs is not used as such in ACGtk because it’s
enough to have a lexicon (hence two signatures) and an abstract type A in order
to parse an (object) term and get an (abstract) term, if any, of type A. The parse
command of the acg interpreter requires these two parameters (see Sect. 4). But
for the sake of completeness, we provide here the definitions of ACGs and of the
languages they generate.

Definition 5 (Abstract Categorial Grammar and vocabulary). An
abstract categorial grammar is a quadruple G = 〈Σ1, Σ2,L, S〉 where:

– Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 are two higher-order signatures. Σ1

(resp. Σ2) is called the abstract vocabulary (resp. the object vocabulary)
and Λ(Σ1) (resp. Λ(Σ2)) is the set of abstract terms (resp. the set of object
terms).

– L : Σ1 → Σ2 is a lexicon.
– S ∈ T (A1) is the distinguished type of the grammar.

Definition 6 (Abstract and Object Languages). Given an ACG G, and S
its distinguished type, the abstract language of G is defined by

A(G) = {t ∈ Λ(Σ1) | �Σ1 t : S is derivable}
The object language of G is defined by

O(G) = {u ∈ Λ(Σ2) | ∃t ∈ A(G) such that u = L(t)}
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Parsing with an ACG G any term u that is built over the object vocabulary of
G amounts to finding the abstract terms t ∈ A(G) such that u = L(t). In other
words, ACG parsing is morphism inversion.

3 Properties

3.1 Expressive Power

Two parameters are useful to describe the hierarchy of ACGs with respect to
their expressive power: the order and the complexity of an ACG.

Definition 7 (Order and complexity of an ACG, and ACG hierarchy).
The order of a type α, ord(α), is defined inductively on α as follows:

ord(a) = 1
ord(α → β) = max(ord(α) + 1, ord(β))
ord(α ⇒ β) = max(ord(α) + 1, ord(β))

The order of an ACG is the maximum of the orders of its abstract constants.
The complexity of an ACG is the maximum of the orders of the interpretations
by the lexicon of its abstract atomic types.

We call second-order ACGs the set of ACGs whose order is at most 2.
ACG(n,m) denotes the set of ACGs whose order is at most n and whose com-
plexity is at most m.

Second-order ACGs are a particular class of interest because of its polynomial
parsing property [27]. Table 1, from [25], sums up some of the formal properties
of second-order ACGs.

Table 1. The hierarchy of second-order ACGs

String language Tree language

ACG(1,n) finite finite

ACG(2,1) regular regular

ACG(2,2) context-free linear context-free

ACG(2,3) non-duplicating macro ⊂ 1-visit attribute grammar

well-nested multiple context-free

ACG(2,4) mildly context-sensitive tree-generating

(multiple context-free) hyperedge replacement gram.

ACG(2,4+n) ACG(2,4) ACG(2,4)

ACGtk implements parsing of second-order ACGs that are almost linear,
i.e., terms in which variables occur exactly once, except for variables of atomic
type that occur at least once, but possibly several times.



ACGtk: A Toolkit for Developing and Running ACGs 19

Higher-order ACGs can generate languages that are NP-complete [28,32].
In general, the problem of parsing with higher-order ACGs is equivalent to
the open problem of provability in multiplicative exponential linear logic [9,32].
Even if there is a semi-complete algorithm for parsing with such grammars (see
Sect. 3.3), it is currently not implemented in ACGtk. However, the interpretation
of terms is available for any ACG (not only second-order ones).

3.2 ACG Composition

Because both abstract and object languages are sets of λ-terms, ACGs have
built-in support for grammar composition. Two ways of composing ACGs are
available:

– ACGs can be composed by making the abstract structures of a grammar
the object structures of another ACG. This corresponds to the applicative
composition paradigm (function composition of the lexicons) of [5] and is
illustrated in Fig. 2 by LDerive (from Λ(ΣRules) to Λ(ΣTrees)) and LYield

(from Λ(ΣTrees) to Λ(Σstr)).
– ACGs can also be composed by having a shared abstract vocabulary. Two

terms of the two object languages are related if they share a common abstract
structure. This corresponds to the transductive composition paradigm of [5]
and is typically used to relate a surface form (e.g., as a string) and a semantic
form (e.g., as a logical formula) through a common parse structure. This
composition is illustrated in Fig. 2 by LYield ◦ LDerive and LSemantics that
share the same abstract vocabulary, ΣRules.

This composition ability makes ACG a modular framework.

Λ(ΣTrees)

Λ(ΣRules)

Derive

Λ(Σstr)
Yield

Λ(Σlogic)

Semantics

Fig. 2. An example of ACG composition. The structures are the ones used as examples
in the article

Example 4 (Encoding a context-free grammar). Let G = 〈T,N, P,S〉 be the
context-free grammar such that:

– the set of terminals T is {John,Mary, saw, everyone},
– the set of non terminals N is {S,S′,NP,VP,Vt} (S′ will be used when com-

puting the semantic representation associated to a tree, see Sect. 3.2),
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– the set of production rules P is {ρi | 0 ≤ i ≤ 6} where:

ρ0 = S′ → S ρ4 = NP → Mary
ρ1 = S → NP VP ρ5 = NP → everyone
ρ2 = VP → Vt NP ρ6 = Vt → saw
ρ3 = NP → John

A signature describing the derivation trees of this context-free grammar is
Rules = 〈{S,S′,NP,VP,Vt}, {ρi | 0 ≤ i ≤ 6}, τ〉 where:

τ =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0 : S → S′ ρ4 : NP
ρ1 : NP → VP → S ρ5 : NP
ρ2 : Vt → NP → VP ρ6 : Vt
ρ3 : NP

Grammar 4 shows how such a signature is declared in ACGtk.

Grammar 4: A higher-order signature for representing the derivation trees of
the CFG G and a lexicon to interpret them as syntactic (derived) trees, and as
strings (by composition)

Example 5 (Relating the signature Rules and the signature Trees). Not all the
trees built over the ranked alphabet A1 correspond to derivation trees of the CFG
G. For instance, the syntactic (derived) tree of Fig. 1b does not correspond to
any derivation tree of G. By relating the signature Rules and Trees, we are able to
discriminate between trees corresponding to actual derivations (admissible parse
structures) and the other ones. The lexicon we use is defined in Grammar 4.2

It is then straightforward to check that ρ1ρ3(ρ2ρ6ρ4) : S is interpreted as the
term t1a = S2(NP1John)(VP2(Vt1saw)(NP1Mary) of type τ (tree). This term
can in turn be interpreted by the lexicon Yield to get the term John+saw+Mary
as Commands 2 shows.

2 This might seem an overkill when dealing with context-free grammars, as the deriva-
tion trees are taken to be the syntactic trees. However, when encoding tree-adjoining
grammars, it is not the case anymore and such a composed architecture is indeed
used in [25].
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Grammar 4 also shows how to define a new lexicon CFG as the composition
LCFG = LYield ◦ LRules.

Commands 2: Different interpretations of a term representing a context-free
derivation of G

Example 6 (Providing a semantic interpretation to the context-free derivations
of G). We now introduce a signature to build logical terms and a new lexicon
Semantics that shares its abstract vocabulary, Rules, with Derive (Grammar 5). It
is beyond the scope of this article to explain why these semantic interpretations
are meaningful, but they correspond to the ones of [2] that provide a continuation
based semantics to natural language expressions.

For instance, the term t6 = ρ0(ρ1ρ3(ρ2ρ6ρ4)) : S′ is interpreted by Semantics
as the term tsem = see jm : t . This allows us to relate, by the transductive
composition mode, the string John + saw + Mary, which is the interpretation
of t6 by LCFG = LYield ◦ LRules, to the logical term tsem. The same holds for
John + saw + everyone and ∀x.see jx.

Commands 3 illustrates these relations using the parse command in both
direction (i.e., from strings to logical representations and from logical represen-
tations to strings). The ACGs we defined indeed are second order and parsing
is available.

3.3 Parsing with Abstract Categorial Grammars and Datalog
Reduction

Parsing with ACGs had first been studied as linear higher-order matching, for
which several complexity results were established [4,7]. However, [14] showed
how parsing of second-order ACGs reduces to Datalog querying, grounding pars-
ing algorithms and optimization techniques on well-established fields, such as
database and logic programming, and offering a general method for getting effi-
cient tabular parsing algorithms [17]. This method applies whatever the object
language: representing strings, trees, but also any kind of (almost linear) λ-terms
as exemplified in Commands 3. This also allows for deriving algorithms with spe-
cific properties such as prefix correctness in a general way.3 ACGtk implements
the Datalog reduction with acgc and Datalog evaluation in acg to parse object
terms as illustrated by Fig. 3.

3 For a n6 prefix-correct Earley recognizer for TAGs, see [15].
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Grammar 5: A higher-order signature for representing higher-order logical for-
mulas

Commands 3: Illustration of the transductive composition mode
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Because we are interested in parse structures, and not only in membership,
not only do we need the answer to the query corresponding to an object term to
parse, but also the Datalog derivations (and all of them) that prove the query.
Then, any Datalog derivation uniquely determines an abstract term, hence the
abstract terms corresponding to the term being parsed. Standard engines, to our
knowledge, either do not provide proof trees or do so only partially for debugging
purposes and explainability. Therefore, ACGtk relies on our own implementation
of a Datalog prover that enumerates all the possible derivations.

Lexicon

acgc
Datalog program

(intensional database)

Datalog
derivations

Datalog query

Datalog
extensional database

Object term
to parse

Abstract
terms

acg

Fig. 3. Parsing process

For higher-order ACGs, [8] shows a similar reduction of ACG parsing to
linear logic programming, leading to a semi-complete parsing algorithm (i.e.,
if the algorithm returns a solution, the term to parse belongs to the object
language), not yet implemented.

4 ACGtk

ACGtk is implemented in OCaml, an efficient and expressive functional pro-
gramming language (the object-oriented features are not used, though). This
language provides some features that ease the implementation of the structures
and algorithms of ACGtk, such as algebraic data types with pattern matching,
an efficient compiler with tail-call optimization, a fast garbage collector.

It is also fully integrated with its development environment: using libraries
provided by the OCaml package manager (opam), using the Dune build system,
etc. It provides two pieces of software: acgc and acg.

The Grammar Compiler: acgc The main feature of acgc is to provide binary
representations (including the associated Datalog reductions for the lexicons)

https://ocaml.org/
https://opam.ocaml.org/
https://github.com/ocaml/dune


24 M. Guillaume et al.

of ACGs. Grammars are parsed, terms are statically type-checked against sig-
natures and lexicon interpretations. Separate compilation is supported, so that
different grammars may be coded in different source files.

The Interpreter: acg It provides a simple command language to use and test
grammars. The most useful commands are:

– check to check well-formedness and well-typedness against a signature
– realize to interpret a term according to a lexicon
– parse to parse a term according to a second-order lexicon
– list-terms to (randomly or not) list terms of a given type built over a

signature (including higher-order ones)
– idb to show the Datalog program associated to a lexicon
– query to show the query and the extensional database associated to a term

to parse according to a second-order lexicon

5 Notable Implementation Features

5.1 Datalog Evaluation, Tabular Parsing and Shared Forest

As explained in Sect. 3.3, ACGtk implements parsing using proof search in Dat-
alog. Currently, it uses the bottom-up seminaive algorithm of [1] together with
a CYK-like chart parsing algorithm. This allows us to finitely represent possibly
infinite derivations.

At a next stage, the derivations are mapped to a shared forest. Admissible
parse structures of a second-order ACGs are indeed trees, and solutions to a
parsing problem are therefore represented by forests that are shared in order to
keep a finite representation of the possibly infinite set of solutions. Enumerating
the solutions corresponds to traversing the forest. However, if we want the enu-
meration to be sorted according to a metric associated to the trees, we need to
be able to easily move from the computation of a solution to the computation
of another one for which the metric is better. To this end, we implemented a
(purely applicative) forest context data structure that behaves with respect to
the forest data structures similarly to how zippers [11] behave with respect to
trees.

A forest is a list of forest trees, the latter being trees whose children are forests
themselves. Consequently, the context of a forest tree needs to keep track: (i)
of its context in the forest, i.e., the list of alternatives it belongs to, (ii) of the
context of the forest it belongs to as a child in the children list, (iii) of its upper
context in the parent-children relation. Such a structure is enough to suspend
and resume walks in the forest on demand. Sharing is an orthogonal feature and
is currently implemented using relative path in the forest (but other solutions,
for instance with association tables, or dictionaries, could be used).

The metric we currently use involves the size and the depth of the abstract
terms, i.e., the number of nodes and the depth of the parse trees. The whole
framework is, however, ready to have metrics based on weighted grammars
inferred from corpora.
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5.2 Magic Set Rewriting

We also introduced the ability to use magic set rewriting techniques [1,29] as an
experimental feature for acgc and acg. Magic set techniques are logical rewrit-
ing techniques used to optimize query evaluation in deductive databases. These
methods simulate the selection pushing that is characteristic of top-down query
processing algorithms within a bottom-up evaluation framework. Programs are
transformed into larger ones that include additional intensional database pred-
icates. These extra predicates make the evaluation focus on those parts of the
database that are relevant to the query, thus avoiding unnecessary computations.

In the context of ACGs, the evaluation of rewritten programs leads to an
Earley style parsing algorithm. For small grammars, it proves to be very efficient
on large sentences as Fig. 4 shows for parsing strings of the mildly context-
sensitive language {anbncndn} with n ranging from 1 to 94.4

However, Datalog programs (intensional databases) resulting from ACG
transformation are usually large compared to the extensional databases corre-
sponding to the terms to parse, a somewhat different situation of what happens
for usual databases. Magic set rewriting strengthens this contrast because it
makes the number of rules increase (Fig. 4c shows the effect on parsing time
of small sentences). We did not yet run extensive experiments with large ACG
grammars, first because of their unavailability, and second because of optimiza-
tion issues (in particular related to size and space) in the current implementation
of the rewriting algorithm (not the parsing algorithm).

6 Related Work

Available symbolic parsers (possibly augmented with stochastic models for prun-
ing search space) for natural language processing are usually dedicated to a
specific grammar formalism, often tweaked to fit a specific extension of that
formalism. See for instance Partage for tree-adjoining grammars, TuLiPA for
tree-adjoining grammars and mildly context-sensitive variants such as multi-
component tree-adjoining grammars with tree tuples, OpenCCG or NLTK for
combinatory categorial grammars, the Babel-System, DELPH-IN tools, or Enju
for HPSG. Moreover, getting semantic representations also usually requires using
additional tools to process the parsing output, or targets a specific semantic rep-
resentation language.

From a theoretical perspective, the flexibility provided by the ACG frame-
work and its architecture (often coined as synchronous or parallel grammars)
is shared by other formalisms. For instance, Interpreted Regular Tree Gram-
mars [21] that also consider parsing by morphism inversion and is implemented
in Alto. However, this formalism is not well suited to deal with semantics rep-
resented with logical formulas. To parse a term t indeed requires that the set of
trees that are interpreted as t is regular. To parse a logical representation based

4 Each parsing time is an average of 100 time measures for each length using 1 core
on an Intel® Core™ i7-3520M CPU, 2.90GHz, 16 GB RAM laptop.

https://github.com/kawu/partage
https://sourcesup.renater.fr/www/tulipa/
https://groups.inf.ed.ac.uk/ccg/software.html
https://www.nltk.org/howto/ccg.html
https://hpsg.hu-berlin.de/~stefan/Babel/
https://delph-in.github.io/docs/tools/ToolsTop/
https://github.com/mynlp/enju
https://github.com/coli-saar/alto
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Fig. 4. Parsing time of sentences anbncndn (length = 4n)

on λ-calculus would mean to represent all terms that are β-equivalent to the
term we want to parse by a regular tree grammar. It is not clear how it can be
done.

Another related approach is Grammatical Framework [26] and its implemen-
tation GF. The type system of GF is based on dependent type theory and is not
as flexible as ACG for composing grammars. However, GF is also considered as
a programming language for grammar applications, and a lot of solutions have
been developed to address grammatical (instead of software) engineering issues.
It has been extensively used to develop grammars for many languages (38 lan-
guages so far) and is an important source of inspiration for features to add to
ACGtk.

Finally, Applicative Abstract Categorial Grammars [19] and its conceptual
simplification, Transformational Semantics [20] also come with an implemen-

https://www.grammaticalframework.org/
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tation in form of a domain-specific language embedded in Haskell.5 It focuses
more specifically on structure transformations that are needed to derive difficult
semantic phenomena.

7 Conclusion

ACGtk provides an environment to develop, test, and use ACGs. It is used
to implement syntax-semantics interface models for natural languages, possibly
using complex composition architectures. It is implemented in a functional lan-
guage, using interesting data structures such as zippers, and also implements a
Datalog prover and optimization related techniques.

Directions for further developments are threefold:

– To integrate recent theoretical work on ACGs (mainly feature structures and
weighted grammars).

– To improve the grammatical engineering facilities (for instance introducing
functors).

– To use different optimization techniques, either related to Datalog evaluation
(e.g., with precedence graph) or to the OCaml language (parallel program-
ming).

A Typing Rules

Let Σ = 〈A,C, τ〉 be a higher-order signature. The typing rules for terms of
Λ(Σ) use sequents of the form Γ ;Δ �Σ t : α where Γ is a non-linear context
assigning types to variables and Δ is a linear context assigning types to variables.
Whenever Δ is empty, e.g., in the (const.), the (var.) and the (app.) rules, such
a sequent is written Γ ;�Σ t : α.

c ∈ C
(const.)

Γ ;�Σ c : τ(c)

(lin. var.)
Γ ;x : α �Σ x : α

(var.)
Γ, x : α;�Σ x : α

Γ ;Δ,x : α �Σ t : β
(lin. abs.)

Γ ;Δ �Σ λ◦x.t : α → β

Γ ;Δ1 �Σ t : α → β Γ ;Δ2 �Σ u : α
(lin. app.) if dom(Δ1) ∩ dom(Δ2) = ∅

Γ ;Δ1,Δ2 �Σ t u : β

Γ, x : α;Δ �Σ t : β
(abs.)

Γ ;Δ �Σ λx.t : α ⇒ β

Γ ;Δ �Σ t : α ⇒ β Γ ;�Σ u : α
(app.)

Γ ;Δ �Σ t u : β

5 https://okmij.org/ftp/gengo/transformational-semantics/.

https://okmij.org/ftp/gengo/transformational-semantics/
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10. de Groote, P., Pogodalla, S.: On the expressive power of abstract catego-
rial grammars: representing context-free formalisms. J. Log. Lang. Inf. 13(4),
421–438 (2004). https://doi.org/10.1007/s10849-004-2114-x. hal open archive:
inria-00112956

11. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997). https://doi.org/
10.1017/S0956796897002864

12. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst.
Sci. 10(1), 136–163 (1975). https://doi.org/10.1016/S0022-0000(75)80019-5

13. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa,
A.K. (eds.) Handbook of Formal Languages, vol. 3, chap. 2, pp. 69–123. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6 2

14. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of
the 45th Annual Meeting of the Association of Computational Linguistics (ACL
2007), pp. 176–183. Association for Computational Linguistics, Prague (2007). acl
anthology: P07-1023

15. Kanazawa, M.: A prefix-correct earley recognizer for multiple context-free gram-
mars. In: Gardent, C., Sarkar, A. (eds.) Proceedings of the Ninth International
Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+9),

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://doi.org/10.1023/A:1022183511876
https://cb125.github.io/Papers/barker-continuations.pdf
https://cb125.github.io/Papers/barker-continuations.pdf
https://doi.org/10.1090/psapm/012
https://doi.org/10.1007/10721975_9
https://doi.org/10.1007/10721975_9
https://doi.org/10.3115/1073012.1073045
http://aclweb.arg/anthology/P01-1033
http://aclweb.arg/anthology/W02-2220
https://doi.org/10.1007/3-540-44404-1_17
http://hal.inria.fr/hal-01188632
http://aclweb.arg/anthology/W15-2302
https://inria.hal.science/inria-00100081
https://inria.hal.science/inria-00100081
https://doi.org/10.1007/s10849-004-2114-x
http://hal.inria.fr/inria-00112956
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1007/978-3-642-59126-6_2
http://aclweb.arg/anthology/P07-1023


ACGtk: A Toolkit for Developing and Running ACGs 29
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Abstract. For a programming language, there are two kinds of term
rewriting: run-time rewriting (“evaluation”) and compile-time rewriting
(“refinement”). Whereas refinement resembles general term rewriting,
evaluation is commonly constrained by Felleisen’s evaluation contexts.
While evaluation specifies a programming language, refinement models
optimisation and should be validated with respect to evaluation. Such
validation can be given by Sands’ notion of contextual improvement. We
formulate evaluation in a term-rewriting-theoretic manner for the first
time, and introduce Term Evaluation and Refinement Systems (TERS).
We then identify sufficient conditions for contextual improvement, and
provide critical pair analysis for local coherence that is the key suffi-
cient condition. As case studies, we prove contextual improvement for a
computational lambda-calculus and its extension with effect handlers.

Keywords: term rewriting · evaluation contexts · critical pair analysis

1 Introduction

Term rewriting is a general model of computation. The ecosystem of a functional
programming language utilizes two types of term rewriting: run-time rewriting,
which we shall refer to as evaluation, and compile-time rewriting, referred to as
refinement. Run-time evaluation specifies operational semantics of the language.
It can only happen in a particular order, usually deterministically. On the other
hand, compile-time refinement models optimisation. It can happen anywhere,
nondeterministically. The difference between evaluation and refinement, as kinds
of term rewriting, can be summarised in terms of contexts, cf. Fig. 1. Evaluation
→E uses a rewrite rule l → r inside a Felleisen’s evaluation context [8,9] E ∈ Ectx
only; this is a new kind of restriction from the rewriting theoretic point of view.
In contrast, refinement ⇒R uses a rewrite rule l ⇒ r inside an arbitrary context
C ∈ Ctx ; this resembles general term rewriting.
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(l → r) ∈ E E ∈ Ectx
E[lθ] →E E[rθ]

(l ⇒ r) ∈ R C ∈ Ctx
C[lθ] ⇒R C[rθ]

Fig. 1. Evaluation and refinement relations, where θ is a substitution

From the viewpoint of rewriting theory, the roles of evaluation and refine-
ment are rather unusual. It is evaluation that specifies (the behaviour of) a
programming language as operational semantics. Evaluation is not simply a
deterministic restriction of refinement. Refinement which models optimisation
should be validated with respect to evaluation. Indeed, compiler optimisation is
meant to preserve evaluation results and improve time efficiency of evaluation.
This preservation and improvement deserve formal validation.

Such validation can be provided as observational equivalence [22], and its
quantitative variant, contextual improvement [27]. Observational equivalence t ∼=
u asserts that two terms t and u cannot be distinguished by any context C;
formally, if C[t] terminates, C[u] terminates with the same evaluation result, and
vice versa. Contextual improvement additionally asserts that C[u] terminates
with no more evaluation steps than C[t]. This is a suitable notion to validate
refinement which models optimisation.

Whereas the theory of refinement, which resembles general term rewriting,
has been deeply developed, evaluation seems to be a new kind of restricted rewrit-
ing and it lacks a general theory from the perspective of term rewriting. This
prevents useful ideas and techniques of term rewriting from transferring from
refinement to evaluation. In recent work [23] on a proof methodology of obser-
vational equivalence, it is informally observed that a rewriting technique can be
useful for proving observational equivalence and contextual improvement. This
methodology informally employs critical pair analysis, a fundamental technique
in rewriting theory. The idea is that t ∼= u holds if replacing t with u (which
means applying a refinement rule t ⇒ u) in any program does not conflict with
any evaluation rule l → r.

This paper aims at formalising this connection between observational equiva-
lence proofs and critical pair analysis. In doing so, we introduce a new rewriting-
theoretic formalisation of evaluation. Our contributions are:

• introducing a new formalisation of term evaluation systems (TES), and its
combination with refinement, dubbed term evaluation and refinement systems
(TERS), in both first-order and second-order settings,

• identifying sufficient conditions for contextual improvement that include a
notion of local coherence,

• establishing critical pair analysis for local coherence, and
• demonstrating TERS with examples including a computational lambda-

calculus and its extension with effect handlers.

The key concepts of our development are evaluation contexts, values and
local coherence. Evaluation contexts are treated axiomatically. Values specify
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successful results of evaluation; not all normal forms of evaluation are deemed
successful. Such distinction of values has been studied in second-order rewriting
[14]. Finally, local coherence is a notion from the rewriting literature; it is namely
a sufficient condition for confluence in equational rewriting [3,15]. We exploit the
notion for TERS instead of equational rewriting1.

1.1 Examples of TES and TERS

The standard left-to-right call-by-value lambda-calculus is a TES. Terms t, t′

including values v are defined as below, and the call-by-value evaluation strategy
is specified using evaluation contexts E and one evaluation rule →:

v ::= λx.t, t, t′ ::= x | v | t t′, E ::= � | E t | v E, (λx.t) v → t[v/x].

Values v appearing in this specification play a significant role. The definition
of evaluation contexts notably includes the clause v E where the left subterm
v is restricted to values. This ensures the left-to-right evaluation of application
t t′; the right subterm t′ can be evaluated only after the left subterm t has been
evaluated to a value. Additionally, the redex (λx.t) v restricts the right subterm
v to values. This ensures the call-by-value evaluation of application.

A simplified computational lambda-calculus λml∗ [26] is a TERS. Its terms
are either values v, v′ or computations p, p′, and its evaluation (which has been
studied [7]) is specified using evaluation contexts E and two evaluation rules →:

v, v′ ::= x | λx.p, p, p′ ::= return(v) | let x = p in p′ | v v′,

E ::= � | let x = E in p, (λx.p) v → p[v/x], let x = return(v) in p → p[v/x].

We can observe that evaluation contexts constrain where evaluation rules can be
applied, namely in the subterm p of let x = p in p′. Again, values in evaluation
rules assure the call-by-value evaluation of application and let-binding.

Originally, the calculus λml∗ is specified by equations rather than evaluation.
Directed equations can be seen as the following five refinement rules ⇒:

(λx.p) v ⇒ p[v/x], let x = return(v) in p ⇒ p[v/x],
λx.v x ⇒ v, let x = p in return(x) ⇒ p,

let x1 = (let x2 = p2 in p1) in p3 ⇒ let x2 = p2 in let x1 = p1 in p3.

While the first two rules represent β-conversion, the third one represents η-
conversion. The fourth one removes the trivial let-binding, and the last one
flattens let-bindings. We can observe that the last three rules simplify terms.

We now have a TERS of λml∗ which has both evaluation and refinement.
We are now interested in whether refinement is valid with respect to evaluation.
Our goal here is namely to prove contextual improvement: that is, for any refine-
ment t ⇒R u and any context C ∈ Ctx , if evaluation of C[t] terminates, then
evaluation of C[u] terminates with no more evaluation steps.
1 TERS is not equational rewriting. Refinement is compile-time rewriting, and we do

not evaluate modulo refinement.
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Fig. 2. Joinability for confluence, commutation and local coherence

To prove contextual improvement, we would need to analyse how each eval-
uation step interferes with the refinement t ⇒R u. This amounts to analyse how
each evaluation rule l → r can conflict with each refinement rule l′ ⇒ r′. This is
what exactly critical pair analysis is targeted at.

Critical pair analysis is usually for proving confluence, which is a fundamental
property of term rewriting. It firstly enumerates the situation where two rewrite
rules conflict with each other. It then checks if the two conflicting rewritings can
be joined. This is illustrated in Fig. 2 (left), where the joining part is depicted
in dashed arrows, and ‘∗’ means an arbitrary number of rewriting.

In our development, we exploit critical pair analysis for proving contextual
improvement, and more specifically for proving local coherence. The analysis is
targeted at conflicts between evaluation → and refinement ⇒. We analyse if
these conflicts can be joined using evaluation and refinement; see Fig. 2 (right).
To ensure improvement, our notion of local coherence asserts that the joining
part satisfies the inequality 1 + k ≥ l about the number of evaluation steps.

To prove the joinability for local coherence, we need to be careful with eval-
uation contexts. We need to show that the 1 + k evaluation steps E[lθ] →E
E[rθ] k→E u can be simulated by the l evaluation steps s

l→E s′. Naively, this can
be done by showing that the evaluation rule l → r can also be applied to the
term s. This, however, involves making sure that the rule l → r can be applied
inside an evaluation context. This is not a trivial issue; the evaluation context
E might be modified by the refinement E[t] ⇒R s. This modification should
be “mild”, and more precisely, refinement should not turn an evaluation context
into a non-evaluation context (see Definition 12 (2)).

Note that local coherence can be seen as a generalisation of commutation [30];
see Fig. 2 (middle). Commutation is the case where k = 0, l = 1, and allowing
only one step of refinement ⇒R instead of ∗⇒R.

2 Preliminaries

Let N be the set of natural numbers. For any n ∈ N, let [n] denote the set
{1, . . . , n} (mind the starting point); for example, [0] = ∅, [1] = {1}, [2] = {1, 2}.
We write A for a sequence A1, . . . , An, and |A| for its length (i.e. n).

Given a binary relation → on a set S, let ∗→ denote the reflexive and transitive
closure of →. For any k ∈ N, k→ denotes the k-fold composition of →. An element
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x ∈ S is a normal form (with respect to →), if there exists no element x′ ∈ S
such that x → x′. Let NF(→) denote the set of normal forms with respect to →.

3 First-Order Term Evaluation and Refinement Systems

Evaluation and Refinement. Let Σ be a signature. Each element f ∈ Σ
comes with an arity n ∈ N; we write f : n. (First-order) terms are defined by the
grammar t ::= x | f(t1, . . . , tn) where x is a variable and f : n. Let TΣ be the set
of terms. A term is closed if it has no occurrence of variables.

A position of a term is given by a (possibly empty) sequence of positive
numbers, in the usual manner. Concatenation of sequences p, q is denoted by pq
or p.q. Let Pos(t) be the set of all positions in a term t. We write s[t]p for the
term that is obtained by replacing the sub-term of s at the position p with t.
We write s|p for the sub-term of s at the position p.

A substitution θ is given by a sequence {x1 �→ t1, . . . , xk �→ tk} where
x1, . . . , xk are distinct variables. We write subst θ when θ is a substitution. Let tθ
denote the term where all occurrences of x1, . . . , xk in t are replaced by t1, . . . , tk,
respectively. We call tθ an instance of t.

A context is a term that involves exactly one hole �. Let Ctx be the set of
contexts. Let C[t] denote the term where the hole � of C ∈ Ctx is replaced by
t. A set C of contexts is closed under substitutions if C ∈ C implies Cθ ∈ C for
any subst θ, and closed under composition if C,C ′ ∈ C implies C[C ′] ∈ C. The
set C is inductive if any C ∈ C is � or of the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn)
such that C ′ ∈ C and f(t1θ, . . . , ti−1θ,�, ti+1θ, . . . , tnθ) ∈ C for any subst θ.

Term evaluation systems (TES) can now be defined, as the standard term
rewriting with the new restriction imposed by means of evaluation contexts.

Definition 1 (TES). A term evaluation system is a tuple (Σ, E ,Ectx ,Val) con-
sisting of

– a signature Σ,
– a set Eof evaluation rules, where (l → r) ∈ E with l, r ∈ TΣ, such that (i)

every free variable occurring in r also occurs in l and (ii) l is not a variable,
– a set Ectx ⊆ Ctx of evaluation contexts that is closed under substitutions,

closed under composition and inductive, and
– a set Val ⊆ NF(→E) of values that satisfies (i) v ∈ Val implies vθ ∈ Val for

any subst θ, and (ii) it comes with an equivalence relation =Val ⊆ Val × Val ,
where:

– the evaluation relation →E ⊆ TΣ × TΣ is defined in Fig. 1.

Values specify which normal forms of →E are regarded as successful results.
For example, in a TES for arithmetics, a term x+y is a normal form but it is not
deemed a successful result. The equivalence relation =Val specifies observations
of these results in terms of equivalence classes. For example, when the syntactic
equality ≡ is used, each value v ∈ Val becomes a distinct observation. On the
other hand, when the total relation � is used, values are all identified; this means
that successful termination is the only possible observation.
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The evaluation relation →E is closed under evaluation contexts in Ectx . It is
also closed under substitutions, thanks to Ectx being inductive.

Each TES can be equipped with refinement, which resembles general, unre-
stricted, term rewriting.

Definition 2 (TERS). A term evaluation and refinement system is a tuple
(Σ, E ,R,Ectx ,Val) consisting of

– A TES (Σ, E ,Ectx ,Val), and
– a set R of refinement rules where (l ⇒ r) ∈ R with l, r ∈ TΣ, such that (i)

every free variable occuring in r also occurs in l and (ii) l is not a variable.
– The refinement relation ⇒R ⊆ TΣ × TΣ is defined by the inference rule in

Fig. 1.

We often simply write a TES (E ,Val) and a TERS (E ,R,Val). The refine-
ment relation ⇒R is closed under substitutions, and closed under arbitrary con-
texts in Ctx .

The following example is from the literature on context-sensitive rewriting.

Example 3 (Nats [20, Ex. 8.19]). Let Nats be the TERS defined as follows.

Signature Σ nats : 0, inc : 1, hd : 1, tl : 1, ‘:′ : 2, s : 1, 0: 0
Values Val V ::= 0 | s(V )
Evaluation contexts Ectx E ::= � | hd(E) | tl(E) | inc(E)
Evaluation rules E Refinement rule R
nats → 0 : inc(nats) tl(inc(nats)) ⇒ inc(tl(nats))
inc(x : y) → s(x) : inc(y)
hd(x : y) → x
tl(x : y) → y

We define =Val by the syntactic equality ≡, to allow each value to be observed
separately. The refinement rule is reversed, compared to the original one [20,
Ex. 8.19], so that it induces improvement; see Sect. 4 for details.

Joinability and Improvement. Evaluation is constrained by means of evalua-
tion contexts, usually to have the evaluation relation →E deterministic. Bridging
the gap between evaluation and refinement, we are interested in joinability up
to R defined as follows. The joinability is quantitative with an extra constraint
on the number of evaluation steps.

Definition 4 (Peaks, joinability).

– An E-peak is given by a triple (s1, t, s2) such that t →E s1 and t →E s2.
– An (R, E)-peak is given by a triple (s1, t, s2) such that t ⇒R s1 and t →E s2.
– An E-peak (s1, t, s2) is trivial if s1 ≡ s2 holds.
– An (R, E)-peak (s1, t, s2) is joinable up to R if there exist k, l ∈ N and u1, u2

such that s1
k→E u1, s2

l→E u2, 1 + l ≥ k and u2
∗⇒R u1.
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Definition 5 (Rewriting properties).

– A TES (E ,Val) is deterministic if every E-peak (s1, t, s2) is trivial.
– A TERS (E ,R,Val) is locally coherent if every (R, E)-peak is joinable up to

R.

We say a TERS (E ,R,Val) is deterministic if (E ,Val) is deterministic. We also
simply say an (R, E)-peak is joinable, omitting “up to R.”

We formalise the key concept that relates evaluation with refinement in
TERS. It is the so-called (contextual) improvement [27]: that is, any refine-
ment t ⇒R s cannot be distinguished by evaluation →E inside any contexts, and
the refinement cannot increase the number of evaluation steps that are needed
for termination. Observation is made according to the set Val of values and its
associated equivalence relation =Val .

Definition 6 (Value-invariance, improvement).

– A TERS (E ,R,Val) is value-invariant if, for any v ∈ Val and s ∈ TΣ, v ⇒R s
implies s ∈ Val and v =Val s.

– For a TERS (E ,R,Val), R is improvement w.r.t. E if, for any k ∈ N, v ∈ Val ,
t ⇒R s and any C ∈ Ctx such that C[t], C[s] are closed terms, C[t] k→E v

implies C[s] m→E v′ for some m ∈ N and v′ ∈ Val such that v =Val v′ and
k ≥ m.

Improvement is notoriously difficult to directly prove, because of the universal
quantification over all contexts. The following is our first main theorem provid-
ing a rewriting-theoretic sufficient condition for improvement, for deterministic
TERS.

Theorem 7 (Sufficient condition for improvement: first-order version).
If a TERS (E ,R,Val) is deterministic, value-invariant and locally coherent, then
the set R of refinement rules is improvement w.r.t. the set Eof evaluation rules.

This theorem requires to prove determinism, value-invariance and local coher-
ence. When a TERS is orthogonal, determinism boils down to showing that each
term can be uniquely decomposed into an evaluation context and a redex. In
typical TERS, the equivalence relation =Val on values can be decided by simply
comparing head symbols. This makes it easy to verify value-invariance. We will
show that local coherence can be shown by critical pair analysis in Sect. 4.

4 Critical Pair Analysis for Local Coherence

Critical Pairs. The definition of critical pairs is standard; it resembles the defi-
nition of critical pairs for commutation [30]. Note that critical pairs are generated
by two kinds of overlaps, due to asymmetry of (R, E)-peaks.

Definition 8 (Unifiers)

– A unifier between t and u is a substitution θ such that tθ = uθ.
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– A most general unifier between t and u is given by a unifier θ between t and
u such that, for any unifier σ between t and u, there exists a substitution σ′

such that σ = θσ′.

Definition 9 (Overlaps). Let X1,X2 ∈ {R, E}. Given rules (l1 �1 r1) ∈ X1,
(l2 �2 r2) ∈ X2 and a substitution θ, a quadruple (l1 �1 r1, l2 �2 r2, p, θ) is an
(X1,X2)-overlap if it satisfies the following.

– The rules l1 �1 r1 and l2 �2 r2 do not have common variables.
– If p = ε, the rules l1 �1 r1 and l2 �2 r2 are not variants of each other.
– The sub-term l1|p is not a variable, where p is a position of l1.
– The substitution θ is a most general unifier between l1|p and l2.

Definition 10 (Critical pairs).

– The critical pair generated by an (R, E)-overlap (l1 ⇒ r1, l2 → r2, p, θ) is an
(R, E)-peak (r1θ, l1θ, (l1θ)[r2θ]p).

– The critical pair generated by an (E ,R)-overlap (l1 → r1, l2 ⇒ r2, p, θ) is an
(R, E)-peak ((l1θ)[r2θ]p, l1θ, r1θ).

Lemma 11. If a critical pair (t1, s, t2) is joinable, then for any substitution θ,
(t1θ, sθ, t2θ) is a joinable (R, E)-peak.

Critical Pair Theorem. To obtain the so-called critical pair theorem, we need
to impose extra conditions on TERS that are summarised below.

Definition 12 (Well-behaved TERS). A TERS (Σ, E ,R,Ectx ,Val) is well-
behaved if it satisfies the following.

1. For any C1, C2 ∈ Ctx , if C1[C2] ∈ Ectx then C1, C2 ∈ Ectx .
2. For any E ∈ Ectx and C ′ ∈ Ctx , if E ⇒R C ′ then C ′ ∈ Ectx .
3. For any (l ⇒R r) ∈ R and any variable x, the following holds.

(a) The variable x appears at most once in l, and at most once in r.
(b) Let p be the position of x in l. For the position q of x in r, if l[�]p ∈ Ectx

then r[�]q ∈ Ectx .
4. For any (l →E r) ∈ E , any variable x appears at most once in l.

The condition (1) is usually satisfied by inductively-defined evaluation con-
texts. The condition (2) was already discussed in Sect. 1.1. The other conditions
are rather technical (see Sect. A.3 for some details), but these are easy to verify.

Theorem 13 (Critical pair theorem). A well-behaved TERS is locally
coherent if and only if every critical pair is joinable.

The Example. The TERS Nats in Example 3 is deterministic, value-invariant
and locally coherent (Proposition 29 in Appendix). By Theorem 7, its refinement
R is improvement w.r.t. its evaluation E . In the proof of local coherence, we
observe that the TERS Nats has one critical pair; it is joinable as in Fig. 3.
The direction of refinement, which we reversed compared to the original [20], is
crucial. Refinement must not increase the number of evaluation steps.
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tl(inc(nats))

inc(tl(nats)) tl(inc(0 : inc(nats)))

inc(tl(0 : inc(nats))) tl(s(0) : inc(inc(nats)))

inc(inc(nats))

Fig. 3. Joinability of the critical pair

5 Second-Order Term Evaluation and Refinement
Systems

Next we extend our framework to the second-order setting. By second-order
we mean to use second-order abstract syntax [10,12], i.e. syntax with variable
binding and metavariables. It allows us to formally deal with higher-order term
languages as in second-order algebraic theories [11] and second-order computa-
tion systems [13,14].

Meta-terms. In addition to the countably infinite set X of variables, let Z be a
countably infinite set of metavariables. Each element M ∈ Z comes with an arity
m ∈ N; we write M : m. Let ≡ denote the syntactic equality on metavariables.
Let Σ be a signature, each of whose element f ∈ Σ comes with a sequence
〈n1, . . . , nl〉 of natural numbers called a binding arity ; we write f : 〈n1 . . . , nl〉.

Let MΣ denote the set of meta-terms defined using the signature Σ, the
set X of variables and the set Z of metavariables. A judgement Θ � Γ � t
consists of a set Θ of metavariables, a set Γ of variables, and a meta-term t. A
well-formed meta-term is a meta-term t such that a judgement Θ � Γ � t is
derivable by formation rules below for some Θ,Γ. We assume that meta-terms
are well-formed.

x ∈ Γ
Θ � Γ � x

(M : m) ∈ Θ {Θ � Γ � ti}i∈[m]

Θ � Γ � M [t1, . . . , tm]

(f : 〈n1, . . . , nl〉) ∈ Σ {Θ � Γ, xi � ti}i∈[l] {|xi| = ni}i∈[l]

Θ � Γ � f(x1.t1, . . . , xl.tl)

In a meta-term f(x1.t1, . . . , xl.tl), each xi.ti introduces bound variables xi.
We assume the α-equivalence for bound variables. A meta-term M [t1, . . . , tm]
is called a meta-application. The arguments t1, . . . , tm can be seen as explicit
substitution for variables; when a meta-term s substitutes the metavariable M ,
free variables of s gets substituted by t1, . . . , tm. A term is a meta-term that
contains no meta-application. A term is closed if it has no occurrence of variables.

A position of a meta-term is given by a (possibly empty) sequence of positive
numbers. Let Pos(t) be the set of all positions in a meta-term t. We write s[t]p
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for the meta-term that is obtained by replacing the sub-term of s at the position
p with t. We write s|p for the sub-term of s at the position p.

We say that a position p in a meta-term t is a metavariable position if t|p is
a meta-application, i.e., t|p = M [t1, . . . , tn]. This description includes the case
t|p = M where n = 0, for which we identify M [ ] with just a metavariable M .

A substitution θ is given by a sequence [M1 �→ x1.s1, . . . ,Mk �→ xk.sk] such
that: (i) M1, . . . ,Mk are distinct metavariables, and (ii) for some Θ,Γ and for
each i ∈ [k], (Mi : |xi|) ∈ Z and Θ � Γ, xi � si hold. We call Θ � Γ a support
of θ, and write substΘ�Γ θ when θ is a substitution with a support Θ � Γ.
We sometimes simply write subst θ, omitting the support. Given a meta-term
Θ,M1 : |x1|, . . . ,Mk : |xk| � Γ � t, a meta-term tθ is defined by

xθ = x (f(x1.t1, . . . , xl.tl))θ = f(x1.t1θ, . . . , xl.tlθ)

(M [t1, . . . , tm])θ =

{
si{(xi)1 �→ t1θ, . . . , (xi)m �→ tmθ} (∃i ∈ [k]. M ≡ Mi)
M [t1θ, . . . , tmθ] (otherwise)

The meta-term si{(xi)1 �→ t1θ, . . . , (xi)m �→ tmθ} is the result of standard
(capture-avoiding) substitution for variables. We call tθ an instance of t.

A meta-term is a higher-order pattern if each occurrence of meta-application
has the form M [x1, . . . , xm] such that x1, . . . , xm are distinct bound variables.

A context C is a meta-term that involves exactly one hole �. A context is flat
if any prefix of the position of the hole is not a metavariable position; e.g. f(x.�)
is a flat context, but M [�] and M [f(x.�)] are not flat contexts. Let Ctx be the
set of contexts. Let C[t] denote the term where the hole � of C ∈ Ctx is replaced
by t. A set C of contexts is closed under substitutions if C ∈ C implies Cθ ∈ C for
any subst θ, and closed under composition if C,C ′ ∈ C implies C[C ′] ∈ C. The
set C is inductive if any C ∈ C is � or of the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn)
such that C ′ ∈ C and f(t1θ, . . . , ti−1θ,�, ti+1θ, . . . , tnθ) ∈ C for any subst θ.

Syntax Classes. We introduce a notion of syntactic classification for terms,
typically used for distingushing values and non-values, following [14]. In loc. cit.,
the call-by-value lambda-calculus (dubbed λvalue-calculus) involves the following
two syntax classes of values and non-values.

Values V ::= x | λx.M Non-values P ::= M N

This also specifies two special names V, P of metavariables that are used for
values and non-values. In general, we define a set Sclass of names for syntax
classes. Each syntax class is associated with a BNF grammar to define a set
of meta-terms. Every metavariable is either associated with a syntax class and
called “<syntax class name> metavariable”, or not associated and called general
metavariable. Moreover, we assume a default syntax class value to denote values.

For example, in the case of λvalue-calculus, we define Sclass = {values V ::=
x | λx.M, non-values P ::= M N}. The metavariable V is called a value
metavariable, and M is a general metavariable.
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Substitutions must also be consistent with syntax classes. A substitution þis
valid if for each assignment (M �→ x.s) ∈ θ, M and s’s syntax class are the
same, or if M is a general metavariable then s can be arbitrary. We write valid θ
when θ is a valid substitution.

Composition of valid substitutions is again valid, under the assumption that
each syntax class is closed under substitution: that is, for each syntax class, if a
meta-term t is included then tθ is also included, where θ is a substitution.

Evaluation and Refinement. Second-order TES and TERS can now be
defined, in an analogous way to the first-order setting.

Definition 14 (Second-order TES). A second-order term evaluation system
is a tuple (Σ, E ,Ectx ,Sclass) consisting of

– a signature Σ,
– a set Eof evaluation rules, where (l → r) ∈ E with l, r ∈ MΣ, such that (i)

every free metavariable occuring in r also occurs in l and (ii) l is not a variable
nor a metavariable,

– a set Ectx ⊆ Ctx of flat contexts, called evaluation contexts, that is closed
under substitutions, closed under composition and inductive, and

– a set Sclass of syntax classes that includes a value class (V,Val) that satisfies
(i) Val ⊆ NF(→E), (ii) v ∈ Val implies vθ ∈ Val for any valid θ, and (iii) it
comes with an equivalence relation =Val ⊆ Val × Val where:

– the evaluation relation →E ⊆ MΣ × MΣ is defined in Fig. 1 where θ is valid.

The evaluation relation →E is closed under evaluation contexts in Ectx . It is
closed under substitutions, thanks to Ectx being an inductive set of flat contexts.

Definition 15 (Second-order TERS). A second-order term evaluation and
refinement system is a tuple (Σ, E ,R,Ectx ,Sclass) consisting of

– A second-order TES (Σ, E ,Ectx ,Sclass), and
– a set R of refinement rules where (l ⇒ r) ∈ R with l, r ∈ MΣ, such that

(i) every free metavariable occuring in r also occurs in l and (ii) l is not a
variable nor a metavariable.

– The refinement relation ⇒R ⊆ MΣ ×MΣ is defined in Fig. 1 where θ is valid.

The refinement relation ⇒R is closed under arbitrary contexts in Ctx . It
is not closed under substitutions per se, but it satisfies the following: t ⇒R u
implies tθ

∗⇒R uθ for any valid θ.
We also assume that the lhs of every rule is a Miller’s higher-order pattern

[21] to make unification decidable.

Joinability and Improvement. The definitions of peaks, joinability (see Defi-
nition 4), rewriting properties (Definition 5), and improvement (Definition 6) are
inherited from the first-order case. Finally, the first main theorem (Theorem 7)
also holds in the second-order setting:

Theorem 16 (Sufficient condition for improvement: second-order ver-
sion). If a second-order TERS (Σ, E ,R,Ectx ,Sclass) is deterministic, value-
invariant and locally coherent, then R is improvement w.r.t. E.
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Signature Σ λ : 1 , @: 0, 0 , let : 0, 1 , return : 0

Syntax class Sclass

Values V, V ::= x | λx.P

Computations P, P ::= return(V ) | let(P, x.P ) | V V

Evaluation contexts Ectx E ::= | let(E, x.P )

Evaluation rules E
(λx.P [x]) V → P [V ] (1)

let(return(V ), x.P [x]) → P [V ] (2)

Refinement rules R
(λx.P [x]) V ⇒ P [V ] (r1)

let(return(V ), x.P [x]) ⇒ P [V ] (r2)

λx.V x ⇒ V (r3)

let(P, x.return(x)) ⇒ P (r4)

let(let(P1, x1.P2[x1]), x2.P3[x2]) ⇒ let(P1, x1.let(P2[x1], x2.P3[x2])) (r5)

Fig. 4. The TERS Compλml∗

Examples. In the remainder of this section, we present three examples of TERS.

Example 17 (Left-to-right call-by-value lambda-calculus). A TERS
CBVλ of the left-to-right call-by-value lambda-calculus is defined as follows,
where t is a term, v is a value, M is a general metavariable, and V is a value
metavariable. We use syntactic sugar λx.t ≡ λ(x.t), t u ≡ @(t, u).

Signature Σ λ : 〈1〉, @: 〈0, 0〉
Syntax class Sclass values V ::= λx.t
Evaluation contexts Ectx E ::= � | E t | v E
Evaluation rules E Refinement rules R
(λx.M [x]) V → M [V ] (λx.M [x]) V ⇒ M [V ]

λx.V x ⇒ V

We define =Val by the total relation �, namely λx.t =Val λy.u for arbitrary
t, u ∈ MΣ. This means that we observe only termination (since Val ⊆ NF(→E)),
identifying all values.

Example 18 (A simplified computational lambda-calculus λml∗ [7,26]).
A notion of evaluation for Sabry and Wadler’s computational lambda-calculus

λml∗ [26] has been studied [7]. A TERS Compλml∗ of the computational lambda-
calculus is defined in Fig. 4. We use syntactic sugar λx.t ≡ λ(x.t), t u ≡ @(t, u).
We define =Val by the total relation �. This means we observe only termination
(since Val ⊆ NF(→E)), identifying all values.
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Signature Σ
true : 0 , false : 0 , fun : 1 , @: 0, 0 , return : 0 , op1 : 0, 1 , op2 : 0, 1 ,

handler1 : 1, 2 , handler0 : 1 , do : 0, 1 , if : 0, 0, 0 , with˙ handle : 0, 0
Syntax class Sclass
functions F ::= x | fun(x.P )
values V ::= true | false | F | H
handlers H ::= handler1(x.P, x.k.P1) | handler0(x.P )
computations P, P1, P2 ::= return(V ) | op(V, y.P ) | do(P1, x.P2)

| if(V, P1, P2) | F V | with˙ handle(H,P )
Evaluation contexts Ectx E ::= | do(E, x.P ) | with˙ handle(H,E)
Evaluation rules E where i ∈ [2]
do(return(V ), x.P [x]) → P [V ] (1)
do(opi(V, y.P1[y]), x.P2[x]) → opi(V, y.do(P1[y], x.P2[x])) (2)

if(true, P1, P2) → P1 (3)
if(false, P1, P2) → P2 (4)
fun(x.P [x]) V → P [V ] (5)
In the following three rules, h1 ≡ handler1(x.P [x], x.k.P1[x, k]).
with˙ handle(h1, return(V )) → P [V ] (6)

with˙ handle(h1, op1(V, y.P [y])) → P1[V, fun(y.P [y])] (7)

with˙ handle(h1, op2(V, y.P [y])) → op2(V, y.with˙ handle(h1, P [y])) (8)

In the following two rules, h0 ≡ handler0(x.P [x]).
with˙ handle(h0, return(V )) → P [V ] (9)

with˙ handle(h0, opi(V, y.P [y])) → opi(V, y.with˙ handle(h0, P [y])) (10)
Refinement rules R
do(P, x.return(x)) ⇒ P (r3)
do(do(P1, x1.P2[x1]), x2.P3[x2]) ⇒ do(P1, x1.do(P2[x1], x2.P3[x2])) (r4)
fun(x.F x) ⇒ F (r9)

with˙ handle(handler0(x.P [x]), P ) ⇒ do(P , x.P [x]) (r13)

Fig. 5. The TERS Hndl

Example 19 (Effect handlers [25]). A TERS Hndl is defined in Fig. 5, where
V, V1, V2 are value metavariables, H is a handler metavariable, and P, P1, P2, . . .
are computation metavariables.

We only consider two operations op1, op2 and two handlers: handler1 for
catching the first operation op1 and handler0 for catching no operation, for
simplicity. We change the evaluation rule (7) to be the so-called shallow handling ;
the original, deep handling, rule [25] can be accommodated to a TERS, but this
TERS would not be well-behaved2.

2 More specifically, the metavariable P1 would appear twice in the rhs of the original
rule of the evaluation rule (7).
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We also select the refinement rules that do not correspond to an evaluation
rule and those whose lhs is a Miller’s higher-order pattern3. The refinement rules
are numbered according to the original presentation [25, Fig. 7].

We define =Val for the TERS Hndl as follows, where v is any value.

x =Val v true =Val true false =Val false fun(x.p) =Val fun(x
′.p′)

handler1(x.p, x.k.p1) =Val handler1(x
′.p′, x′.k′.p′

1)

handler0(x.p) =Val handler0(x
′.p′)

This means that we distinguish each ground type value (i.e. boolean value),
and observe merely termination for other values (i.e. functions and handlers),
although the TERS Hndl is untyped.

6 Second-Order Critical Pair Analysis for Local
Coherence

Critical Pairs. The following definitions are analogous to those of first-order
TERS. The definition of critical pairs is again standard, akin to commutation.

Definition 20 (Unifiers).

– A unifier between t and u is a valid substitution θ such that tθ = uθ.
– A most general unifier between t and u is given by a unifier θ between t and u

such that, for any unifier σ between t and u, there exists a valid substitution
σ′ such that σ = θσ′.

Definition 21 (Overlaps). Let X1,X2 ∈ {R, E}. Given rules (l1 �1 r1) ∈ X1,
(l2 �2 r2) ∈ X2 and a substitution θ, a quadruple (l1 �1 r1, l2 �2 r2, p, θ) is an
(X1,X2)-overlap if it satisfies the following.

– The rules l1 �1 r1 and l2 �2 r2 do not have common variables or metavari-
ables.

– If p = ε, the rules l1 �1 r1 and l2 �2 r2 are not variants of each other.
– The sub-term l1|p is not a meta-application, where p is a position of l1.
– The substitution θ is a most general unifier between l1|p and l2.

Definition 22 (Critical pairs).

– The critical pair generated by an (R, E)-overlap (l1 ⇒ r1, l2 → r2, p, θ) is an
(R, E)-peak (r1θ, l1θ, (l1θ)[r2θ]p).

– The critical pair generated by an (E ,R)-overlap (l1 → r1, l2 ⇒ r2, p, θ) is an
(R, E)-peak ((l1θ)[r2θ]p, l1θ, r1θ).

Lemma 23. If a critical pair (t1, s, t2) is joinable, then for any valid substitution
θ, (t1θ, sθ, t2θ) is a joinable (R, E)-peak.
3 The refinement rule (7) in [25, Fig. 7] is the only refinement rule whose lhs is not a

Miller’s higher-order pattern.
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To obtain the so-called critical pair theorem, TERS need to be well-behaved
again. The following conditions are similar to the first-order case (see Defini-
tion 12), except for the last two conditions which ensure that evaluation and
refinement are consistent with syntax classes.

Definition 24 (Well-behaved TERS). A TERS (Σ, E ,R,Ectx ,Sclass) is
well-behaved if it satisfies the following.

1. For any C1, C2 ∈ Ctx , if C1[C2] ∈ Ectx then C1, C2 ∈ Ectx .
2. For any E ∈ Ectx and C ′ ∈ Ctx , if E ⇒R C ′ then C ′ ∈ Ectx .
3. For any (l ⇒R r) ∈ R and any metavariable N that is not a value metavari-

able, the following holds.
(a) The metavariable N appears at most once in l, and at most once in r.
(b) Let p be the position of N in l. For the position q of N in r, if l[�]p ∈ Ectx

then r[�]q ∈ Ectx .
4. For any (l →E r) ∈ E , any metavariable N appears at most once in l.
5. For any (l ⇒R r) ∈ R and any valid θ, if lθ belongs to a class then rθ belongs

to the same class.
6. For any (l →E r) ∈ R and any valid θ, if lθ belongs to a class then rθ belongs

to the same class.

Theorem 25 (Critical pair theorem). A well-behaved TERS is locally
coherent if and only if every critical pair is joinable.

The Three Examples. The TERSs CBVλ, Compλml∗ and Hndl are deter-
ministic, value-invariant and locally coherent (Proposition 34, Proposition 35 &
Proposition 36 in Appendix). By Theorem 7, every refinement R in the examples
is improvement w.r.t. the corresponding evaluation E .

7 Related Work

Unlike general term rewriting (i.e., refinement), evaluation that uses Felleisen’s
evaluation contexts has received little attention in the rewriting literature. As
an exception, Faggian et al. [6,7] studied evaluation for specific simplified com-
putational lambda-calculi including λml∗. They proved that refinement implies
observational equivalence, crucially using the fact that refinement is confluent
in these calculi. In contrast, we study evaluation for general TERS. We iden-
tify sufficient conditions (e.g. local coherence) for contextual improvement, not
relying on confluence of refinement.

In the first-order setting, Lucas’ context-sensitive rewriting [20] is capable of
restricting where rewriting may happen, by means of a replacement map μ : Σ →
N

∗. It is possible to encode any replacement map into evaluation contexts. For
example, a replacement map μ(if) = {1} specifies that only the first argument
(i.e. the guard t of if(t, s1, s2)) can be rewritten. This can be encoded into
evaluation contexts as E ::= � | if(E, s1, s2). Another example is μ(+) = {1, 2}
that specifies both of the two arguments of + can be rewritten. This can be
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encoded as E ::= � | E + t | t + E. Every context-sensitive rewriting system can
be simulated by a first-order TES in this way. Advantages of TERS are that (1)
TES can also control the evaluation order easily (e.g. the left-to-right evaluation
of function application), and (2) we have also formulated second-order TES with
refinements as TERS.

Another term-rewriting alternative to evaluation contexts is rewriting strate-
gies [16] that provide a way of determinising rewriting. Evaluation typically
comes with a convenient inductive structure, which is lacking in strategies.

There is rich literature on methodologies for proving observational equiv-
alence [1,18,24,28]. Some methodologies have been applied to effect handlers
[4,5]. We provide a novel term-rewriting-theoretic methodology centred around
local coherence and critical pair analysis.

Our methodology is partly automatable, thanks to the fact that critical pair
analysis for second-order computation systems can be automated [13,14]. Our
prototype analyzer based on this technology could automatically check the join-
ablity of all the critical pairs in the examples (see Appendix B for Hndl). There
are few works on automating observational equivalence proofs for functional pro-
grams. Known examples, including the tool SyTeCi [17], are based on or inspired
by algorithmic game semantics [2].

This work is targeted at contextual improvement, a quantitative variant of
observational equivalence. There is relatively limited literature on proof method-
ologies for contextual improvement. A coinductive approach based on applicative
bisimulation has been used for space improvement [29] and time improvement
[19]. This line of work, however, does not come with any form of automation.

8 Conclusion and Future Work

We formalised evaluation from the term-rewriting perspective, and introduced
TERS in both first-order and second-order settings. To validate refinement
(which models optimisation) with respect to evaluation, we employed the con-
cept of contextual improvement, and identified sufficient conditions for it. The
key condition is local coherence, for which we developed critical pair analysis.
We demonstrated TERS with examples including λml∗ and its extension with
effect handlers.

This work contributes to bridging the gap between general term rewriting
and evaluation, by introducing TERS. We are interested in bringing more term-
rewriting techniques and insights to evaluation; for example to check if a TERS
is deterministic, and if refinement implies observational equivalence instead of
contextual improvement.

Acknowledgement. The authors are supported by JSPS, KAKENHI Project No.
20H04164, Japan. K.M. is also supported by JSPS, KAKENHI Project No. 22K17850,
Japan.
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A Omitted Proofs

A.1 Proofs for Sect. 3 and Sect. 4

Theorem 26 (Theorem 7: sufficient condition for improvement). If a
TERS is deterministic, value-invariant and locally coherent, then it supports
improvement.

Proof. Take arbitrary k ∈ N and t, u ∈ TΣ such that t ⇒R u and t
k→E v ∈ Val .

We first prove that t ⇒R u and t
k→E v imply u

m→E v′, v =Val v′ and k ≥ m,
for any k ∈ N, by induction on k.

Base Case. When k = 0, we have t = v. Because the TERS (E ,R) is value-
invariant, we have u ∈ Val and v =Val u. We can take m = 0.

Inductive Case. When k > 0, there exists t′ ∈ TΣ such that t →E t′ k−1→ E v.
Because the TERS (E ,R) is locally coherent, the (R, E)-peak (u, t, t′) is joinable
up to R; namely there exist t′′, u′ ∈ TΣ and l,m, n ∈ N such that t′ l→E t′′,
u

n→E u′, t′′ m⇒R u′ and 1 + l ≥ n. Because the TERS (E ,R) is deterministic, t′′

must appear in the sequence t′ k−1→ E v, and hence t →E t′ l→E t′′ k−l−1→ E v. We
prove that we have the following situation:

t

���
��

�

�� ��
����
��

u
n ��

t′
l��

u′
n′ ��

t′′

k−l−1��
m

��

v′ v
Val

namely that there exist n′ ∈ N and v′ ∈ Val such that u′ n′
→E v′ and v =Val v′,

by induction on m ∈ N.

– Base case. When m = 0, t′′ = u′. We can take n′ = k − l − 1 and v′ = v.
Because 1 + l ≥ n, we have k ≥ n + n′.

– Inductive case. When m > 0, we have t′′ m−1⇒ R u′′ ⇒R u′ for some u′′ ∈ TΣ.
By I.H. on m − 1, we have u′′ n′′

→E v′′ such that v′′ =Val v and k − l − 1 ≥ n′′.
Furthermore, by I.H. of the outer induction on n′′, we have u′ n′

→E v′ such
that v′′ =Val v′ and n′′ ≥ n′. We finally have k ≥ n + n′.

As a result, we have u
n+n′
→ E v′ such that v =Val v′ and k ≥ n + n′. We can take

m = n + n′.
Secondly, because ⇒R is closed under any contexts, t ⇒R u implies C[t] ⇒R

C[u] for any C ∈ Ctx . Therefore, t ⇒R u and C[t] k→E v imply C[u] m→E v′ such
that k ≥ m and v =Val v′, for any v ∈ Val . ��
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Lemma 27 (Lemma 11). If a critical pair (t1, s, t2) is joinable, then for any
substitution θ, (t1θ, sθ, t2θ) is a joinable (R, E)-peak.

Proof. We have a joinable (R, E)-peak (t1, s, t2). Since refinement and evaluation
are closed under substitution, (t1θ, sθ, t2θ) is also a joinable (R, E)-peak. ��
Theorem 28 (Theorem 13: Critical pair theorem). A well-behaved TERS
is locally coherent if and only if every critical pair is joinable.

Proof. The “only if” part is straightforward. In the following, we prove the “if”
part.

Take an arbitrary (R, E)-peak (t1, s, t2). Our goal is to prove that this (R, E)-
peak is joinable. Since s ⇒R t1, there exist p ∈ Pos(s), (l ⇒ r) ∈ R and subst θ
such that s|p = lθ, t1 = s[rθ]p and s[�]p ∈ Ctx . We prove that the (R, E)-peak
(t1, s, t2) is joinable, by induction on the length of the position p.

Base Case. When |p| = 0, i.e. p = ε, we have s = lθ and t1 = rθ. Because lθ →E
t2, there exist p′ ∈ Pos(lθ), (l′ → r′) ∈ E and subst θ′ such that (lθ)|p′ = l′θ′, t2 =
(lθ)[r′θ′]p′ and (lθ)[�]p′ ∈ Ectx . We have an (R, E)-peak P = (rθ, lθ, (lθ)[r′θ′]p′).

– If p′ = ε, and l ⇒ r and l → r are variants of each other, we have rθ = r′θ′

and the (R, E)-peak P is joinable.
– Otherwise, there are two possibilities.

• If p′ is a non-variable position of l, the (R, E)-peak P is an instance of
the critical pair generated by an (R, E)-overlap.

• Otherwise, there exist sequences q1, q2 and a variable y such that: q1 ∈
Pos(l), l|q1 = y, q2 ∈ Pos(yθ), and p′ = q1q2. Because of the condition
(1) of Definition 12, (lθ)[�]p′ ∈ Ectx implies l[�]q1 , yθ[�]q2 ∈ Ectx . The
variable y must appear at most once in both l and r, due to the condition
(3a) of Definition 12. If y does not appear in r, the (R, E)-peak P is
joinable by applying the rule l ⇒ r to t2. Otherwise, i.e. if y appears
once in r, the rule l′ → r′ can be applied to t1 thanks to the condition
(3b) of Definition 12, and the rule l ⇒ r can be applied to t2. These two
applications yield the same result. Therefore, we can conclude that the
(R, E)-peak P is joinable.

Inductive Case. When |p| > 0, we have p = ipt for some positive number i and
some sequence pt. We have s = f(x1.u1, . . . , xi.ui, . . . , xk.uk), lθ = ui|pt

. We
have an (R, E)-peak

P ′ = (f(x1.u1, . . . , xi.ui[rθ]pt
, . . . , xk.uk), f(x1.u1, . . . , xi.ui, . . . , xl.ul), t2).

By s →E t2, there exist p′ ∈ Pos(s), (l′ → r′) ∈ E and subst θ′ such that
s|p′ = l′θ′, t2 = s[r′θ′]p′ and s[�]p′ ∈ Ectx . We proceed by case analysis on
p′ ∈ Pos(s).

– When p′ = ε , we have s = l′θ′ and t2 = r′θ′.
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• If p is a non-variable position of l′, the (R, E)-peak P ′ is an instance of
the critical pair generated by an (E ,R)-overlap.

• Otherwise, there exist sequences q1, q2 and a variable y such that: q1 ∈
Pos(l′), l′|q1 = y, q2 ∈ Pos(yθ′), and p = q1q2. The variable y appears at
most once in l′, due to the condition (4) of Definition 12. We can apply
the rule l′ → r′ to t1. We can also apply the rule l ⇒ r to t2, as many
times as y appears in r′. These applications of l′ → r′ and l ⇒ r yield
the same result. The (R, E)-peak P ′ is therefore joinable.

– When p′ �= ε, i.e. p′ = i′p′
t for some positive number i′ and some sequence p′

t,
there are two possibilities.

• When i′ = i, by I.H., we have a joinable (R, E)-peak

Q = (ui[rθ]pt
, ui, ui[r′θ′]p′

t
).

Because f(. . . , xi.ui[�]pt
, . . .) ∈ Ectx , we have f(. . . , xi.�, . . .) ∈ Ectx

too, thanks to the condition (1) of Definition 12. Therefore, joinability of
the (R, E)-peak Q implies joinability of the (R, E)-peak P ′.

• When i′ �= i, we can assume that i′ < i without loss of generality. The
(R, E)-peak

P ′ = (f(. . . , xi′ .ui′ , . . . , xi.ui[rθ]pt
, . . .),

f(. . . , xi′ .ui′ , . . . , xi.ui, . . .),
f(. . . , xi′ .ui′ [r′θ′]p′

t
, . . . , xi.ui, . . .))

is joinable (to f(. . . , xi′ .ui′ [r′θ′]p′
t
, . . . , xi.ui[rθ]pt

, . . .)), thanks to the con-
dition (2) of Definition 12.

��

A.2 The TERS Nats

Proposition 29. The TERS Nats is deterministic, value-invariant and locally
coherent.

Proof. The TERS Nats is deterministic, because evaluation rules concern dis-
tinct symbols.

To prove value-invariance, we assume v ⇒R u for some v ∈ Val and u ∈
TΣ. It must hold that v = sn(0), and in this case, the refinement v ⇒R u is
impossible. The TERS Nats is trivially value-invariant.

To prove local coherence, we use Theorem 13. We first show that the TERS
Nats is well-behaved. The condition (1) of Definition 24 is trivially satisfied.
As for the condition (2), each evaluation context E ∈ Ectx never includes the
constant nats, and hence the refinement rule cannot be applied to E[t] to obtain
C ′[t]. Therefore the condition (2) is trivially satisfied. The other conditions of
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well-behavedness are easy to check. We then show that any critical pair is join-
able. There is only one critical pair, and it is indeed joinable as follows.

tl(inc(nats))

������
�����

�� �����
��������
���

inc(tl(nats))

��

tl(inc(0 : inc(nats)))

��
inc(tl(0 : inc(nats)))

������
����

tl(s(0) : inc(inc(nats)))

�������
����

inc(inc(nats))

��

A.3 On Linearity Conditions

For a TERS to be well-behaved, its evaluation rules must be left-linear, and
its refinement rules must be linear (see Definition 12). Here we observe that
relaxing these linearity conditions, with a reasonable set of evaluation contexts
and values, leads to non-joinable (R, E)-peaks that are not instances of a critical
pair.

Let a TERS ES be defined as follows.

Signature Σ +: 2, − : 2,
?≡ : 2, s : 1, 0: 0

Values Val V ::= 0 | s(V )
Evaluation contexts Ectx E ::= � | s(E) | E + t | E − t | v − E
Evaluation rules E Refinement rule R
0 + x → x x − x ⇒ 0
s(x) + y → s(x + y) 0 ⇒ x − x
0 − x → 0
s(x) − s(y) → x − y

x
?≡ x → 0

We define =Val by the syntactic equality ≡. The operation
?≡ checks syntactic

equality.
The non-left-linear refinement rule x − x ⇒ 0 induces the following non-

joinable (R, E)-peak.

(s(x) + y) − (s(x) + y)
	�������


	 ����
�������
���

0 s(x + y) − (s(x) + y)

In the term s(x + y) − (s(x) + y), the sub-term s(x) + y cannot be evaluated,
because s(x + y) is not a value.

The non-right-linear refinement rule 0 ⇒ x − x induces the following non-
joinable (R, E)-peak.

0
�
 ��
�����
�

			
	
			

	

0 − 0 �� 0
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This (R, E)-peak is not joinable with respect to our definition of joinability (see
Definition 4). The bottom term 0 − 0 must not take more evaluation steps than
the top term 0.

Finally, the non-left-linear evaluation rule x
?≡ x → 0 induces the following

non-joinable (R, E)-peak.

(s(x) + y)
?≡ (s(x) + y)

�











�� ����������

s(x + y)
?≡ (s(x) + y) 0

In the term s(x + y)
?≡ (s(x) + y), the sub-term s(x) + y cannot be evaluated,

because s(x + y) is not a value.

A.4 Proofs for Sect. 5 and Sect. 6

Lemma 30 (Lemma 23). If a critical pair (t1, s, t2) is joinable, then for any
valid substitution θ, (t1θ, sθ, t2θ) is a joinable (R, E)-peak.

Proof. We have a joinable (R, E)-peak (t1, s, t2). Because evaluation is closed
under valid substitutions, and refinement satisfies t ⇒R u =⇒ tθ

∗⇒R uθ,
(t1θ, sθ, t2θ) is also a joinable (R, E)-peak. ��
Theorem 31 (Theorem 25: Critical pair theorem). A well-behaved TERS
is locally coherent if and only if every critical pair is joinable.

Proof. The “only if” part is straightforward. In the following, we prove the “if”
part.

Take an arbitrary (R, E)-peak (t1, s, t2). Our goal is to prove that this (R, E)-
peak is joinable. Since s ⇒R t1, there exist p ∈ Pos(s), (l ⇒ r) ∈ R and valid θ
such that s|p = lθ, t1 = s[rθ]p and s[�]p ∈ Ctx . We prove that the (R, E)-peak
(t1, s, t2) is joinable, by induction on the length of the position p.

Base Case. When |p| = 0, i.e. p = ε, we have s = lθ and t1 = rθ. Because lθ →E
t2, there exist p′ ∈ Pos(lθ), (l′ → r′) ∈ E and valid θ′ such that (lθ)|p′ = l′θ′, t2 =
(lθ)[r′θ′]p′ and (lθ)[�]p′ ∈ Ectx . We have an (R, E)-peak P = (rθ, lθ, (lθ)[r′θ′]p′).

– If p′ = ε, and l ⇒ r and l → r are variants of each other, we have rθ = r′θ′

and the (R, E)-peak P is joinable.
– Otherwise, because (lθ)[�]p′ ∈ Ectx is a flat context, every prefix of p′ but p′

itself is not a metavariable position in lθ.
• If p′ is a non-metavariable position of l, the (R, E)-peak P is an instance

of the critical pair generated by an (R, E)-overlap.
• Otherwise, There exist sequences q1, q2, a metavariable N and a sequence

y such that: q1 ∈ Pos(l), l|q1 = N [y], q2 ∈ Pos((N [y])θ), and p′ = q1q2.
Because of the condition (1) of Definition 24, (lθ)[�]p′ ∈ Ectx implies
l[�]q1 , (N [y])θ[�]q2 ∈ Ectx . In particular, the latter means that (N [y])θ �∈
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NF(→E), and hence N is not a value metavariable. The metavariable N
must appear at most once in both l and r, due to the condition (3a) of
Definition 24. If N does not appear in r, the (R, E)-peak P is joinable
by applying the rule l ⇒ r to t2. Otherwise, i.e. if N appears once in
r, the rule l′ → r′ can be applied to t1 thanks to the condition (3b)
of Definition 24, and the rule l ⇒ r can be applied to t2, thanks to
the condition (6) of Definition 24. These two applications yield the same
result. Therefore, we can conclude that the (R, E)-peak P is joinable.

Inductive Case. When |p| > 0, we have p = ipt for some positive number i
and some sequence pt. We have either s = f(x1.u1, . . . , xi.ui, . . . , xk.uk) or s =
M [u1, . . . , ui, . . . , uk], such that lθ = ui|pt

.
Firstly, assume that we have an (R, E)-peak

P ′ = (f(x1.u1, . . . , xi.ui[rθ]pt
, . . . , xk.uk), f(x1.u1, . . . , xi.ui, . . . , xl.ul), t2).

By s →E t2, there exist p′ ∈ Pos(s), (l′ → r′) ∈ E and valid θ′ such that
s|p′ = l′θ′, t2 = s[r′θ′]p′ and s[�]p′ ∈ Ectx . We proceed by case analysis on
p′ ∈ Pos(s).

– When p′ = ε, we have s = l′θ′ and t2 = r′θ′.
• If p is a non-metavariable position of l′, the (R, E)-peak P ′ is an instance

of the critical pair generated by an (E ,R)-overlap.
• Otherwise, there exist sequences q1, q2 and a metavariable M such that:

q1 ∈ Pos(l′), l′|q1 = M [y], q2 ∈ Pos(M [y]θ′), and p = q1q2. The metavari-
able M appears at most once in l′, due to the condition (4) of Defini-
tion 24. We can apply the rule l′ → r′ to t1. The substitution θ′ is valid,
thanks to the condition (5) of Definition 24. We can also apply the rule
l ⇒ r to t2 as many times as M appears in r′. These applications of
l′ → r′ and l ⇒ r yield the same result. The (R, E)-peak P ′ is therefore
joinable.

– When p′ �= ε, i.e. p′ = i′p′
t for some positive number i′ and some sequence p′

t,
there are two possibilities.

• When i′ = i, by I.H., we have a joinable (R, E)-peak Q =
(ui[rθ]pt

, ui, ui[r′θ′]p′
t
). Because f(. . . , xi.ui[�]pt

, . . .) ∈ Ectx , we have
f(. . . , xi.�, . . .) ∈ Ectx too, thanks to the condition (1) of Definition 24.
Therefore, joinability of the (R, E)-peak Q implies joinability of the
(R, E)-peak P ′.

• When i′ �= i, we can assume that i′ < i without loss of generality. The
(R, E)-peak

P ′ =(f(. . . , xi′ .ui′ , . . . , xi.ui[rθ]pt
, . . .), f(. . . , xi′ .ui′ , . . . , xi.ui, . . .),

f(. . . , xi′ .ui′ [r′θ′]p′
t
, . . . , xi.ui, . . .))

is joinable (to f(. . . , xi′ .ui′ [r′θ′]p′
t
, . . . , xi.ui[rθ]pt

, . . .)), thanks to the con-
dition (2) of Definition 24.
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Secondly, assume that we have an (R, E)-peak

P ′ = (M [u1, . . . , ui[rθ]pt
, . . . , uk], M [u1, . . . , ui, . . . , ul], t2).

By s →E t2, there exist p′ ∈ Pos(s), (l′ → r′) ∈ E and valid θ′ such that
s|p′ = l′θ′, t2 = s[r′θ′]p′ and s[�]p′ ∈ Ectx . We proceed by case analysis on
p′ ∈ Pos(s).

– When p′ = ε, M [u1, . . . , uk] = l′θ′. Because l′ is a higher-order pattern, this
is impossible.

– When p′ �= ε, the proof is the same as the case for the (R, E)-peak

P ′ = (f(x1.u1, . . . , xi.ui[rθ]pt
, . . . , xk.uk), f(x1.u1, . . . , xi.ui, . . . , xl.ul), t2).

��

A.5 The TERS CBVλ and Hndl

We will use a sufficient condition for a TES to be deterministic, namely deci-
siveness.

Definition 32 (decisiveness). A TES (Σ, E ,Ectx ,Val) is decisive if each t ∈
TΣ satisfies either of the following:

1. t ∈ Val ,
2. there uniquely exist (l → r) ∈ E , subst θ and E ∈ Ectx such that t = E[lθ],
3. there uniquely exist a variable x and E ∈ Ectx such that t = E[x].

Proposition 33 (sufficient condition for determinism). If a TES is deci-
sive, then it is deterministic.

Proof. Let t →E s1 and t →E s2. Because the TES is decisive, t satisfies either
the three conditions in Definition 32. Since the left-hand side of each evaluation
rule is not a variable, to make the evaluation t →E s1 and t →E s2 happen, only
the case (2) is possible. In this case, both s1 and s2 must be E[rθ]. ��
Proposition 34. The TERS CBVλ is deterministic, value-invariant and
locally coherent.

Proof. The TERS CBVλ is deterministic, because it is decisive.
To prove value-invariance, we assume λx.t ⇒R u. There are two possible

cases.

– When u = λx.t′ for some t′ such that t ⇒R t′, we have λx.t =Val λx.t′.
– When t = λx.(λy.t′) x, it must be that u = λy.t′, and we have

λx.(λy.t′) x =Val λy.t′.



54 K. Muroya and M. Hamana

Therefore the TERS CBVλ is value-invariant.
To prove local coherence, we use Theorem 13.
Firstly, the TERS CBVλ is well-behaved. The condition (1) of Definition 24

is trivially satisfied. We can show that the condition (2) is satisfied by straightfor-
ward induction on E ∈ Ectx . The condition (6) is satisfied, because any instance
of the lhs of the evaluation rule never belongs to a syntax class (i.e. the value
class). The condition (5) is also satisfied; the second refinement rule always turns
a value into a value. The other conditions of well-behavedness are easy to check.

We then show that any critical pair is joinable. There are two critical pairs,
which are for the second refinement rule (the η-rule) and the evaluation rule.
These critical pairs are joinable as follows.

(λx.V x) V ′

�






�� ������

V V ′ V V ′

(λx′.M ′[x′]) (λx.V x)
�������

��� ����������

(λx′.M ′[x′]) V

�������
����

M ′[λx.V x]
�� �����

��������
���

M ′[V ]

��
Proposition 35. The TERS Compλml∗ is deterministic, value-invariant and
locally coherent.

Proof. Firstly, the TERS Compλml∗ is deterministic, because the two evalua-
tion rules consume different head symbols. Secondly, the TERS is value-invariant,
thanks to the equivalence =Val being the total order.

To prove local coherence, we use Theorem 13.
The TERS Compλml∗ is well-behaved. The condition (1) of Definition 24 is

trivially satisfied. We can show that the condition (2) is satisfied by induction
on E ∈ Ectx as follows.

– When E = �, no refinement rule applies to x, so this case is impossible.
– When E = let(E′, x.P ), we have let(E′[t], x.P ) ⇒R C ′[t]. There are four

possibilities.
• If E′[z] ⇒R C ′′[z] such that C ′ = let(C ′′, x.P ), we have C ′′ ∈ Ectx by

I.H., and hence C ′ ∈ Ectx .
• If P ⇒R P ′ such that C ′ = let(E′, x.P ′), we have C ′ ∈ Ectx .
• If the refinement rule (r4) is applied at the root position of E[z], we have
let(E′[z], x.return(x)) ⇒R E′[z]. We have C ′ = E′ ∈ Ectx .

• If the refinement rule (r5) is applied at the root position of E[z], we have
let(let(E′′[z], x.P [x]), y.P ′[y]) ⇒R let(E′′[z], x.let(P [x], y.P ′[y])). We
have C ′ = let(E′′, x.let(P [x], y.P ′[y])) ∈ Ectx .
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The conditions (6) and (5) are also satisfied; note that instances of P [V ] are all
computations. The other conditions of well-behavedness are easy to check.

We finally show that any critical pair is joinable. There are the following three
critical pairs, which are all joinable. In the following, arrows →, ⇒ are labelled
by a number that indicates which evaluation/refinement rule is applied.

(λx.V x) V ′
1

����
����r3

�� 



V V ′ V V ′

let(return(V ), x.return(x))
2

������
�����

�r4

�� �����
���������
����

return(V ) return(V )

let(let(return(V ), x.P [x]), x′.P ′[x′])
2

�����
����r5

�� ������
��������

����

let(return(V ), x.let(P [x], x′.P ′[x′]))

2 	������
�����

let(P [V ], x′.P ′[x′])

����
�������
���

let(P [V ], x′.P ′[x′])

��
Proposition 36. The TERS Hndl is deterministic, value-invariant and locally
coherent.

Proof. Firstly, to establish that the TERS Hndl is deterministic, we show that,
for any t ∈ MΣ, if t = E[lθ] = E′[l′θ′] for some E,E′ ∈ Ectx , (l → r), (l′ → r′) ∈
E and valid θ, θ′, then the decomposition is unique, namely E = E′ and the rules
l → r, l′ → r′ are variants of each other. This can be proved by induction on
E ∈ Ectx .

– When E = �, we have t = lθ. By definition of evaluation rules, E′ = � must
hold, and l → r and l′ → r′ must be variants.

– When E = do(E′, x.P ), we have t = do(E′[lθ], P ). By I.H., E′[lθ] is the only
possible decomposition. The meta-term t itself cannot be an instance of any
lhs of evaluation rules. Therefore, the decomposition E[lθ] is unique.

– When E = with_handle(H,E′), we have t = with_handle(H,E′[lθ]). The
proof is the same as the previous case.

Consequently, the TERS Hndl is deterministic.
Secondly, by definition of =Val , the TERS Hndl is value-invariant. In partic-

ular, the refinement rule (r9) turns a function into a variable or a function; the
original function is identified with the resulting variable or function by =Val .

To prove local coherence, we use Theorem 13.
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The TERS Hndl is well-behaved. The condition (1) of Definition 24 is triv-
ially satisfied. We can show that the condition (2) is satisfied by induction on
E ∈ Ectx as follows.

– When E = �, no refinement rule applies to x, so this case is impossible.
– When E = do(E′, x.P ), we have do(E′[z], x.P ) ⇒R C ′[z]. There are four

possibilities.
• If E′[z] ⇒R C ′′[z] such that C ′ = do(C ′′, x.P ), we have C ′′ ∈ Ectx by

I.H., and hence C ′ ∈ Ectx .
• If P ⇒R P ′ such that C ′ = do(E′, x.P ′), we have C ′ ∈ Ectx .
• If the refinement rule (r3) is applied at the root position of E[z], we have
do(E′[z], x.return(x)) ⇒R E′[z]. We have C ′ = E′ ∈ Ectx .

• If the refinement rule (r4) is applied at the root position of E[z], we have
do(do(E′′[z], x.P [x]), y.P ′[y]) ⇒R do(E′′[z], x.do(P [x], y.P ′[y])). We have
C ′ = do(E′′, x.do(P [x], y.P ′[y])) ∈ Ectx .

– When E = with_handle(H,E′), we have with_handle(H,E′[z]) ⇒R C ′[z].
There are three possibilities.

• If E′[z] ⇒R C ′′[z] such that C ′ = with_handle(H,C ′′), we have C ′′ ∈
Ectx by I.H., and hence C ′ ∈ Ectx .

• If H ⇒R H ′ such that C ′ = with_handle(H ′, E′), we have C ′ ∈ Ectx .
• If the refinement rule (r13) is applied at the root position of E[z], we

have with_handle(handler0(x.P [x]), E′[z]) ⇒R do(E′[z], x.P [x]). We
have C ′ = do(E′, x.P [x]) ∈ Ectx .

The conditions (6) and (5) are also satisfied; note that instances of P [V ] are all
computations. The other conditions of well-behavedness are easy to check.

We finally show that any critical pair is joinable. There are the following
seven critical pairs, which are all joinable. In the following, arrows →, ⇒ are
labelled by a number that indicates which evaluation/refinement rule is applied,
and we set h0 ≡ handler0(x.P [x]), and i ∈ [2].

do(return(V ), x.return(x))
1

����
���r3

�� ����
������
��

return(V ) return(V )

do(opi(V, y.P [y]), x.return(x))
2

������
�����

��r3


	 ����
�������
���

opi(V, y.P [y]) opi(V, y.do(P [y], x.return(x)))r3��

do(do(return(V ), x.P [x]), x′.P ′[x′])
1

�����
����r4

�� ������
��������

����

do(return(V ), x.do(P [x], x′.P ′[x′]))

1 	������
�����

do(P [V ], x′.P ′[x′])

����
�������
���

do(P [V ], x′.P ′[x′])
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do(do(opi(V, x.P [x]), y.P2[y]), z.P3[z])
2

������
����

�r4


	 ����
��������
����

do(opi(V, x.P [x]), y.do(P2[y], z.P3[z]))
2 ��

do(opi(V, x.do(P [x], y.P2[y])), z.P3[z])
2��

opi(V, x.do(P [x], y.do(P2[y], z.P3[z]))) opi(V, x.do(do(P [x], y.P2[y]), z.P3[z]))r4��

fun(x.V x) V ′
5
����

���r9
�� ���

�����
��

V V ′ V V ′

with_handle(h0, return(V ))
9

���
���

��r13

�� �����
���������
����

do(return(V ), x.P [x])

1 ������
����

����
P [V ]










P [V ]

with_handle(h0, opi(V, y.P ′[y]))
10

������
�����

�r13


	 ����
��������
����

do(opi(V, y.P ′[y]), x.P [x])

2 ������
����

�
opi(V, y.with_handle(h0, P

′[y]))

r13�� �����
����������
�����

opi(V, y.do(P ′[y], x.P [x]))

��

B Critical Pair Analysis of Hndl by Our Prototype
Analyzer

B.1 Definition of TERS Hndl

sigh = [signature|
true : T
false : T
fun : (T -> T) -> T
app : T,T -> T
return : T -> T
op1 : T, (T -> T) -> T
op2 : T, (T -> T) -> T
handler1 : (T -> T), (T,T -> T) -> T
handler0 : (T -> T) -> T
do : T, (T -> T) -> T
if : T,T,T -> T
with : T,T -> T

|]

evals = [rule|
(1-v) do(return(V),x.P[x]) => P[V]
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(2-1-v) do(op1(V, y.P1[y]), x.P2[x]) => op1(V, y.do(P1[y],x.P2[x]))
(2-2-v) do(op2(V, y.P1[y]), x.P2[x]) => op2(V, y.do(P1[y],x.P2[x]))
(3-v) if(true, P1, P2) => P1
(4-v) if(false, P1, P2) => P2
(5-v) fun(x.P[x])@V => P[V]
(6-v) with(handler1(x.P[x],x.k.P1[x,k]), return(V)) => P[V]
(7-v) with(handler1(x.P[x],x.k.P1[x,k]),op1(V,y.P’[y])) => P1[V,fun(y.P’[y])]
(8-v) with(handler1(x.P[x],x.k.P1[x,k]),op2(V,y.P’[y])) =>

op2(V,y.with(handler1(x.P[x],x.k.P1[x,k]),P’[y]))
(9-v) with(handler0(x.P[x]),return(V)) => P[V]
(10-1-v) with(handler0(x.P[x]),op1(V,y.P’[y])) =>

op1(V,y.with(handler0(x.P[x]),P’[y]))
(10-2-v) with(handler0(x.P[x]),op2(V,y.P’[y])) =>

op2(V,y.with(handler0(x.P[x]),P’[y]))
|]

refis = [rule|
(r3-v) do(P,x.return(x)) => P
(r4-v) do(do(P1,x.P2[x]),x.P3[x]) => do(P1, x1.do(P2[x1],x2.P3[x2]))
(r9-v) fun(x.V@x) => V
(r13-v) with(handler0(x.P[x]),P’) => do(P’,x.P[x])
|]

B.2 Local Coherence Check
*Ex> lcoh evals refis

1: Overlap (1-v)-(r3-v)--- P’|-> return(V), P|-> z1.return(z1) ----------------
(1-v) |do(return(V),x.P[x])| => P[V]
(r3-v) do(P’,x’.return(x’)) => P’

do(return(V),x.return(x))
return(V) <-(1-v)-∧-(r3-v)-> return(V)

---> return(V) =OK= return(V) <---

2: Overlap (r4-v)-(1-v)--- P1|-> return(V’), P’|-> z1.P2[z1] ------------------
(r4-v) do(|do(P1,x.P2[x])|,x.P3[x]) => do(P1,x1.do(P2[x1],x2.P3[x2]))
(1-v) do(return(V’),x’.P’[x’]) => P’[V’]

do(do(return(V’),x.P2[x]),x.P3[x])
do(return(V’),x17.do(P2[x17],x27.P3[x27])) <-(r4-v)-∧-(1-v)-> do(P2[V’],x.P3[x])

---> do(P2[V’],x27.P3[x27]) =OK= do(P2[V’],x.P3[x]) <---

3: Overlap (2-1-v)-(r3-v)--- P’|-> op1(V,y.P1[y]), P2|-> z1.return(z1) --------
(2-1-v) |do(op1(V,y.P1[y]),x.P2[x])| => op1(V,y.do(P1[y],x.P2[x]))
(r3-v) do(P’,x’.return(x’)) => P’

do(op1(V,y.P1[y]),x.return(x))
op1(V,y14.do(P1[y14],x14.return(x14))) <-(2-1-v)-∧-(r3-v)-> op1(V,y.P1[y])
---> op1(V,y14.do(P1[y14],x14.return(x14))) =OK= op1(V,y.P1[y]) <---

4: Overlap (r4-v)-(2-1-v)--- P1|-> op1(V’,y’.P1’[y’]), P2’|-> z1.P2[z1] -------
(r4-v) do(|do(P1,x.P2[x])|,x.P3[x]) => do(P1,x1.do(P2[x1],x2.P3[x2]))
(2-1-v) do(op1(V’,y’.P1’[y’]),x’.P2’[x’]) => op1(V’,y’.do(P1’[y’],x’.P2’[x’]))

do(do(op1(V’,y’.P1’[y’]),x.P2[x]),x.P3[x])
do(op1(V’,y’.P1’[y’]),x121.do(P2[x121],x1.P3[x1])) <-(r4-v)-∧-(2-1-v)->
do(op1(V’,yd.do(P1’[yd],xd.P2[xd])),x.P3[x])
---> op1(V’,y23.do(P1’[y23],x23.do(P2[x23],x1.P3[x1]))) =OK=
op1(V’,y26.do(do(P1’[y26],xd.P2[xd]),x26.P3[x26])) <---

5: Overlap (2-2-v)-(r3-v)--- P’|-> op2(V,y.P1[y]), P2|-> z1.return(z1) --------
(2-2-v) |do(op2(V,y.P1[y]),x.P2[x])| => op2(V,y.do(P1[y],x.P2[x]))
(r3-v) do(P’,x’.return(x’)) => P’

do(op2(V,y.P1[y]),x.return(x))
op2(V,y33.do(P1[y33],x33.return(x33))) <-(2-2-v)-∧-(r3-v)-> op2(V,y.P1[y])
---> op2(V,y33.do(P1[y33],x33.return(x33))) =OK= op2(V,y.P1[y]) <---

6: Overlap (r4-v)-(2-2-v)--- P1|-> op2(V’,y’.P1’[y’]), P2’|-> z1.P2[z1] -------
(r4-v) do(|do(P1,x.P2[x])|,x.P3[x]) => do(P1,x1.do(P2[x1],x2.P3[x2]))
(2-2-v) do(op2(V’,y’.P1’[y’]),x’.P2’[x’]) => op2(V’,y’.do(P1’[y’],x’.P2’[x’]))
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do(do(op2(V’,y’.P1’[y’]),x.P2[x]),x.P3[x])
do(op2(V’,y’.P1’[y’]),x140.do(P2[x140],x240.P3[x240])) <-(r4-v)-∧-(2-2-v)->
do(op2(V’,yd.do(P1’[yd],xd.P2[xd])),x.P3[x])
---> op2(V’,y42.do(P1’[y42],x42.do(P2[x42],x240.P3[x240]))) =OK=
op2(V’,y45.do(do(P1’[y45],xd.P2[xd]),x45.P3[x45])) <---

7: Overlap (5-v)-(r9-v)--- P|-> z1.app(V’,z1) ---------------------------------
(5-v) |fun(x.P[x])|@V => P[V]
(r9-v) fun(x’.app(V’,x’)) => V’

app(fun(x.app(V’,x)),V)
app(V’,V) <-(5-v)-∧-(r9-v)-> app(V’,V)

---> app(V’,V) =OK= app(V’,V) <---

8: Overlap (9-v)-(r13-v)--- P’|-> z1.P[z1], Pd’|-> return(V) ------------------
(9-v) |with(handler0(x.P[x]),return(V))| => P[V]
(r13-v) with(handler0(x’.P’[x’]),Pd’) => do(Pd’,x’.P’[x’])

with(handler0(x.P[x]),return(V))
P[V] <-(9-v)-∧-(r13-v)-> do(return(V),xd66.P[xd66])

---> P[V] =OK= P[V] <---

9: Overlap (10-1-v)-(r13-v)--- P’|-> z1.P[z1], Pd’|-> op1(V,y.Pd[y]) ----------
(10-1-v) |with(handler0(x.P[x]),op1(V,y.Pd[y]))| => op1(V,y.with(handler0(x.P[x]),Pd[y]))
(r13-v) with(handler0(x’.P’[x’]),Pd’) => do(Pd’,x’.P’[x’])

with(handler0(x.P[x]),op1(V,y.Pd[y]))
op1(V,y72.with(handler0(x72.P[x72]),Pd[y72])) <-(10-1-v)-∧-(r13-v)->
do(op1(V,y.Pd[y]),xd73.P[xd73])
---> op1(V,y72.with(handler0(x72.P[x72]),Pd[y72])) =OK=
op1(V,y76.do(Pd[y76],x76.P[x76])) <---

10: Overlap (10-2-v)-(r13-v)--- P’|-> z1.P[z1], Pd’|-> op2(V,y.Pd[y]) ----------
(10-2-v) |with(handler0(x.P[x]),op2(V,y.Pd[y]))| => op2(V,y.with(handler0(x.P[x]),Pd[y]))
(r13-v) with(handler0(x’.P’[x’]),Pd’) => do(Pd’,x’.P’[x’])

with(handler0(x.P[x]),op2(V,y.Pd[y]))
op2(V,y86.with(handler0(x86.P[x86]),Pd[y86])) <-(10-2-v)-∧-(r13-v)->
do(op2(V,y.Pd[y]),xd87.P[xd87])
---> op2(V,y86.with(handler0(x86.P[x86]),Pd[y86])) =OK=
op2(V,y90.do(Pd[y90],x90.P[x90])) <---

#Joinable! (Total 10 CPs)
YES

In the proof of Proposition 36, op1 and op2 were summed in opi, so the
number of critical pairs in the proof matches this output.
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Abstract. Recently, we adapted the well-known dependency pair (DP)
framework to a dependency tuple framework in order to prove almost-
sure innermost termination (iAST) of probabilistic term rewrite systems.
While this approach was incomplete, in this paper, we improve it into a
complete criterion for iAST by presenting a new, more elegant definition
of DPs for probabilistic term rewriting. Based on this, we extend the
probabilistic DP framework by new transformations. Our implementa-
tion in the tool AProVE shows that they increase its power considerably.

1 Introduction

Termination of term rewrite systems (TRSs) has been studied for decades and
TRSs are used for automated termination analysis of many programming lan-
guages. One of the most powerful techniques integrated in essentially all cur-
rent termination tools for TRSs is the dependency pair (DP) framework [2,15,
16,21] which allows modular proofs that apply different techniques in different
sub-proofs.

In [8,9], term rewriting was extended to the probabilistic setting. Probabilis-
tic programs describe randomized algorithms and probability distributions, with
applications in many areas. In the probabilistic setting, there are several notions
of “termination”. A program is almost-surely terminating (AST) if the probabil-
ity of termination is 1. A strictly stronger notion is positive AST (PAST), which
requires that the expected runtime is finite. While numerous techniques exist
to prove (P)AST of imperative programs on numbers (e.g., [1,4,10,14,19,22–
24,30–33]), there are only few automatic approaches for programs with com-
plex non-tail recursive structure [7,11,12]. The approaches that are also suitable
for algorithms on recursive data structures [6,29,35] are mostly specialized for
specific data structures and cannot easily be adjusted to other (possibly user-
defined) ones, or are not yet fully automated. In contrast, our goal is a fully
automatic termination analysis for (arbitrary) probabilistic TRSs (PTRSs).
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Up to now, only two approaches for automatic termination analysis of PTRSs
were developed [3,25]. In [3], orderings based on interpretations were adapted to
prove PAST. However, already for non-probabilistic TRSs such a direct applica-
tion of orderings is limited in power. To obtain a powerful approach, one should
combine such orderings in a modular way, as in the DP framework.

Indeed, in [25], we adapted the DP framework to the probabilistic setting in
order to prove innermost AST (iAST), i.e., AST for rewrite sequences which fol-
low the innermost evaluation strategy. However, in contrast to the DP framework
for ordinary TRSs, the probabilistic dependency tuple (DT) framework in [25] is
incomplete, i.e., there are PTRSs which are iAST but where this cannot be proved
with DTs. In this paper, we introduce a new concept of probabilistic DPs and a
corresponding new rewrite relation. In this way, we obtain a novel complete crite-
rion for iAST via DPs while maintaining soundness for all processors that were
developed in the probabilistic DT framework of [25]. Moreover, our improvement
allows us to introduce additional more powerful “transformational” probabilistic
DP processors which were not possible in the framework of [25].

We recapitulate the DP framework for non-probabilistic TRSs in Sect. 2.
Then, we present our novel ADPs (annotated dependency pairs) for probabilis-
tic TRSs in Sect. 3. In Sect. 4, we show how to adapt the processors from the
framework of [25] to our probabilistic ADP framework. In addition, our frame-
work allows for the definition of new processors which transform ADPs. As an
example, in Sect. 5 we adapt the rewriting processor to the probabilistic setting,
which benefits from our new, more precise rewrite relation. The implementation
of our approach in the tool AProVE is evaluated in Sect. 6. We refer to [26] for
all proofs.

2 The DP Framework

We assume familiarity with term rewriting [5] and recapitulate the DP framework
with its core processors (see e.g., [2,15,16,21] for details). We regard finite TRSs
R over a finite signature Σ and let T (Σ,V) denote the set of terms over Σ and
a set of variables V. We decompose Σ = D � C such that f ∈ D if f = root(�)
for some � → r ∈ R. The symbols in D are called defined symbols. For every
f ∈ D, we introduce a fresh annotated symbol f# of the same arity.1 Let D# be
the set of all annotated symbols and Σ# = D# � Σ. For any t = f(t1, . . . , tn) ∈
T (Σ,V) with f ∈ D, let t# = f#(t1, . . . , tn). For every rule � → r and every
(not necessarily proper) subterm t of r with defined root symbol, one obtains
a dependency pair (DP) �# → t#. DP(R) denotes the set of all dependency
pairs of R. As an example, consider Rex = {(1), (2)} with its dependency pairs
DP(Rex) = {(3), (4)}. To ease readability, we often write F instead of f#, etc.

f(s(x))→c(f(g(x))) (1)
g(x)→s(x) (2)

F(s(x))→F(g(x)) (3)
F(s(x))→G(x) (4)

1 The symbols f# were called tuple symbols in the original DP framework [16] and also
in [25], as they represent the tuple of arguments of the original defined symbol f .
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The DP framework uses DP problems (P,R) where P is a (finite) set of DPs
and R is a TRS. A (possibly infinite) sequence t0, t1, t2, . . . with ti

i→P,R ◦ i→∗
R

ti+1 for all i is an (innermost) (P,R)-chain which represents subsequent “func-
tion calls” in evaluations. Here, “◦” denotes composition and steps with i→P,R
are called p-steps, where i→P,R is the restriction of →P to rewrite steps where the
used redex is in NFR (the set of normal forms w.r.t. R). Steps with i→∗

R are called
r-steps and are used to evaluate the arguments of an annotated function symbol.
So an infinite chain consists of an infinite number of p-steps with a finite num-
ber of r-steps between consecutive p-steps. For example, F(s(x)),F(s(x)), . . . is
an infinite (DP(Rex),Rex)-chain, as F(s(x)) i→DP(Rex),Rex

F(g(x)) i→∗
Rex

F(s(x)).
Throughout the paper, we restrict ourselves to innermost rewriting (“ i→R”),
because our adaption of DPs to the probabilistic setting relies on this evaluation
strategy.2

A DP problem (P,R) is called innermost terminating (iTerm) if there is
no infinite innermost (P,R)-chain. The main result on DPs is the chain cri-
terion which states that there is no infinite sequence t1

i→R t2
i→R . . .,

i.e., R is iTerm, iff (DP(R),R) is iTerm. The DP framework is a divide-and-
conquer approach, which applies DP processors to transform DP problems
into simpler sub-problems. A DP processor Proc has the form Proc(P,R) =
{(P1,R1), . . . , (Pn,Rn)}, where P,P1, . . . ,Pn are sets of DPs and R,R1, . . . ,Rn

are TRSs. A processor Proc is sound if (P,R) is iTerm whenever (Pi,Ri) is
iTerm for all 1 ≤ i ≤ n. It is complete if (Pi,Ri) is iTerm for all 1 ≤ i ≤ n
whenever (P,R) is iTerm.

So given a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors repeatedly until all sub-
problems are “solved” (i.e., sound processors transform them to the empty set).
This yields a modular framework for termination proofs, as different techniques
can be used for different sub-problems (Pi,Ri). The following three theorems
recapitulate the three most important processors of the DP framework.

The (innermost) (P,R)-dependency graph is a control flow graph that indi-
cates which DPs can be used after each other in a chain. Its set of nodes is
P and there is an edge from �#1 → t#1 to �#2 → t#2 if there exist substitutions
σ1, σ2 such that t#1 σ1

i→∗
R �#2 σ2 and �#1 σ1, �

#
2 σ2 ∈ NFR. Any infinite (P,R)-chain

corresponds to an infinite path in the dependency graph, and since the graph is
finite, this infinite path must end in some strongly connected component (SCC).3

Hence, it suffices to consider the SCCs of this graph independently.
2 Moreover, already in the non-probabilistic setting, the restriction to innermost rewrit-

ing makes termination analysis with DPs substantially more powerful, e.g., by allow-
ing the application of additional techniques like usable rules and rewriting of DPs
[15,16]. Indeed, we also adapt these techniques in our novel ADP framework for
probabilistic rewriting. Nevertheless, we conjecture that ADPs are also suitable for
an adaption to analyze full instead of innermost AST, and we will investigate that
in future work.

3 Here, a set P ′ of DPs is an SCC if it is a maximal cycle, i.e., it is a maximal set such
that for any �#1 → t#1 and �#2 → t#2 in P ′ there is a non-empty path from �#1 → t#1
to �#2 → t#2 which only traverses nodes from P ′.
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Theorem 1 (Dep. Graph Processor). For the SCCs P1, ...,Pn of the (P,R)-
dependency graph, ProcDG(P,R) = {(P1,R), ..., (Pn,R)} is sound and complete.

Example 2 (Dependency Graph). Consider the TRS Rffg = {(5)} with
DP(Rffg)={(6), (7), (8)}. The (DP(Rffg),Rffg)-dependency graph is on the right.

f(f(g(x)))→ f(g(f(g(f(x))))) (5)
F(f(g(x)))→F(g(f(g(f(x))))) (6)
F(f(g(x)))→F(g(f(x))) (7)
F(f(g(x)))→F(x) (8)

(6)

(7)

(8)

While the exact dependency graph is not computable in general, there exist
several techniques to over-approximate it automatically, see, e.g., [2,16,21]. In
our example, ProcDG(DP(Rffg),Rffg) yields the DP problem ({(8)},Rffg).

The next processor removes rules that cannot be used for right-hand sides of
dependency pairs when their variables are instantiated with normal forms.

Theorem 3 (Usable Rules Processor).Let R be a TRS. For any f ∈ Σ#

let RulesR(f) = {� → r ∈ R | root(�) = f}. For any t ∈ T
(
Σ#,V

)
, its

usable rules UR(t) are the smallest set such that UR(x) = ∅ for all x ∈ V
and UR(f(t1, . . . , tn)) = RulesR(f) ∪

⋃n
i=1 UR(ti) ∪

⋃
�→r∈RulesR(f) UR(r). The

usable rules for the DP problem (P,R) are U(P,R) =
⋃

�#→t#∈P UR(t#). Then
ProcUR(P,R) = {(P,U(P,R))} is sound but not complete.4

ProcUR
(
{(8)},Rffg

)
yields the problem ({(8)}, ∅), i.e., it removes all rules,

because the right-hand side of (8) does not contain the defined symbol f.
A polynomial interpretation Pol is a Σ-algebra which maps every function

symbol f ∈ Σ to a polynomial fPol ∈ N[V] over the variables V with coeffi-
cients from N, see [28]. Pol(t) denotes the interpretation of a term t by the
Σ-algebra Pol. An arithmetic inequation like Pol(t1) > Pol(t2) holds if it is
true for all instantiations of its variables by natural numbers. The reduction
pair processor5 allows us to use weakly monotonic polynomial interpretations
that do not have to depend on all of their arguments, i.e., x ≥ y implies
fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all f ∈ Σ#. The processor requires that
all rules and DPs are weakly decreasing and it removes those DPs that are
strictly decreasing.

Theorem 4 (Reduction Pair Processor). Let Pol : T
(
Σ#,V

)
→ N[V] be

a weakly monotonic polynomial interpretation. Let P = P≥ � P> with P> 	= ∅

such that:

4 See [15] for a complete version of this processor. It extends DP problems by an
additional set to store the left-hand sides of all rules (including the non-usable ones)
to determine whether a rewrite step is innermost. We omit this here for readability.

5 In this paper, we only regard the reduction pair processor with polynomial interpre-
tations, because for most other classical orderings it is not clear how to extend them
to probabilistic TRSs, where one has to consider “expected values of terms”.
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(1) For every � → r ∈ R, we have Pol(�) ≥ Pol(r).
(2) For every �# → t# ∈ P, we have Pol(�#) ≥ Pol(t#).
(3) For every �# → t# ∈ P>, we have Pol(�#) > Pol(t#).

Then ProcRP(P,R) = {(P≥,R)} is sound and complete.

For ({(8)}, ∅), one can use the reduction pair processor with the polynomial
interpretation that maps f(x) to x + 1 and both F(x) and g(x) to x. Then,
ProcRP

(
{(8)}, ∅

)
= {

(
∅, ∅

)
}. As ProcDG(∅, . . .) = ∅ and all processors used are

sound, this means that there is no infinite innermost chain for the initial DP
problem (DP(Rffg),Rffg) and thus, Rffg is innermost terminating.

3 Probabilistic Annotated Dependency Pairs

In this section we present our novel adaption of DPs to the probabilistic setting.
As in [3,9,13,25], the rules of a probabilistic TRS have finite multi-distributions
on the right-hand sides. A finite multi-distribution μ on a set A 	= ∅ is a finite
multiset of pairs (p : a), where 0 < p ≤ 1 is a probability and a ∈ A, with∑

(p:a)∈μ p = 1. FDist(A) is the set of all finite multi-distributions on A. For
μ ∈ FDist(A), its support is the multiset Supp(μ)={a | (p :a)∈μ for some p}.

A pair � → μ ∈ T (Σ,V) × FDist(T (Σ,V)) such that � 	∈ V and V(r) ⊆ V(�)
for every r ∈ Supp(μ) is a probabilistic rewrite rule. A probabilistic TRS (PTRS)
is a finite set of probabilistic rewrite rules. As an example, consider the PTRS Rrw

with the rule g(x) → {1/2 : g(g(x)), 1/2 : x}, which corresponds to a symmetric
random walk. Let g2(x) abbreviate g(g(x)), etc.

A PTRS R induces a rewrite relation →R ⊆ T (Σ,V) × FDist(T (Σ,V))
where s →R {p1 : t1, . . . , pk : tk} if there is a position π of s, a rule � → {p1 :
r1, . . . , pk : rk} ∈ R, and a substitution σ such that s|π = �σ and tj = s[rjσ]π
for all 1 ≤ j ≤ k. We call s →R μ an innermost rewrite step (denoted s

i→R μ)
if �σ ∈ ANFR, where ANFR is the set of all terms in argument normal form w.r.t.
R, i.e., t ∈ ANFR iff t′ ∈ NFR for all proper subterms t′ of t.

To track all possible rewrite sequences (up to non-determinism) with their
probabilities, we lift i→R to (innermost) rewrite sequence trees (RSTs). An
(innermost) R-RST is a tree whose nodes v are labeled by pairs (pv, tv) of a proba-
bility pv and a term tv such that the edge relation represents a probabilistic inner-
most rewrite step. More precisely, T=(V,E,L) is an (innermost) R-RST if (1)
(V,E) is a (possibly infinite) directed tree with nodes V 	= ∅ and directed edges
E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V , (2) L : V →
(0, 1]×T (Σ,V) labels every node v by a probability pv and a term tv where pv = 1
for the root v ∈ V of the tree, and (3) for all v ∈ V : if vE = {w1, . . . , wk} 	= ∅,
then tv

i→R {pw1
pv

: tw1 , . . . ,
pwk

pv
: twk

}. For any innermost R-RST T we define
|T|Leaf =

∑
v∈Leaf pv, where Leaf is the set of T’s leaves. An RST T is inner-

most almost-surely terminating (iAST) if |T|Leaf = 1. Similarly, a PTRS R is
iAST if all innermost R-RSTs are iAST. While |T|Leaf = 1 holds for every finite
RST T, for infinite RSTs T we may have |T|Leaf < 1, and even |T|Leaf = 0 if
T has no leaf at all. This notion is equivalent to the notions of AST in [3,25],
where one uses a lifting to multisets instead of trees. For example, the infinite
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1 g(x)

1/2 g2(x) 1/2 x

1/4 g3(x) 1/4 g(x)

. . . . . . . . . . . .

Rrw-RST T on the side has |T|Leaf = 1. In fact,
Rrw is iAST, because |T|Leaf = 1 holds for all
innermost Rrw-RSTs T.

As shown in [25], to adapt the DP framework
in order to prove iAST of PTRSs, one has to
regard all DPs resulting from the same rule at
once. Otherwise, one would not be able to distinguish between the DPs of the
TRS with the rule a → {1/2 : b, 1/2 : c(a, a)} which is iAST and the rule a →
{1/2 : b, 1/2 : c(a, a, a)}, which is not iAST. For that reason, in the adaption of the
DP framework to PTRSs in [25], one constructs dependency tuples (DTs) whose
right-hand sides combine the right-hand sides of all dependency pairs resulting
from one rule. However, a drawback of this approach is that the resulting chain
criterion is not complete, i.e., it allows for chains that do not correspond to any
rewrite sequence of the original PTRS R.

Example 5. Consider the PTRS Rincpl with the rules
a → {1 : f(h(g), g)} (9)
g → {1/2 : b1, 1/2 : b2} (10)

h(b1) → {1 : a} (11)
f(x, b2) → {1 : a} (12)

and the Rincpl-RST below. So a can be rewritten to the normal form f(h(b2), b1)
1 a

1 f(h(g), g)

1/2 f(h(g), b1) 1/2 f(h(g), b2)

1/4 f(h(b1), b1) 1/4 f(h(b2), b1)

normal form

1/4 f(h(b1), b2) 1/4 f(h(b2), b2)

1/4 f(a, b1) 1/4 f(a, b2) 1/4 a

. . . . . . . . .

with probability 1/4
and to the terms
f(a, b1) and a that
contain the redex a
with a probability
of 1/4 + 1/4 = 1/2.
In the term f(a, b2),
one can rewrite the
subterm a, and if that ends in a normal form, one can still rewrite the outer
f which will yield a again. So to over-approximate the probability of non-
termination, one could consider the term f(a, b2) as if one had two occurrences of
a. Then this would correspond to a random walk where the number of a symbols
is decreased by 1 with probability 1/4, increased by 1 with probability 1/4, and
kept the same with probability 1/2. Such a random walk is AST, and since a
similar observation holds for all Rincpl-RSTs, Rincpl is iAST (we will prove iAST
of Rincpl with our new ADP framework in Sect. 4 and 5).

In contrast, the DT framework from [25] fails on this example. As mentioned,
the right-hand sides of DTs combine the right-hand sides of all dependency pairs
resulting from one rule. So the right-hand side of the DT for (9) contains the term
com4(F(h(g), g),H(g),G,G), where com4 is a special compound symbol of arity 4.
However, here it is no longer clear which occurrence of the annotated symbol G
corresponds to which occurrences of g. Therefore, when rewriting an occurrence
of G, in the “chains” of [25] one may also rewrite arbitrary occurrences of g
simultaneously. (For that reason, in [25] one also couples the DT together with
its original rule.) In particular, [25] also allows a simultaneous rewrite step of
all underlined symbols in com(F(h(g), g),H(g),G,G) even though the underlined
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G cannot correspond to both underlined g symbols. As shown in [26], this leads
to a chain that is not iAST and that does not correspond to any Rincpl-rewrite
sequence. To avoid this problem, one would have to keep track of the connections
between annotated symbols and the corresponding original subterms. However,
such an improvement would become very complicated in the formalization of
[25].

Therefore, in contrast to [25], in our new notion of DPs, we annotate defined
symbols directly in the original rewrite rule instead of extracting annotated
subterms from its right-hand side. This makes the definition easier, more elegant,
and more readable, and allows us to solve the incompleteness problem of [25].

Definition 7 (Annotations). Let t ∈ T
(
Σ#,V

)
be an annotated term and

for Σ′ ⊆ Σ#, let posΣ′(t) be all positions of t with symbols from Σ′. For a set
of positions Φ ⊆ posD∪D#(t), let #Φ(t) be the variant of t where the symbols
at positions from Φ in t are annotated and all other annotations are removed.
Thus, posD#(#Φ(t)) = Φ, and #∅(t) removes all annotations from t, where we
often write �(t) instead of #∅(t). We extend � to multi-distributions, rules, and
sets of rules by removing the annotations of all occurring terms. We write #D(t)
instead of #posD(t)(t) to annotate all defined symbols in t, and #ε(t) instead
of #{ε}(t) to annotate just the root symbol of t. Moreover, let �↑

π(t) result from
removing all annotations from t that are strictly above the position π. Finally,
we write t �# s if there is a π ∈ posD#(s) and t = �(s|π), i.e., t results from a
subterm of s with annotated root symbol by removing its annotation.

Example 8. So if g ∈ D, then we have #{1}(g(g(x))) = #{1}(G(G(x))) = g(G(x)),
#D(g(g(x))) = #{ε,1}(g(g(x))) = G(G(x)), and �(G(G(x))) = g(g(x)). Moreover,
�↑
1(G(G(x))) = g(G(x)) and g(x) �# g(G(x)).

Next, we define the canonical annotated dependency pairs for a given PTRS.

Definition 9 (Canonical Annotated Dependency Pairs). For a rule � →
μ = {p1 : r1, . . . , pk : rk}, its canonical annotated dependency pair (ADP) is

DP(� → μ) = � → {p1 : #D(r1), . . . , pk : #D(rk)}true

The canonical ADPs of a PTRS R are DP(R) = {DP(� → μ) | � → μ ∈ R}.

Example 10. For Rrw, the canonical ADP for g(x) → {1/2 : g(g(x))), 1/2 : x} is
g(x) → {1/2 : G(G(x)), 1/2 : x}true instead of the (complicated) DT from [25]:

DT (Rrw) = {〈G(x), g(x)〉 → {1/2 : 〈com2(G(g(x)),G(x)), g2(x)〉, 1/2 : 〈com0, x〉}}

So the left-hand side of an ADP is just the left-hand side of the original
rule. The right-hand side of the ADP results from the right-hand side of the
original rule by replacing all f ∈ D with f#. Moreover, every ADP has a flag
m ∈ {true, false} to indicate whether this ADP may be used for an r-step at a
position below the next p-step. (This flag will later be modified by our usable
rules processor.) In general, we work with the following rewrite systems in our
new framework.
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Definition 11 (Annotated Dependency Pairs, i
↪→P). An ADP has the

form � −→ {p1 : r1, . . . , pk : rk}m, where � ∈ T (Σ,V) with � /∈ V, m ∈
{true, false}, and for all 1 ≤ j ≤ k we have rj ∈T

(
Σ#,V

)
with V(rj) ⊆ V(�).

Let P be a finite set of ADPs (a so-called ADP problem). An annotated term
s ∈ T

(
Σ#,V

)
rewrites with P to μ = {p1 : t1, . . . , pk : tk} (denoted s

i
↪→P μ) if

there is a rule � −→ {p1 : r1, . . . , pk : rk}m ∈ P, a substitution σ, and a position
π ∈ posD∪D#(s) such that �(s|π) = �σ ∈ ANFP , and for all 1 ≤ j ≤ k we have

tj = s[rjσ]π if π ∈ posD#(s) and m = true (pr)
tj = �↑

π( s[rjσ]π) if π ∈ posD#(s) and m = false (p)
tj = s[�(rj)σ]π if π 	∈ posD#(s) and m = true (r)
tj = �↑

π( s[�(rj)σ]π) if π 	∈ posD#(s) and m = false (irr)

To highlight the position π of the redex, we also write s
i

↪→P,π t. Again, ANFP is
the set of all terms in argument normal form w.r.t. P.

Rewriting with P can be seen as ordinary term rewriting while considering
and modifying annotations. In the ADP framework, we represent all DPs result-
ing from a rule as well as the original rule by just one ADP. So for example, the
ADP g(x) → {1/2 : G(G(x)), 1/2 : x}true for the rule g(x) → {1/2 : g(g(x)), 1/2 : x}
represents both DPs resulting from the two occurrences of g on the right-hand
side, and the rule itself (by simply disregarding all annotations of the ADP).

As in the classical DP framework, our goal is to track specific reduction
sequences where (1) there are p-steps where the root symbol of the redex is
annotated and a DP is applied, and (2) between two p-steps there can be several
r-steps where rules are applied below the position of the next p-step.

A step of the form (pr) in Definition 11 can represent both p- and r-steps.
All annotations are kept during this step except for annotations of the subterms
that correspond to variables of the applied rule. These subterms are always
in normal form due to the innermost evaluation strategy and we erase their
annotations in order to handle rewriting with non-left-linear rules correctly. A
(pr)-step at position π plays the role of an r-step for terms in multi-distributions
where one later rewrites an annotated symbol at a position above π, and for all
other terms it plays the role of a p-step. As an example, for a PTRS Rex2 with
the rules g(x, x) → {1 : f(x)} and f(a) → {1 : f(b)}, we have the canonical
ADPs g(x, x) → {1 : F(x)}true and f(a) → {1 : F(b)}true, and we can rewrite
G(F(b), f(b)) i

↪→DP(Rex2)
{1 : F(f(b))} using the first ADP. Here, we have π = ε,

�(s|ε) = g(f(b), f(b)) = �σ where σ instantiates x with the normal form f(b), and
r1 = F(x).

A step of the form (r) rewrites at the position of a non-annotated defined
symbol. So this represents an r-step and thus, we remove all annotations from
the right-hand side rj . As an example, we have G(F(b), f(a)) i

↪→DP(Rex2)
{1 :

G(F(b), f(b))} using the ADP f(a) → {1 : F(b)}true.
A step of the form (p) represents a p-step. Thus, we remove all annotations

above the position π, because no p-steps are possible above π. So if P contains
f(a) → {1 : F(b)}false, then G(F(b),F(a)) i

↪→P {1 : g(F(b),F(b))}.
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Finally, a step of the form (irr) is an r-step that is irrelevant for proving iAST,
because due to m = false, afterwards there cannot be a p-step at a position above.
For example, if P again contains f(a) → {1 : F(b)}false, then G(F(b), f(a)) i

↪→P
{1 : g(F(b), f(b))}. Such (irr)-steps are needed to ensure that all rewrite steps
with R are also possible with the ADP problems P that result from DP(R) when
applying ADP processors. So for all these ADP problems P, we have �(t) ∈ ANFR
iff t ∈ ANFP for all t ∈ T

(
Σ#,V

)
, i.e., the innermost evaluation strategy is not

affected by the application of ADP processors. This is different from the classical
DP framework, where the usable rules processor reduces the number of rules.
This may result in new redexes that are allowed for innermost rewriting. Thus,
the usable rules processor in our new ADP framework is complete, whereas in
[15], one has to extend DP problems by an additional component to achieve
completeness of this processor (see Footnote 4).

Now, s
i→R {p1 : t1, . . . , pk : tk} essentially6 implies #D(s) i

↪→DP(R) {p1 :
#D(t1), . . . , pk : #D(tk)}, and we got rid of any ambiguities in the rewrite rela-
tion that led to incompleteness in [25]. While our ADPs are much simpler than
the DTs of [25], due to their annotations they still contain all information that
is needed to define the required DP processors.

Instead of chains of DPs, in the probabilistic setting one works with chain
trees [25], where p- and r-steps are indicated by P - and R-nodes in the tree.
Chain trees are defined analogously to RSTs, but the crucial requirement is that
every infinite path of the tree must contain infinitely many steps of the forms
(pr) or (p). Thus, in our setting T = (V,E,L, P ) is a P-chain tree (CT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V 	= ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1] × T
(
Σ#,V

)
labels every node v by a probability pv and a

term tv. For the root v ∈ V of the tree, we have pv = 1.
3. P ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to

indicate whether we use (pr) or (p) for the next rewrite step. R = V \(Leaf∪
P ) are all inner nodes that are not in P , i.e., where we rewrite using (r) or
(irr).

4. For all v ∈ P : if vE = {w1, . . . , wk}, then tv
i

↪→P {pw1
pv

: tw1 , . . . ,
pwk

pv
: twk

}
using Case (pr) or (p).

5. For all v ∈ R: if vE = {w1, . . . , wk}, then tv
i

↪→P {pw1
pv

: tw1 , . . . ,
pwk

pv
: twk

}
using Case (r) or (irr).

6. Every infinite path in T contains infinitely many nodes from P .

Let |T|Leaf =
∑

v∈Leaf pv. We define that P is iAST if |T|Leaf = 1 for all P-CTs
T. So Conditions 1–5 ensure that the chain tree corresponds to an RST and
Condition 6 requires that one may only use finitely many r-steps before the next
6 We have #D(s)

i
↪→DP(R) {p1 : t′

1, . . . , pk : t′
k} where t′

j and #D(tj) are the same up
to some annotations of subterms that are DP(R)-normal forms. The reason is that
as mentioned above, annotations of the subterms (in normal form) that correspond
to variables of the rule are erased. So for example, rewriting G(F(b),F(b)) with
DP(Rex2) yields {1 : F(f(b))} and not {1 : F(F(b))}.
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p-step. This yields a chain criterion as in the non-probabilistic setting, where
(in contrast to the chain criterion of [25]) we again have “iff” instead of “if”.

Theorem 12 (Chain Criterion). R is iAST iff DP(R) is iAST.

Our chain criterion is complete (“only if”), because ADPs only add annota-
tions to rules. Hence, every DP(R)-CT can be turned into an R-RST by omitting
all annotations. So in contrast to [25], the step from the original PTRS to ADPs
does not affect the “potential power” of the approach. Moreover, in the future
this may also allow the development of techniques to disprove iAST within the
ADP framework. To prove soundness (“if”), one has to show that every R-RST
can be simulated by a DP(R)-CT. As mentioned, all proofs can be found in [26].

4 The ADP Framework

Our new (probabilistic) ADP framework again applies processors to transform
an ADP problem into simpler sub-problems. An ADP processor Proc has the
form Proc(P) = {P1, . . . ,Pn}, where P,P1, . . . ,Pn are ADP problems. Proc is
sound if P is iAST whenever Pi is iAST for all 1 ≤ i ≤ n. It is complete if
Pi is iAST for all 1 ≤ i ≤ n whenever P is iAST. For a PTRS R, one starts
with the canonical ADP problem DP(R) and applies sound (and preferably
complete) ADP processors repeatedly until the ADPs contain no annotations
anymore. Such an ADP problem is trivially iAST. The framework again allows
for modular termination proofs, since different techniques can be applied on each
sub-problem Pi.

We now adapt the processors from [25] to our new framework. The (inner-
most) P-dependency graph is a control flow graph between ADPs from P, indi-
cating whether an ADP α may lead to an application of another ADP α′ on an
annotated subterm introduced by α. This possibility is not related to the prob-
abilities. Hence, we can use the non-probabilistic variant np(P) = {� → �(rj) |
� → {p1 : r1, . . . , pk : rk}true ∈ P, 1 ≤ j ≤ k}, which is an ordinary TRS over the
signature Σ. Note that for np(P) we only need to consider rules with the flag
true, since only such rules can be used at a position below the next p-step.

Definition 13 (Dependency Graph). The P-dependency graph has the
nodes P and there is an edge from �1 −→ {p1 : r1, . . . , pk : rk}m to �2 → . . .
if there are substitutions σ1, σ2 and a t �# rj for some 1 ≤ j ≤ k such that
t#σ1

i→∗
np(P) �#2 σ2 and both �1σ1 and �2σ2 are in ANFP .

So there is an edge from an ADP α to an ADP α′ if after a step of the
form (pr) or (p) with α at position π there may eventually come another step
of the form (pr) or (p) with α′ on or below π. Hence, for every path in a P-
CT from a P -node where an annotated subterm f#(. . .) is introduced to the
next P -node where the subterm f#(. . .) at this position is rewritten, there is a
corresponding edge in the P-dependency graph. Since every infinite path in a
CT contains infinitely many nodes from P , every such path traverses a cycle of
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the dependency graph infinitely often. Thus, it suffices to consider the SCCs of
the dependency graph separately. In our framework, this means that we remove
the annotations from all rules except those that are in the SCC that we want
to analyze. As in [25], to automate the following two processors, the same over-
approximation techniques as for the non-probabilistic dependency graph can be
used.

Theorem 14 (Probabilistic Dependency Graph Processor). For the
SCCs P1, . . . ,Pn of the P-dependency graph, ProcDG(P) = {P1 ∪ �(P \
P1), . . . ,Pn ∪ �(P \ Pn)} is sound and complete.

Example 15. Consider the PTRS Rincpl from Example 5 with the canonical ADPs

a → {1 : F(H(G),G)}true (13)
g → {1/2 : b1, 1/2 : b2}true (14)

h(b1) → {1 : A}true (15)
f(x, b2) → {1 : A}true (16)

(13) (14)

(15) (16)
The DP(Rincpl)-dependency graph can be seen on the right. As
(14) is not contained in the only SCC, we can remove all anno-
tations from (14). However, since (14) already does not contain any
annotations, here the dependency graph processor does not change
DP(Rincpl).

To remove the annotations of non-usable terms like G in (13) that lead out
of the SCCs of the dependency graph, one can apply the usable terms processor.

Theorem 16 (Usable Terms Processor). Let �1 ∈ T (Σ,V) and P be an
ADP problem. We call t ∈ T

(
Σ#,V

)
with root(t) ∈ D# usable w.r.t. �1 and

P if there are substitutions σ1, σ2 and an �2 −→ μ2 ∈ P where μ2 contains an
annotated symbol, such that #ε(t)σ1

i→∗
np(P) �#2 σ2 and both �1σ1 and �2σ2 are

in ANFP . Let ��,P(s) result from s by removing the annotations from the roots of
all its subterms that are not usable w.r.t. � and P, i.e., posD#(��,P(s)) = {π ∈
posD#(s) | s|π is usable w.r.t. �1 and P }. The transformation that removes the
annotations from the roots of all non-usable terms in the right-hand sides of
ADPs is TUT(P) = {� → {p1 : ��,P(r1), . . . , pk : ��,P(rk)}m | � → {p1 : r1, . . . , pk :
rk}m ∈P}. Then ProcUT(P) = {TUT(P)} is sound and complete.

So for DP(Rincpl), ProcUT replaces (13) by a → {1 : F(H(g), g)}true (13′).
As in Theorem 3 of the ordinary DP framework, the idea of the usable rules

processor remains to find rules that cannot be used below steps at annotations
in right-hand sides of ADPs when their variables are instantiated with normal
forms.

Theorem 17 (Prob. Usable Rules Processor). For an ADP problem P and
f ∈Σ#, let RulesP(f) = {� → μtrue ∈ P | root(�) = f}. For any t∈T

(
Σ#,V

)
, its

usable rules UP(t) are the smallest set with UP(x) = ∅ for all x ∈ V and UP(f(t1,
. . . , tn)) = RulesP(f) ∪

⋃n
i=1 UP(ti) ∪

⋃
�→μtrue∈RulesP(f),r∈Supp(μ) UP(�(r)), oth-

erwise. The usable rules for P are U(P) =
⋃

�→μm∈P,r∈Supp(μ),t�#r UP(t#). Then
ProcUR(P) = {U(P) ∪ {� → μfalse | � → μm ∈ P \ U(P)}} is sound and complete,
i.e., we turn the flag of all non-usable rules to false.
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Example 18. For our ADP problem {(13′), (14), (15), (16)}, (16) is not usable
because neither f nor F occur below annotated symbols on right-hand sides.
Hence, ProcUR replaces (16) by f(x, b2) → {1 : A}false (16′). As discussed after
Definition 11, in contrast to the processor of Theorem 3, our usable rules proces-
sor is complete since we do not remove non-usable rules but only set their flag
to false.

Finally, we adapt the reduction pair processor. Here, (1) for every rule with
the flag true (which can therefore be used for r-steps), the expected value must be
weakly decreasing when removing the annotations. Since rules can also be used
for p-steps, (2) we also require a weak decrease when comparing the annotated
left-hand side with the expected value of all annotated subterms in the right-
hand side. Since we sum up the values of the annotated subterms of each right-
hand side, we can again use weakly monotonic interpretations. As in [3,25], to
ensure “monotonicity” w.r.t. expected values we have to restrict ourselves to
interpretations with multilinear polynomials, where all monomials have the form
c · xe1

1 · . . . · xen
n with c ∈ N and e1, . . . , en ∈ {0, 1}. The processor then removes

the annotations from those ADPs where (3) in addition there is at least one
right-hand side rj whose annotated subterms are strictly decreasing.7

Theorem 19 (Probabilistic Reduction Pair Processor). Let Pol :
T (Σ#,V) → N[V] be a weakly monotonic, multilinear polynomial interpretation.
Let P = P≥ � P> with P> 	= ∅ such that:

(1) For every � −→ {p1 : r1, . . . , pk : rk}true ∈ P, we have
Pol(�) ≥

∑
1≤j≤k pj · Pol(�(rj)).

(2) For every � −→ {p1 : r1, . . . , pk : rk}m ∈ P, we have
Pol(�#) ≥

∑
1≤j≤k pj ·

∑
t�#rj

Pol(t#).
(3) For every � −→ {p1 : r1, . . . , pk : rk}m ∈ P>, there exists a 1 ≤ j ≤ k with

Pol(�#) >
∑

t�#rj
Pol(t#).

If m = true, then we additionally have Pol(�) ≥ Pol(�(rj)).

Then ProcRP(P) = {P≥ ∪ �(P>)} is sound and complete.

Example 20. In Sect. 5, we will present a new rewriting processor and show how
the ADP (13′) can be transformed into

a → {1/4 : f(H(b1), b1), 1/4 : f(h(b2), b1), 1/4 : F(H(b1), b2), 1/4 : F(h(b2), b2)}true (13′′)

7 In addition, the corresponding non-annotated right-hand side �(rj) must be at least
weakly decreasing. The reason is that in contrast to the original DP framework, we
may now have nested annotated symbols and thus, we have to ensure that they
behave “monotonically”. So we have to ensure that Pol(A) > Pol(B) also implies
that the measure of F (A) is greater than F (B). Every term r is “measured” as∑

t�#r Pol(t#), i.e., F (A) is measured as Pol(F (a))+Pol(A). Hence, in this example

we must ensure that Pol(A) > Pol(B) implies Pol(F (a)) + Pol(A) > Pol(F (b)) +
Pol(B). For that reason, we also have to require Pol(a) ≥ Pol(b).
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For the resulting ADP problem {(13′′), (14), (15), (16′)} with

g → {1/2 : b1, 1/2 : b2}true (14) h(b1) → {1 : A}true (15) f(x, b2) → {1 : A}false (16′)

we use the reduction pair processor with the polynomial interpretation that maps
A, F, and H to 1 and all other symbols to 0, to remove all annotations from the
a-ADP (13′′), because it contains the right-hand side f(h(b2), b1) without anno-
tations and thus, Pol(A) = 1 >

∑
t�#f(h(b2),b1)

Pol(t#) = 0. Another application
of the usable terms processor removes the remaining A-annotations from (15)
and (16′). Since there are no more annotations left, this proves iAST of Rincpl.

Finally, in proofs with the ADP framework, one may obtain ADP problems
P that have a non-probabilistic structure, i.e., every ADP has the form � →
{1 : r}m. Then the probability removal processor allows us to switch to ordinary
DPs.

Theorem 21 (Probability Removal Processor). Let P be an ADP problem
where every ADP in P has the form � → {1 : r}m. Let dp(P) = {�# → t# |
� → {1: r}m ∈ P, t �# r}. Then P is iAST iff the non-probabilistic DP problem
(dp(P),np(P)) is iTerm. So the processor ProcPR(P) = ∅ is sound and complete
iff (dp(P),np(P)) is iTerm.

5 Transforming ADPs

Compared to the DT framework for PTRSs in [25], our new ADP framework is
not only easier, more elegant, and yields a complete chain criterion, but it also
has important practical advantages, because every processor that performs a
rewrite step benefits from our novel definition of rewriting with ADPs (whereas
the rewrite relation with DTs in [25] was an “incomplete over-approximation”
of the rewrite relation of the original TRS). To illustrate this, we adapt the
rewriting processor from the original DP framework [16] to the probabilistic
setting, which allows us to prove iAST of Rincpl from Example 5. Such transfor-
mational processors had not been adapted in the probabilistic DT framework of
[25]. While one could also adapt the rewriting processor to the setting of [25],
then it would be substantially weaker, and we would fail in proving iAST of
Rincpl. We refer to [26] for our adaption of the remaining transformational pro-
cessors from [16] (based on instantiation, forward instantiation, and narrowing)
to the probabilistic setting.

In the non-probabilistic setting, the rewriting processor may rewrite a redex
in the right-hand side of a DP if this does not affect the construction of chains.
To ensure that, the usable rules for this redex must be non-overlapping (NO).
If the DP occurs in a chain, then this redex is weakly innermost terminating,
hence by NO also terminating and confluent, and thus, it has a unique normal
form [20].

In the probabilistic setting, to ensure that the probabilities for the normal
forms stay the same, in addition to NO we require that the rule used for the
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rewrite step is linear (L) (i.e., every variable occurs at most once in the left-hand
side and in each term of the multi-distribution μ on the right-hand side) and
non-erasing (NE) (i.e., each variable of the left-hand side occurs in each term of
Supp(μ)).

Definition 22 (Rewriting Processor). Let P be an ADP problem with P =
P ′ � {� → {p1 : r1, . . . , pk : rk}m}. Let τ ∈ posD(rj) for some 1 ≤ j ≤ k such
that rj |τ ∈ T (Σ,V), i.e., there is no annotation below or at the position τ . If
rj ↪−→true

P,τ {q1 :e1, . . . , qh :eh}, where ↪−→true
P,τ is defined like i

↪→P,τ but the used redex
rj |τ does not have to be in ANFP and the applied rule from P must have the flag
m = true, then we define

Procr(P) =
{

P ′ ∪ { � → {p1 : �(r1), . . . , pk : �(rk)}m,

� → {p1 : r1, . . . , pk : rk} \ {pj : rj}
∪ {pj · q1 : e1, . . . , pj · qh : eh}m }

}

In the non-probabilistic DP framework, one only transforms the DPs by
rewriting, but the rules are left unchanged. But since our ADPs represent both
DPs and rules, when rewriting an ADP, we add a copy of the original ADP
without any annotations (i.e., this corresponds to the original rule which can
now only be used for (r)-steps). Another change to the rewriting processor in
the classic DP framework is the requirement that there exists no annotation
below τ . Otherwise, rewriting would potentially remove annotations from rj .
For the soundness of the processor, we have to ensure that this cannot happen.

Theorem 23 (Soundness8 of the Rewriting Processor). Procr as in Def-
inition 22 is sound if one of the following cases holds:

1. UP(rj |τ ) is NO, and the rule used for rewriting rj |τ is L and NE.
2. UP(rj |τ ) is NO, and all its rules have the form �′ → {1 : r′}true.
3. UP(rj |τ ) is NO, rj |τ is a ground term, and rj

i
↪→P,τ {q1 : e1, . . . , qh : eh} is

an innermost step.

We refer to [26] for a discussion on the requirements L and NE in the first case.
The second case corresponds to the original rewrite processor where all usable
rules of rj |τ are non-probabilistic. In the last case, for any instantiation only a
single innermost rewrite step is possible for rj |τ . The restriction to innermost
rewrite steps is only useful if rj |τ is ground. Otherwise, an innermost step on
rj |τ might become a non-innermost step when instantiating rj |τ ’s variables.

The rewriting processor benefits from our ADP framework, because it applies
the rewrite relation ↪−→P . In contrast, a rewriting processor in the DT framework
of [25] would have to replace a DT by multiple new DTs, due to the ambiguities
in their rewrite relation. Such a rewriting processor would fail for Rincpl whereas
with the processor of Theorem 23 we can now prove that Rincpl is iAST.
8 For completeness in the non-probabilistic setting [16], one uses a different definition

of “non-terminating” (or “infinite”) DP problems. In future work, we will examine
if such a definition would also yield completeness of Procr in the probabilistic case.
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Example 24. After applying the usable terms and the usable rules processor to
DP(Rincpl), we obtained:

a → {1 : F(H(g), g)}true (13′)
g → {1/2 : b1, 1/2 : b2}true (14)

h(b1) → {1 : A}true (15)

f(x, b2) → {1 : A}false (16′)

Now we can apply the rewriting processor on (13′) repeatedly until all
gs are rewritten and replace it by the ADP a → {1/4 : F(H(b1), b1), 1/4 :
F(H(b2), b1), 1/4 : F(H(b1), b2), 1/4 : F(H(b2), b2)}true as well as several result-
ing ADPs a → . . . without annotations. Now in the subterms F(. . . , b1) and
H(b2), the annotations are removed from the roots by the usable terms proces-
sor, as these subterms cannot rewrite to annotated instances of left-hand sides of
ADPs. So the a-ADP is changed to a → {1/4 : f(H(b1), b1), 1/4 : f(h(b2), b1), 1/4 :
F(H(b1), b2), 1/4 : F(h(b2), b2)}true (13′′). Then we use the reduction pair proces-
sor as in Example 20 to prove iAST for Rincpl.

6 Conclusion and Evaluation

We developed a new ADP framework, which advances our work in [25] into a com-
plete criterion for almost-sure innermost termination by using annotated DPs
instead of dependency tuples, which also simplifies the framework substantially.
Moreover, we adapted the rewriting processor of the classic DP framework to
the probabilistic setting. We also adapted the other transformational processors
of the non-probabilistic DP framework, see [26]. The soundness proofs for the
adapted processors are much more involved than in the non-probabilistic setting,
due to the more complex structure of chain trees. However, the processors them-
selves are analogous to their non-probabilistic counterparts, and thus, existing
implementations of the processors can easily be adapted to their probabilistic
versions.

We implemented our new contributions in our termination prover AProVE
[17] and compared the new probabilistic ADP framework with transformational
processors (ADP) to the DT framework from [25] (DT) and to AProVE’s tech-
niques for ordinary non-probabilistic TRSs (AProVE-NP), which include many
additional processors and which benefit from using separate dependency pairs
instead of ADPs or DTs. For the processors in Sect. 4, we could re-use the existing
implementation of [25] for our ADP framework. The main goal for probabilis-
tic termination analysis is to become as powerful as termination analysis in the
non-probabilistic setting. Therefore, in our first experiment, we considered the
non-probabilistic TRSs of the TPDB [34] (the benchmark set used in the annual
Termination and Complexity Competition (TermComp) [18]) and compared ADP
and DT with AProVE-NP, because at the current TermComp, AProVE-NP was
the most powerful tool for termination of ordinary non-probabilistic TRSs.
Clearly, a TRS can be represented as a PTRS with trivial probabilities, and
then (innermost) AST is the same as (innermost) termination. While both ADP
and DT have a probability removal processor to switch to the classical DP frame-
work for such problems, we disabled that processor in this experiment. Since ADP
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and DT can only deal with innermost evaluation, we used the benchmarks from
the “TRS Innermost” and “TRS Standard” categories of the TPDB, but only
considered innermost evaluation for all examples. We used a timeout of 300 s for
each example. The “TRS Innermost” category contains 366 benchmarks, where
AProVE-NP proves innermost termination for 293, DT is able to prove it for 133
(45% of AProVE-NP), and for ADP this number rises to 159 (54%). For the 1512
benchmarks from the “TRS Standard” category, AProVE-NP can prove inner-
most termination for 1114, DT for 611 (55% of AProVE-NP), and ADP for 723
(65%). This shows that the transformations are very important for automatic
termination proofs as we get around 10% closer to AProVE-NP’s results in both
categories.

As a second experiment, we extended the PTRS benchmark set from [25]
by 33 new PTRSs for typical probabilistic programs, including some examples
with complicated probabilistic structure. For instance, we added the following
PTRS Rqsrt for probabilistic quicksort. Here, we write r instead of {1 : r} for
readability.

rotate(cons(x, xs)) → {1/2 : cons(x, xs), 1/2 : rotate(app(xs, cons(x, nil)))}
qsrt(xs) → if(empty(xs), low(hd(xs), tl(xs)), hd(xs), high(hd(xs), tl(xs)))

if(true, xs, x, ys) → nil empty(nil) → true empty(cons(x, xs)) → false
if(false, xs, x, ys) → app(qsrt(rotate(xs)), cons(x, qsrt(rotate(ys))))
hd(cons(x, xs)) → x tl(cons(x, xs)) → xs

The rotate-rules rotate a list randomly often (they are AST, but not termi-
nating). Thus, by choosing the first element of the resulting list, one obtains
random pivot elements for the recursive calls of qsrt in the second if-rule. In
addition to the rules above, Rqsrt contains rules for list concatenation (app), and
rules such that low(x, xs) (high(x, xs)) returns all elements of the list xs that are
smaller (greater or equal) than x, see [26]. In contrast to the quicksort example
in [25], proving iAST of the above rules requires transformational processors to
instantiate and rewrite the empty-, hd-, and tl-subterms in the right-hand side of
the qsrt-rule. So while DT fails for this example, ADP can prove iAST of Rqsrt.

90 of the 100 PTRSs in our set are iAST, and DT succeeds for 54 of them
(60 %) with the technique of [25] that does not use transformational processors.
Adding the new processors in ADP increases this number to 77 (86 %), which
demonstrates their power for PTRSs with non-trivial probabilities. For details
on our experiments and for instructions on how to run our implementation in
AProVE via its web interface or locally, see: https://aprove-developers.github.io/
ProbabilisticADPs/.

On this website, we also performed experiments where we disabled individual
transformational processors of the ADP framework, which shows the usefulness
of each new processor. In addition to the ADP and DT framework, an alter-
native technique to analyze PTRSs via a direct application of interpretations
was presented in [3]. However, [3] analyzes PAST (or rather strong AST), and
a comparison between the DT framework and their technique can be found in
[25]. In future work, we will adapt more processors of the DP framework to the

https://aprove-developers.github.io/ProbabilisticADPs/
https://aprove-developers.github.io/ProbabilisticADPs/
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probabilistic setting. Moreover, we work on analyzing AST also for full instead
of innermost rewriting and already developed criteria when iAST implies full
AST [27].
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Abstract. Tabulation is a well-known technique for improving the effi-
ciency of recursive functions with redundant function calls. A key point
in the application of this technique is to identify a suitable represen-
tation for the table. In this paper, we propose the use of zippers as
tables in the tabulation process. Our approach relies on a generic func-
tion zipWithZipper, that makes strong use of lazy evaluation to traverse
two zippers in a circular manner. The technique turns out to be particu-
larly efficient when the arguments to recursive calls are closely situated
within the function domain. For example, in the case of natural numbers
this means function calls on fairly contiguous values. Likewise, when deal-
ing with tree structures, it means functions calls on immediate sub-trees
and parent nodes. This results in a concise and efficient zipper-based
embedding of attribute grammars.

Keywords: Zipper · Tabulation · Generics · Attribute Grammars

1 Introduction

The evaluation of recursive functions may require multiple computations of iden-
tical function calls. A classical example of this behaviour is the recursive defi-
nition of the Fibonacci function as show in Fig. 1a. Although this definition is
simple and easy to understand, it is very inefficient due to the repeated com-
putation of identical recursive calls; a call to fib n requires two evaluations of
fib(n-2), three evaluations of fib(n-3), and so on.

One possible solution to improve this inefficiency is the use of tabulation [2],
a well-known technique that uses a bottom-up scheme in which function calls
are computed once and stored in a table for future reuse. Function calls in the
program code are then changed by lookups in the table. In Fig. 1b we present a
tabulation-based version of fib, where we rely on lists to model the table.

In this case the table fibTab is given by a list of suspensions, each one
corresponding to the computation of a Fibonacci number. Recursive calls in the
original function definition are replaced by requests to other positions in the table
by using list indexing (!!). The necessary sharing of the table in order to avoid
multiple recomputations of its entries is achieved thanks to lazy evaluation and
a circular definition of the table. In fact, the suspended computations stored
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Fibonacci

in the table entries form a sort of dependency graph in such a way that the
request of certain position of the table triggers the evaluation of the other entries
(computations) it depends on. Lazy evaluation ensures that, once an entry is
evaluated, its value is available without the need for recomputation.

Despite the use of tabulation, a drawback of tab fib is the use of a list
for implementing the table, as list indexing requires to traverse the list from
the beginning each time an element is required. This implies that each call to
tab fib causes multiple traversals through the list to pick up the values that are
required for the computation of the different positions. Using an array instead
of a list improves efficiency by allowing direct access to any position.

Fibonacci turns out to be a good motivating example to show the power of
tabulation, but on the other hand it relies on a simple, linear data structure to
model the table. There are algorithms, however, that require more elaborated
tables to be used with tabulation. Indeed, several algorithms may use an under-
lying inductive structure, for example a tree, to store values on the nodes so that
they can be reused in future computations.

In this paper we focus on the design of the table. Our aim is to provide a
generic and efficient solution for the table design and manipulation that can be
uniformly used in many applications of the tabulation technique. Concretely,
the generic solution we propose is to represent the table as a zipper [5], a data
structure that provides efficient navigation through tree structures, allowing to
move left, right, up, or down within a tree.

Once we have the table represented as a zipper, our technique provides the
ways to move along the table in order to build the suspensions that are stored in
the table and reflect the outcomes of the original function. The assembly of the
table is carried out by a function, called zipWithZipper, which performs a sort
of zipWith between the table (the zipper) and the (virtual) structure of function
arguments that is traversed by the original function to compute each particular
result (e.g. the list of naturals that Fibonacci traverses when called on a certain
argument n). Again, a sophisticated use of lazy evaluation and circularity proves
to be an essential aspect to achieve an effective and elegant solution.

In the case of Fibonacci, the solution based on a zipper looks as follow:

tab_fib_Z n = focusL ( fibTab !> n )
where fibTab = zipWithZipperL fibm fibTab [ 0 . . ]

fibm _ 0 = 0
fibm _ 1 = 1
fibm z n = focusL ( z <! 1) + focusL ( z <! 2)
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Fig. 2. Performance of the Zipper-based Fibonacci

where the operators (<!) and (!>) make it possible to move left and right (resp.)
on the zipper a given number of times. Function focusL returns the zipper
focus, while zipWithZipperL (introduced in Sect. 3) denotes the particular case
of zipWithZipper where the construction of the table is performed by zipping
a zipper that navigates on a list and a list of indexes.

It is interesting to mention that, as shown in Fig. 2, the zipper-based version
of Fibonacci is competitive even with the array-based implementation.

The rest of the paper is structured as follows. In Sect. 2 we show how this
technique can be applied to optimize functions that navigate through tree-shaped
terms, delving into a concise and efficient embedding of Attribute Grammars. In
Sect. 3, we introduce the function zipWithZipper, which forms the backbone of
the technique. We also provide some generic instances of the function, that we
use in Sect. 4 to implement a complete example of Attribute Grammar. In Sect. 5
we analyze the performance of the programs obtained using this technique, iden-
tifying some cases when it is worth using it and others where it is not. Finally,
we discuss related work and conclude.

2 Zipper Tabulation of Functions on Trees

Zippers are mostly used to navigate tree-shaped terms. This leads us to the
question whether we can take advantage of the tabulation technique using zippers
in the context of functions on trees.

As an example, let us consider a solution to the classical repmin problem,
where a zipper is used to navigate through the tree. The goal of repmin is to
transform a binary leaf tree containing integers into a structurally identical tree,
where all leaves are replaced by the original’s tree minimum value.

Given a datatype representing binary leaf trees:

data Tree = Leaf Int | Fork Tree Tree
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Fig. 3. Recomputations of the Zipper-based repmin

we can define a zipper to navigate through trees of this type. The navigation
functions downT, upT, leftT and rightT move the focus in the given direction,
such that downT moves to the left-most child, upT moves to the parent, and
leftT and rightT move to the left and right sibling (resp.) if they exist. With
the function focusT we get the subtree currently being visited.

The following code implements a zipper-based solution to repmin:

repmin z = case focusT z o f
( Leaf _ ) → Leaf ( globmin z )
( Fork _ _ ) → Fork ( repmin ( downT z ) ) ( repmin ( ( rightT . downT ) z ) )

globmin z = i f isTopT z then locmin z e l s e globmin ( upT z )

locmin z = case focusT z o f
( Leaf x ) → x
( Fork _ _ ) → min ( locmin ( downT z ) ) ( locmin ( ( rightT . downT ) z ) )

Function repmin computes a new tree with the same shape as the original one,
but replacing the value of each leaf by the global minimum. The (global) min-
imum of the original tree is computed bottom-up by locmin, and distributed
top-down by globmin. Notice the use of the zipper functions to navigate to the
children in repmin and locmin, and to the parent in the case of globmin.

This implementation implies plenty of recomputations of the functions
locmin and globmin. In Fig. 3 we show the function calls to compute repmin to
the tree Fork (Leaf 2) (Fork (Leaf 1) (Leaf 5)) at the leaf with value 2
(left) and at the leaf with value 5 (right). We underlined the function calls that
are recomputed in the latter, which are a major source of inefficiency. The idea
is then to apply a technique like the one applied to Fibonacci in order to avoid
those re-computations.

In Fibonacci the table was indexed by a sequence of integers and therefore
could be implemented with a list. In contrast, in this case we want to store
computations on each node of a tree. To do so let us define a type TTree to
represent the table, which is isomorphic to the original tree but with values
attached at every node.

data TTree t = TLeaf t | TFork ( TTree t ) ( TTree t ) t

Now, using a function zipWithZipperT (introduced in Sect. 3), which zips
a zipper that navigates on trees of type TTree with a tree of type Tree, we
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Fig. 4. Performance of the tabulated repmin

can implement a tabulation-based version of repmin (following the same receipt
applied to Fibonacci), which generates a table with the suspended computations
and uses the zipper to navigate through it:

repmin t = focusRmin rmTab
where rmTab = zipWithZipperT ( app ( gmin , lmin , rmin ) ) rmTab t

rmin z ( Leaf _ ) = Leaf ( focusGmin z )
rmin z ( Fork _ _ ) = Fork ( ( focusRmin . downT ) z )

( ( focusRmin . rightT . downT ) z )

gmin z _ = i f isTopT z then focusLmin z
e l s e ( focusGmin . upT ) z

lmin _ ( Leaf x ) = x
lmin z ( Fork _ _ ) = min ( ( focusLmin . downT ) z )

( ( focusLmin . rightT . downT ) z )

In this case we have three mutually recursive functions instead of just one. Con-
sequently, each node of the table stores a triple of computations (one correspond-
ing to each function). Functions focusRmin, focusGmin and focusLmin, get the
focus and project the desired component of the triple. With app we define a
function that takes a triple of functions (gmin,lmin,rmin) and applies each
one to a zipper and a tree.

In this new version of repmin, we avoid all duplicated computations, resulting
in a significant improvement in efficiency. Figure 4 presents the execution times
of both versions of repmin for complete trees with depths ranging from 10 to
15. While the former grows exponentially, the latter presents times that are
relatively negligible.

2.1 Efficient Zipper-Based Attribute Grammars

Some readers may have already noticed that we have the ingredients to define an
embedding of Attribute Grammars [6,7]. Indeed, the zipper-based version coin-
cides with the zipper-based AG embedding proposed in [11]. Attribute Gram-
mars are a formalism used to define and compute attributes of nodes in a tree-like
structure. Attributes can be categorized as inherited and synthesized, where the
former propagate values downwards the tree, and can be seen as arguments of
the (evaluator) functions, while the latter compute values upwards the tree, and
correspond to results of the (evaluator) function. In the case of repmin, repmin
and locmin are synthesized attributes, while globmin is an inherited attribute.
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However, in order to have a proper AG embedding we must not only provide a
zipper that walks through a tree-shaped table, but also a zipper that (in parallel)
walks through the original tree, since some computations may depend on their
context. For instance, to compute an inherited attribute we might need to access
the parent and siblings of a given node. To motivate this kind of data dependency
let us define the following minimal expression language with let bindings:

data Expr = Lit Int | Var St r ing | Add Expr Expr | Let St r ing Expr Expr

An expression in this language can be either an integer literal, a variable, the sum
of two expressions or a let expression. We define the evaluation semantics in terms
of two attributes: a synthesized attribute, eval, that contains the value obtained
by evaluating the expression and an inherited attribute, env, that distributes the
variable environment, adding the bindings defined on let expressions.

eval zt ze = case focusE ze o f
( Lit x ) → x
( Var v ) → ( slookup v . focusEnv ) zt
( Add _ _ ) → focusEval ( zt .$ 1) + focusEval ( zt .$ 2)
( Let _ _ _ ) → focusEval ( zt .$ 3)

env zt ze
| isTopE ze = [ ]
| otherwi se = case ( ( focusE . parentE ) ze , parent zt ) o f

( Let x _ _ , zp ) → i f ze . ? 3
then ( x , focusEval ( zp .$ 2) ) : focusEnv zp
e l s e focusEnv zp

( _ , zp ) → focusEnv zp

Function eval implements the attribute of the same name. The arguments
zt and ze are both zippers, the former for the table and the latter for the
expression. By getting the focus of ze we obtain the node and thus determine
the kind of expression we are evaluating. For literals, the result is simply their
value. In case we use the value of an attribute, we get it from zt. The operator
(.$) navigates to the given child, and (.?) returns true if the given child exists.
For addition, the result is the sum of the eval attributes of the subexpressions,
whereas for let the result is the eval attribute of the third subexpresion. In case
of variables, we have to search the value of the variable in the environment env.

For the env attribute we have to analyze the zipper of the expression. If we
are at the top, then we return the empty environment. Otherwise, the environ-
ment to return depends on the parent. If the parent is a let expression, and
we are computing the environment of the third subexpression (ze .? 3), then
the resulting environment is the inherited env of the parent extended with the
new binding, which associates the variable x with the value of eval for the sec-
ond subexpression. In any other case the environment is just inherited from the
parent.

Finally we “tie the knot”, as we did in the previous examples. In this case we
use a version of zipWithZipper that navigates through two zippers in parallel.

semExpr : : Expr → Int
semExpr e = focusEval tab

where tab = zipWithZipper ( app ( eval , env ) ) tab ( toZipper e )
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Notice that this version of zipWithZipper is more general than the previ-
ous ones, in the sense that all the previous examples could have been written
following this same approach, by just applying the function to get the focus in
the cases we do not need the zipper. For example, tab fib Z (shown in Sect. 1)
can be rewritten as follows (assume fm is some function):

tab_fib_Z n = focus ( fibTab !> n )
where fibTab = zipWithZipper fibm ’ fibTab [ 0 . . ]

fibm ’ z zn = fm z ( focusL zn )
. . .

3 Zip with Zipper

In this section, we develop the zipWithZipper function to traverse two zippers
in parallel, potentially circularly. We demonstrate specific implementations to
identify common patterns before generalizing it.

In Sect. 1 we used zipWithZipperL to zip a zipper with a list, while con-
structing the resulting zipper. This function can be implemented as follows:

zipWithZipperL : : ( ZipperL a → b → c ) → ZipperL a → [ b ] → ZipperL c
zipWithZipperL f _ [ ] = emptyL
zipWithZipperL f z ( x : xs ) = consL ( f z x ) $

zipWithZipperL f ( ( fromJust . rightL ) z ) xs

where emptyL represents the zipper corresponding to the empty list, whereas
consL returns a new zipper which has (f z x) as focus.

Notice that, unlike in previous sections, the navigation function rightL now
returns the zipper as part of a Maybe type. In previous examples, we did not
want to introduce the noise of using error handling, but from now on, we will
use safe versions. The use of fromJust makes the function partial, as it is only
defined in cases where the length of the path through the list zipper (ZipperL)
is greater than or equal to the length of the list (x:xs). That is not a problem
in the context in which we use the function, as the zipper is constructed in a
circular manner from the list. Therefore, we say that the list traversal guides
the zipper traversal. It would indeed be a problem if we attempt to inspect the
zipper before building it. For instance, by defining the second equation in the
following way we would have made the function total:

zipWithZipperL f z ( x : xs ) = consL ( f z x ) zs
where zs = maybe [ ] (λz ’ → zipWithZipperL f z ’ xs ) ( rightL z )

but would not allow circularity, since we have to inspect the zipper we are con-
structing in order to determine if the rightL movement returns Just or Nothing,
generating thus a loop. However, if we want to be total anyway, allowing the use
of zipWithZipperL for contexts other than our own, a possible solution is to
change (fromJust . rightL) by (maybe z id . rightL), using for the last
calls the same zipper z. Notice that in doing so we are not inspecting the zip-
per while traversing, we are just generating suspended computations that will
provide the function f access to a specific place in the zipper when necessary.

Now, let us analyze zipWithZipperT, which was the function we used in
Sect. 2 to implement repmin.
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zipWithZipperT : : ( ZipperTTree a → Tree → b ) → ZipperTTree a → Tree
→ ZipperTTree b

zipWithZipperT f z t@ ( Leaf _ ) = toZipperT $ TLeaf ( f z t )
zipWithZipperT f z t@ ( Fork l r ) = toZipperT $ TFork ( fromZipperT zl ’ )

( fromZipperT zr ’ )
( f z t )

where zl = ( fromJust . downT ) z
zr = ( fromJust . rightT ) zl
zl ’ = zipWithZipperT f zl l
zr ’ = zipWithZipperT f zr r

Like in the case of lists, here it is the traversal on the tree that guides the
recursion. For the resulting zipper we are just generating computations that will
navigate through it once needed by the function f. In fact, both zipWithZipperL
and zipWithZipperT have the same structure: they recursively produce new
zippers for the children of the third argument and combine them in a new zipper
with the result of applying f to the actual zipper and value.

As we explained at the end of Sect. 2, a more general version of this last
function can be defined by using a zipper (ZipperTree) instead of a tree (Tree).

zipWithZipperTZ : : ( ZipperTTree a → ZipperTree → b ) → ZipperTTree a
→ ZipperTree → ZipperTTree b

zipWithZipperTZ f z zt = case children zt o f
[ ] → toZipperT $ TLeaf ( f z zt )
[ l , r ] → toZipperT $ TFork ( fromZipperT zl ’ ) ( fromZipperT zr ’ )

( f z zt )
where zl = ( fromJust . downT ) z

zr = ( fromJust . rightT ) zl
zl ’ = zipWithZipperTZ f zl l
zr ’ = zipWithZipperTZ f zr r

children z = maybe [ ] g ( downT z )
where g z ’ = [ z ’ , ( fromJust . rightT ) z ’ ]

With function children we obtain either the list of zippers pointing to the (two)
children or, in the case of a leaf, the empty list. Thus, we use the navigation
functions (downT and rightT) of the second zipper to guide the recursion.

3.1 zipWithZipper

We have already observed that the various versions of zipWithZipper essentially
perform the same operation: recursion over the children of the second structure,
providing a way to navigate the corresponding children in the first structure, and
combining the results with the result of applying function f to both structures.
This leads us to a unified implementation, where the variations that may occur
depending on the zipper used will be implemented as class instances.

The class Zipper contains the minimal interface we require of a zipper: a
way to construct a zipper from a structure, and four navigation functions.

c l a s s Zipper z where
type Root z
toZipper : : Root z → z
up , down , left , right : : z → Maybe z

c l a s s Zipper z ⇒ CombineZipper z where
type Info z
combine : : Info z → [ z ] → z
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The associated type Root z is the type of the structure we want to navigate
with the zipper z. Note that, despite being present in all zippers, the class does
not include functions for retrieving or modifying the focus. This is due to two
reasons: firstly, we do not need them for implementing zipWithZipper, and
secondly, their types can vary among different zippers. For example, the type of
the focus in a generic zipper does not have to be the same as the type of the
root.

The class CombineZipper represents a zipper we can construct by the com-
bination of some information (Info) with a list of zippers representing the sub-
structures (i.e. the children).

Based on these two classes and the pattern we identified in the previous
subsection, we can define a generic version of zipWithZipper:

zipWithZipper : : ( CombineZipper z , Zipper z ’ )
⇒ ( z → z ’ → Info z ) → z → z ’ → z

zipWithZipper f z zt = combine ( f z zt ) ( zipWith ($) fzs zs )
where fzs = mapZipper ( f l i p ( zipWithZipper f ) ) zt

zs = ( fromJust . down ) z : map ( fromJust . right ) zs

mapZipper : : Zipper z ⇒ ( z → b ) → z → [ b ]
mapZipper f z = maybe [ ] g ( down z )
where g z ’ = f z ’ : maybe [ ] g ( right z ’ )

As mentioned before, we combine the result of applying f to the actual zippers
with the recursive calls to the children. With mapZipper we apply the recursive
call to all the immediate children of the zipper zt, obtaining a list of functions
fzs. The functions in fzs will then be applied to the corresponding elements of
the list zs, which is the (potentially infinite) list of zippers that are obtained
by descending one level in zipper z. This list contains the zipper with the focus
on the first child of z’s focus, the focus on the second child, and so on. Sharing
makes that navigation to each element of the list starts from the previous one
and not each time from the root.

3.2 Tying the Knot

Finally, we can also abstract the tabulation process.

tabulate : : ( CombineZipper z , Zipper z ’ )
⇒ ( z → a ) → ( z → z ’ → Info z ) → Root z ’ → a

tabulate get f x = get tab
where tab = zipWithZipper f tab ( toZipper x )

3.3 A Generic Zipper Instance of zipWithZipper

Now that we have a general interface for zippers and a corresponding imple-
mentation of zipWithZipper based on it, we can define some useful instances.
The Generic Zipper [1] is a zipper implementation based on the Scrap your
Boilerplate [8–10] framework which operates over any1 possibly heterogeneous
tree-shaped type. Thus, if we provide an instance of our Zipper class for the

1 Provided the type is an instance of Data.
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Generic Zipper, we can then use our approach for any structure. The instance
is immediate:

i n s t ance Data t ⇒ Zipper ( GZ . Zipper t ) where
type Root ( GZ . Zipper t ) = t

toZipper = GZ . toZipper
up = GZ . up
down = GZ . down ’
left = GZ . left
right = GZ . right

3.4 A Generic Table

In the examples of Sect. 2 we had to define new datatypes, isomorphic to the
original trees, in order to represent the tables. This can be done in a more generic
way, by representing the tables with a Rose Tree.

data Rose t = Node t [ Rose t ]

This is somehow related to type erasure [9], where the generic function gmapQ is
used to render terms as trees, preserving their shapes. In our case the work is
done by the zipWithZipper function.

The instance of Zipper for Rose presents no surprises. The context stores
the left and right siblings of the focus and the context of the parent.

data ZipperRose a = ZR ( Rose a ) ( CtxR a )
data CtxR a = TopR | CtxR [ Rose a ] a ( CtxR a ) [ Rose a ]

i n s t ance Zipper ( ZipperRose t ) where
type Root ( ZipperRose t ) = Rose t
. . .

Then, for instance, to go left we obtain the focus from the list of left siblings
and store the former focus in the list of right siblings. To go down involves
moving the focus to the first element of the list of children of the node, and store
the rest as right siblings on the context. To go up we restore the Node based on
the information of the context.

The CombineZipper instance is also straightforward.

i n s t ance CombineZipper ( ZipperRose m ) where
type Info ( ZipperRose m ) = m

combine m zs = toZipper ( Node m (map fromZipperR zs ) )

fromZipperR : : ZipperRose a → Rose a
fromZipperR ( ZR t TopR ) = t
fromZipperR z = ( fromZipperR . fromJust . up ) z

4 The Expression Language Revisited

Now that we have all the ingredients defined, we use them in a more complex
example that involves heterogeneous trees. We extend the expression language
of Sect. 2 now allowing let expressions to include a list of bindings. Additionally,
we divided the Expr type in four different types.
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data Prog = Prog Expr
data Expr = EAtom Atom | EAdd Expr Expr | ELet [ Bind ] Expr
data Atom = Lit Int | Var St r ing
data Bind = Bind St r ing Expr

We do not need to define new instances of Zipper and CombineZipper
to implement this example. We use the defined instances for GZ.Zipper and
ZipperRose, which are generic. We only need to derive the Data instances for
the expression datatypes and define the different focus functions in order to
provide type information to select the instances. For instance, focus is just:

focus : : Typeable a ⇒ GZ . Zipper t → Maybe a
focus = GZ . getHole

Concerning the attributes, the synthesized attribute attEval for expression
evaluation is defined in the following way.

attEval = close $ evalP ‘ ext ‘ evalE ‘ ext ‘ evalA

evalP zt zp = do p ← focus zp
re turn $ case p o f

Prog _ → focusEval ( zt .$ 1)

evalE zt ze = do e ← focus ze
re turn $ case e o f

EAtom _ → focusEval ( zt .$ 1)
EAdd _ _ → focusEval ( zt .$ 1) + focusEval ( zt .$ 2)
ELet _ _ → focusEval ( zt .$ 2)

evalA zt za = do a ← focus za
re turn $ case a o f

Lit x → x
Var v → ( slookup v . focusIEnv ) zt

We use the Maybe monad in order to be able to define the different possible
alternatives for the attribute. Since the focus function will return Nothing in
case the type of the element in the focus does not coincide with the expected type,
we can implement all the alternatives in different functions, in a modular way,
and combine them using the Alternative instance of Maybe. This is performed
by the ext function, that also applies the two alternative functions to both
zippers. Once we have all the definitions, we close the attribute, assuming that
it will produce a Just value.

ext f g z t = f z t <|> g z t
close f z t = fromJust ( f z t )

Inherited attributes like attIEnv are computed from the parent to the chil-
dren. The function parents is used to go up in both the zipper of the expression
and the zipper of the tables, and get the focus of the first one, to distinguish the
different cases.

attIEnv = close $ iEnvP ‘ ext ‘ iEnvE ‘ ext ‘ iEnvL ‘ ext ‘ iEnvCpy

iEnvP zt z = do ( Prog _ , _ ) ← parents z zt
re turn [ ]

iEnvE zt z = do ( p , ztp ) ← parents z zt
re turn $ case p o f

ELet _ _ → i f z . ? 2 then focusSEnv ztp
e l s e focusIEnv ztp

_ → focusIEnv ztp
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iEnvL zt z = do ( p , ztp ) ← parents z zt
re turn $ case ( p : : [ Bind ] ) o f

_ : _ → i f z . ? 2 then focusSEnv ( ztp .$ 1)
e l s e focusIEnv ztp

iEnvCpy zt _ = return $ ( focusIEnv . parent ) zt

In case of a let expression, the inherited environment is distributed unchanged
to the list of bindings, while a new environment (senv) produced by the bindings
is distributed to the sub-expression. The behaviour is similar for the cons of
binding lists, meaning that the expressions in new bindings can use the bindings
previously defined.

The synthesized environment attribute sEnv is defined to collect the bindings
in the list.

attSEnv = close $ sEnvE ‘ ext ‘ sEnvL ‘ ext ‘ sEnvB

sEnvE zt ze = do e ← focus ze
re turn $ case e o f

ELet _ _ → focusSEnv ( zt .$ 1)

sEnvL zt zl = do l ← focus zl
re turn $ case l : : [ Bind ] o f

_ : _ → focusSEnv ( zt .$ 2)
[ ] → focusIEnv zt

sEnvB zt zb = do b ← focus zb
re turn $ case b o f

Bind x _ → ( x , focusEval ( zt .$ 2) ) : focusIEnv zt

We start at the end of the list (case []) with the inherited environment ienv,
and then on each cons we add the new binding.

Finally, we define the semantic function using tabulate.

semProg p = tabulate focusEval ( app ( attEval , attIEnv , attSEnv ) ) p

5 Performance

In this section we analyze the performance of zipper-based tabulation in different
scenarios, and compare it with existing alternatives. The idea is to identify cases
where it is worth using this technique and cases where it is not.

In Sect. 1 we showed that the execution time of zipper-based versions of
functions like Fibonacci is comparable to the obtained using arrays. An elegant
aspect of lazy tabulation is that it enables the construction of a data structure
consisting of deferred computations, activating only the necessary ones when
demanded. This facilitates the representation of functions that utilize “future”
computations (i.e., accessing values further ahead in the table) as long as the
dependencies between computations are non-circular. We show a function called
Foobonacci that exhibits these characteristics.

foo n | n <= 6 = 1
| n ‘mod ‘ 5 == 0 = foo ( n−8)
| n ‘mod ‘ 5 == 1 = foo ( n−9)
| otherwi se = foo ( n+1) + foo ( n+2)
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Fig. 5. Performance of Foobonacci

Fig. 6. Performance of semProg when tabulation is needed

In Fig. 5, it can be seen that also in the case of Foobonacci the zipper version
presents much better times than those using lists. We are still quite competitive
with the array version, which performs better but it has the flaw that it cannot
be produced trivially, since some care has to be taken when choosing the array
boundaries. This is an important advantage of using zippers compared to arrays:
there is no need to set bounds, allowing us to work with (potentially) infinite
structures.

With respect to tree traversals, we have shown in Fig. 4 of Sect. 2, that in
the case of repmin avoiding duplicated computations has an important gain in
performance.

Of course, the use of tabulation also has its costs. On the one side we can
observe in Fig. 6 the comparison of execution times of a tabulated and a non-
tabulated version of semProg (from Sect. 4) when the expression represents a
program with the form: let x1 = 1 ... xn = n in x1 + ... + xn. In the
non-tabulated version, every occurrence of a variable involves recomputing the
environment, thus the tabulated version performs significantly better. On the
other hand, in expressions where no recomputations are needed, like let x1
= 1 ... xn = n in 1 ... + n, the non-tabulated version clearly outperforms
the tabulated one (see Fig. 7). However, it is important to note that for similar
expressions the worst case for the non-tabulated version is approximately 200ms,
whereas for the tabulated version is of around 3ms. So, the cost associated with
tabulation is worth paying in order to avoid worse performance issues.

The zipper-based approach is useful when long list searches can be substi-
tuted by short zipper traversals in the neighbourhood of the focus. In other cases,
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Fig. 7. Performance of semProg when tabulation is not needed

Fig. 8. Performance of fibMid

the cost of using a zipper is not justified. To illustrate this, we define another
Fibonacci-like function that instead of calling the recursion with n−1 and n−2
it halves n. Figure 8 shows the results.

fibMid 0 = 0
fibMid 1 = 1
fibMid n = fib ( n ‘ div ‘ 2) + fib ( n ‘ div ‘ 2 −1)

Another case where it does not seem wise to use the zipper-based approach is
when tabulation involves a matrix, since the zipper is not an efficient structure
to move through it. For instance, if the matrix is implemented as a list of rows,
moving up and down involves moving all along the actual row to the left and then
back right in the upper row. A well-known example of such case is the knapsack
problem, which involves finding the maximum profit obtained by introducing
some subset of n objects with given weights (ws) and profits (ps) in a knapsack
with capacity c.

knapsack 0 c = 0
knapsack n c | c<ws ! n = knapsack ( n−1) c

| otherwi se = max ( knapsack ( n−1) c )
( knapsack ( n−1) ( c−ws ! n ) + ps ! n )

We show in Fig. 9 the times of executing snackpack with 100 objects, respec-
tive weights [1..100], profits [100..1], and capacity 500. It is clearly more
efficient to use a list of lists as table than to use a zipper of them.

6 Related Work

Tabulation is a well-known and commonly used optimization technique in the
context of dynamic programming. Our work is based on what Bird [2] called
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Fig. 9. Performance of knapsack

exact tabulation, in contrast to a more fine grained tabulation technique based
on the analysis of the dependency graph. Pareja-Flores et. al. [12] proposed a
transformation tactic to convert recursive functions into tabulated ones based
on arrays. In the case of exact tabulation (that they call total tabulation), it
corresponds to the technique we showed in the introduction. In our work we
adapted the standard tabulation technique to be used with zippers as tables,
changing from absolute to relative addressing on the tables. To deal with the
genericity of the tables we introduced the classes Zipper and CombineZipper
and a function zipWithZipper to construct them. Based on a different approach,
Bird [3] investigated the systematic derivation of tabulation versions for recursive
functions that satisfy certain conditions. Similar to us he put the focus of his
analysis on the tree structure one can form with the successive arguments to the
recursive calls.

The use of zippers to embed attribute grammars in a functional setting is
proposed in [11] as the ZipperAG embedding, which has been extended with
memoization to avoid attribute re-computations [4]. In those works a set of
domain-specific zipper-based combinators were introduced to express attribute
grammars. Our zipper-based tabulation technique offers for free the expressive-
ness of those AG combinators. As we showed in Sects. 2 and 4 we can express
AGs directly in our setting without having to introduce AG specific combina-
tors/notation. In our embedding attributes have to be closed in order to be
evaluated and stored in the table, while ZipperAG implements the attribute
calls as function applications. On the other hand, ZipperAG needs to model
attribute computations as computations in the State monad in order to perform
memoization.

7 Conclusions

We have adapted the tabulation technique to be used with zippers as tables. It
showed to be particularly useful to represent recursive functions whose recursive
calls are performed on closely situated arguments within the function domain.
We have also defined generic instances of the needed ingredients in order to avoid
having to define boilerplate code. This technique can also be applied to avoid
duplicated computations of functions that use the zipper to traverse tree-shaped
terms. This delves to a concise and efficient zipper-based embedding of attribute
grammars.
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8. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, pp. 26–37. TLDI
2003, Association for Computing Machinery, New York, NY, USA (2003). https://
doi.org/10.1145/604174.604179
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Abstract. Over 20 years ago, Peyton Jones et al. embarked on an
adventure in financial engineering with their functional pearl on “Com-
posing Contracts”. They introduced a combinator library—a domain-
specific language—for precisely describing complex financial contracts
and a formal denotational semantics for computing their value, for which
they briefly sketched an implementation.

This paper reworks the design of their library to make the central
datatype of contracts less ad-hoc by giving it a well-understood alge-
braic structure: the semiring. Then, interpreting a contract’s worth as a
generic semiring homomorphism directly gives rise to a natural seman-
tics for contracts, of which computing the (monetary) value is but one
instance.

Keywords: semiring · financial contract · domain-specific language

1 Introduction

Consider the following contract from “Composing Contracts” [6]:

C The right to choose on 30 June 2000 between:
C1 Both of: C11 Receive $100 on 29 Jan 2001.

C12 Pay $105 on 1Feb 2002.
C2 An option exercisable on 15 Dec 2000 to choose one of:

C21 Both of: C211 Receive $100 on 29 Jan 2001.
C212 Pay $106 on 1 Feb 2002.

C22 Both of: C221 Receive $100 on 29 Jan 2001.
C222 Pay $112 on 1 Feb 2003.

This simplified contract is representative of those that commonly occur in the
finance industry. A key insights is that larger contracts, such as C, are created
by composing smaller contracts, such as C1 and C2.

The finance industry employs an extensive vocabulary for describing specific
forms of financial contracts (swaps, futures, caps, floors, American options, and
European options, to list but a few). As Peyton Jones et al. [6] say “Treating
each of these individually is like having a large catalogue of prefabricated com-
ponents. The trouble is that someone will soon want a contract that is not in
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the catalogue.” The benefit of realising and exploiting the compositional nature
of contracts is that we can describe and reason about a vast class of complex
contracts with only a small set of primitive combinators. Indeed, with only ten
combinators, Peyton Jones et al. manage to express a wide variety of contracts.

The design of a combinator library can be helped immensely by relying on
algebraic abstractions (e.g., [8]). Therefore, a natural question is if there is a suit-
able abstraction for financial contracts. This paper focuses on such an abstrac-
tion: the semiring (also called a rig). A semiring is a set equipped with two
operations and two identities for those operations, satisfying certain axioms.
Semirings capture a large variety of concepts, e.g., natural, integer and real
numbers, polynomials, gradients, probabilities, and tropical semirings.

The key idea of this paper is that contracts also form a semiring. The two
primary ways of combining contracts (“Choose between” and “Both Of”) are
associative and commutative. Both operations have identities, the first of which
is the second’s annihilator. Finally, “Both Of” distributes over “Choose Between”.

To give a precise meaning to the monetary value of a contract, Peyton Jones
et al. [6] define a denotational semantics of the combinators in terms of so-called
“value processes”, i.e., time-varying probabilistic processes. Here too, we can
take inspiration from mathematics, by reimagining the semantics as a universal
semiring homomorphism, i.e. a structure-preserving function from contracts to
any semiring (equipped with inverses). In other words, the contract semiring is
the initial object with respect to such semirings. In essence, this defines a fam-
ily of correct-by-construction interpretations for contracts where the particular
interpretation depends on the targeted semiring. Thus, we can instantiate new
interpretations for contracts, simply by plugging in semirings from the literature.
Notably, the tropical semiring coincides with the original semantics.

We make the following changes to Peyton Jones et al. [6]’s contract library:
(1) a new annihilator contract, expired; (2) a new combinator both, that
replaces and; and (3) a small change to the meaning of expiry date and the
related truncate-primitive. These changes make contracts into a semiring, with-
out losing expressivity. Reviewer 1 characterizes them as follows: “Computation-
ally, they are every bit as reasonable as the originals, syntactically they are no
harder, and semantically they are much more understandable and satisfying.”

Moreover, we give a universal definition of a homomorphism from contracts to
any semiring that has a multiplicative group, i.e., whose multiplicative operation
is invertible. Assuming that such a semiring admits a useful financial model, this
definition subsumes the original denotational semantics. This paper is written in
Literate Haskell, but a more complete implementation of the combinator library
is available at https://github.com/tschrijv/RiggedContracts.

2 The Contract Library

This section presents the contract combinator library, which is inspired by—but
not identical to—that of Peyton Jones et al. Our running example contract is
the zero-coupon bond, one of the simplest contracts in the finance industry:

https://github.com/tschrijv/RiggedContracts
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zcb :: Time -> Double -> Currency -> Contract obs
c0 = zcb (date "21 Apr 2020") 100 EUR

Contract c0 entitles its holder to receive 100 EUR on the April 21, 2020. The zcb
function takes a time, a Double amount and a Currency; and it returns a value
of type (Contract obs).1 A Currency is a sum type of different currencies, e.g.:

data Currency = EUR | GBP | ...

We assume a given function date :: String -> Time that turns a textual
representation of a date into a value of the type Time, which is defined in Sect. 3.1.

2.1 Acquisition Date and Expiry Date

To give a precise description of the contract combinators, we must first define two
technical notions: the acquisition time2 and the expiry date. For the purposes of
this paper, a contract is a legally binding agreement between the holder of the
contract and another party. Acquiring a contract means that the holder enters
into a legally binding agreement with the other party, with legal consequences
for both parties that stem from the rights and obligations it mentions. These
consequences depend on the acquisition time, the time at which the contract is
acquired. For example, the contract c0 above is worth a lot less if it is acquired
on the 22nd of April, 2020 than if it is acquired on the 19th of the same month,
because obligations and rights before the acquisition time have no effect.

Complementary to the acquisition time is the contract’s expiry date. The
expiry date is defined as the earliest point in time at which a contract can no
longer be acquired. This differs subtly from the concept of a horizon as defined
by Peyton Jones et al. [6], which is the latest time at which it can be acquired.
We use the term “expiry date” rather than “horizon” to emphasise this distinc-
tion. This small—but crucial—difference is necessary to equip contracts with a
semiring (see Sects. 3.2 and 4.3). A contract’s expiry date is an innate property
that is completely specified by its definition (see Fig. 1). However, a contract’s
consequences may extend well beyond its expiry date. Consider a contract that
confers “the right to decide on Dec 26, 2020 whether or not to acquire contract
C”. This contract must be acquired before Dec 26, 2020—its expiry date—but
the underlying contract C may have consequences much later than Dec 26, 2020.
This kind of contract is called an option.

Figure 1 describes each primitive contract combinator in an informal man-
ner.3 The relevant parts of the description that differ from Peyton Jones et al.’s
due to our definition of the expiry date are underlined.

2.2 Discount Bonds

To illustrate the combinator library, let us reconsider the zero-coupon bond, zcb,
which, it turns out, is not a primitive. It is defined as follows:
1 The meaning of the obs parameter is explained in Sect. 2.2.
2 Also called the acquisition date.
3 Backquotes turn a function into an infix operator, e.g., x ‘f’ y = f x y.



102 A. Vandenbroucke and T. Schrijvers

expired :: Contract obs
This contract expires at the epoch, the first moment in time. Because
the contract is always expired, it is not acquirable.

zero :: Contract obs
zero is a contract that may be acquired at any time. It conveys
neither rights nor obligations, and never expires.

one :: Currency -> Contract obs
(one k) is a contract that immediately pays the holder one unit of
the currency k. The contract never expires.

give :: Contract obs -> Contract obs
To acquire (give c) is to acquire all c’s rights as obligations and
vice versa. It expires when the underlying contract expires.

both :: Contract obs -> Contract obs -> Contract obs
If you acquire both c1 c2, then you immediately acquire both c1
and c2 unless either c1 or c2 has expired, in which case you acquire
neither. The composite contract expires when either c1 or c2 expires.

or :: Contract obs -> Contract obs -> Contract obs
If you acquire (c1 ‘or‘ c2) then you must immediately acquire c1
or c2 (but not both). If either has expired, that one cannot be ac-
quired. When both have expired, the compound contract has expired.

truncate :: Time -> Contract obs -> Contract obs
(truncate t c) is exactly like c except that its expiry date is the
earlier of t and the expiry date of c. Notice that truncate limits only
the possible acquisition datesof c; it does not truncate c’s rights or
obligations, which may extend beyond t.

thereafter :: Contract obs -> Contract obs
If you acquire (c1 ‘thereafter‘ c2) and c1 has not expired, then
you must acquire c1. If c1 has expired and c2 has not, you must
acquire c2. The compound contract expires when c1 and c2 expire.
(Called “then” in the original paper, a reserved Haskell keyword.)

scale :: obs -> Contract obs -> Contract obs
If you acquire (scale o c), then you immediately acquire a contract
just like c, except that all rights and obligations of c are multiplied
by the value of the observable o at the moment of acquisition. The
scaled contract expires when the underlying contract expires.

get :: Contract obs -> Contract obs
If you acquire (get c) then you must acquire c just before it expires.
The new contract expires when the underlying contract expires.

anytime :: Contract obs -> Contract obs
If you acquire (anytime c) then you must acquire c, but you can do
so at any time (from the acquisition of (anytime c) onwards) before
c expires. The new contract expires when the underlying contract
expires.

Fig. 1. Contract Combinators
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zcb :: Time -> r -> Currency -> Contract (Time -> r)
zcb time amount currency = scaleK amount (get (truncate time (one currency)))

At its core is the one contract:

one :: Currency -> Contract obs

Acquiring (one EUR) at any time immediately gives you d1. However, suppose
instead that we want to receive d100 at a specific time, and not earlier. First,
to fix the time, we combine get and truncate, to get a contract that gives you
d1 at a specific time t:

get (truncate t (one EUR))

The truncate combinator trims (one EUR)’s expiry date to t, so that it can
only be acquired before t, and get forces truncate t (one EUR) to be acquired
at the last possible moment, i.e. just before t. The combined effect is the desired
one, namely that by acquiring this contract at any time before t, the holder will
receive one euro at t.

Second, to receive d100, not d1, we must scale up the contract by a factor of
100. This scaling is achieved with the auxiliary combinator scaleK, which builds
on the primitive combinator scale:

scaleK :: r -> Contract (Time -> r) -> Contract (Time -> r)
scaleK x c = scale (const x) c

The contract (scale obs c), when acquired at time t, scales all the rights
and obligations of c by the value of the observable obs at time t. Observables
are time-varying quantities like a particular stock price, interest rate, or even
temperature. For simplicity, this paper represents observables as functions of
type (Time -> r). The scaleK combinator simply uses a constant function, i.e.
scales with a constant factor.

2.3 Composing Contracts

So far, we have seen combinators that create new contracts by modifying a
single contract in some way (e.g., truncating its expiry date or scaling its value).
Another way to create contracts is by composing several into a larger contract.
A straightforward way of combining two contracts c1 and c2 is by creating a
new contract that confers the rights and obligations of both c1 and c2. This is
accomplished by the both combinator (see Fig. 1):

both :: Contract obs -> Contract obs -> Contract obs

Upon acquiring both c1 c2, you must immediately acquire both c1 and c2,
unless either c1 or c2 has expired, in which case you acquire neither. The com-
pound contract expires when either c1 or c2 expires. For example, the following
is a contract that entitles you to receive d100 at time t1, and d100 more at t2:

both (zcb t1 100 EUR) (zcb t2 100 EUR)
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Another way to combine contracts is to introduce a choice between two con-
tracts: upon acquiring the contract (c1 ‘or’ c2) you must immediately acquire
either c1 (if it has not expired) or c2 (if it has not expired), but not both. The
compound contract expires when both c1 and c2 have expired. This operator is
commutative: choosing between c1 and c2 is equivalent to choosing between c2
and c1.

For example, the following contract entitles you to receive d100 at time t1,
or d200 at time t2:

zcb t1 100 EUR ‘or‘ zcb t2 200 EUR

The available choices are determined by the acquisition time: if you acquire the
contract above after t1, but before t2, only the second contract is still available.
You cannot choose to do nothing.

Nevertheless, the option to do nothing is useful to have, and it is captured
by the zero contract, which confers neither rights nor obligations. For example,
it allows a style of contract, called a European option that bestows the right to
decide, at a particular time, whether or not to acquire some underlying contract:

european :: Time -> Contract obs -> Contract obs
european t c = get (truncate t (c ‘or‘ zero))

We see that we first introduce a choice between acquiring c and doing nothing
(zero). Next, we truncate the expiry date of the choice to t and use get to
enforce that the choice is made just before t.

Recall that contracts are agreements between two parties. Thus, it seems
rather unfair that the one combinator only pays the holder, and not the other
party. This situation is reversed by the give combinator: (give c) is the con-
tract c, with the rights and obligations reversed. For example, the following is a
contract whose holder receives d100 at time t1, and pays d200 at time t2:

both (zcb t1 100 EUR) (give (zcb t2 200 EUR))

Note that give also changes who makes the choices. E.g., in the following,

give (european t1 (give (zcb t2 200 EUR)))

the other party decides whether the holder of the contract receives d200.

Both vs. And. Instead of both, we could define a similar combinator and: if
you acquire (c1 ‘and’ c2), you acquire both c1 (unless it has expired) and
c2 (unless it has expired), and the compound contract expires only when both
c1 and c2 have expired. That is, one contract expiring does not prevent you
from acquiring the other contract. The both combinator enforces a stronger tie
between two contracts: For instance, suppose contract c1 obliges the holder to
pay a certain amount, and c2 obliges the holder to receive a certain amount,
then (both c1 c2) ensures that no money is received (c2) without the required
payment (c1). On the other hand, (c1 ‘and’ c2) may seem more flexible.

However, unlike in Peyton Jones et al.’s library, where and is defined as a
primitive, in our library, the behaviour of and can instead be recovered from
both and or by acquiring (both c1 c2) before it expires, or afterwards picking
up the remaining contract with (c1 ‘or’ c2):



Declarative Pearl: Rigged Contracts 105

and :: Contract obs -> Contract obs -> Contract obs
c1 ‘and‘ c2 = (both c1 c2) ‘thereafter‘ (c1 ‘or‘ c2)

The thereafter combinator (see Fig. 1) composes contracts sequentially: it
blocks the acquisition of a contract until another contract has expired. More
precisely: if you acquire (c1 ‘thereafter’ c2), you must acquire c1, unless
c1 has expired, in which case you must acquire c2. Consider, for instance:

zcb t1 200 EUR ‘thereafter‘ zcb t4 300 EUR

If it is acquired before t1, it entitles you to receive d200 on t1. If it is acquired
on or after t1, but before t4, it entitles you to receive d300 on t4.

Choosing When. The or combinator allows the holder to choose which of two
contracts to acquire. Conversely, the anytime combinator allows the holder to
choose when to acquire a contract. More precisely, if you acquire (anytime c),
then you must acquire c, but you are free to do so at any time after the acqui-
sition date and before c expires. This allows the contract language to express
an American option. Unlike the European option, an American option not only
allows you to decide whether to acquire an underlying contract, but also when
to do so (within a specific time interval):

american :: Time -> Time -> Contract obs -> Contract obs
american t1 t2 c = beforeT1 ‘thereafter‘ afterT1 where

beforeT1 = get (truncate t1 afterT1)
afterT1 = anytime (truncate t2 (zero ‘or‘ c))

There are two parts to this contract. The first part, beforeT1, prevents the
acquisition of c until t1: if the option is acquired before t1, all it does is ensure
you acquire afterT1 at t1. Otherwise, if the option is acquired after t1, afterT1
is acquired directly. This contract then allows you to choose whether and when
to acquire c—until t2, when the option expires.

3 Instant Semiring, Just Add Expired

Having introduced all the necessary combinators, we now recall the definition of
a semiring and then explain how to equip contracts with a semiring structure.

3.1 Definition of a Semiring

A semiring is an algebraic structure defined as follows:

Definition 1 (Semiring). A semiring (R,+,×, 0, 1) is a set R equipped with
two operations + and × and elements 0, 1 ∈ R such that + and × are associative,
with identities 0 and 1, respectively. Additionally, + is commutative, 0 is the
annihilator for ×, and × distributes over + on the left and right.
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That is, + and × are monoids (they are associative and each have a neu-
tral element). Additionally, + commutes, but × does not have to. For instance,
square-matrix multiplication is a semiring, even though matrix multiplication is
not commutative (unless the matrices are invertible). Annihilation and distribu-
tivity ensure that + and × are compatible.

In Haskell, we capture semirings in the following Semiring type class:

class Semiring r where
nil :: r
unit :: r
plus :: r -> r -> r
times :: r -> r -> r

instance Semiring Double where
nil = 0
unit = 1
plus = (+)
times = (*)

Numeric Semirings. The natural numbers, integers and real numbers form semir-
ings, with their standard notions of addition and multiplication. For instance,
we can define the above instance for Double.4

Tropical Semirings. A more exotic variant of a semiring is the Tropical Semiring.
The max(resp. min)-tropical semiring consists of the real number line extended
with negative (resp. positive) infinity. Addition is defined by taking the maximum
of its arguments, and multiplication is addition of the extended real numbers.
In Haskell, we provide a slightly more general definition:

data Max a = NegInfty | Max a deriving (Eq,Ord,Show,Functor)
data Min a = Min a | PosInfty deriving (Eq,Ord,Show,Functor)

instance (Ord a, Semiring a) => Semiring (Max a) where
nil = NegInfty
unit = Max nil
plus = max
Max a ‘times‘ Max b = Max (a ‘plus‘ b)
_ ‘times‘ _ = NegInfty

-- instance Semiring Min omitted for brevity

Time Semiring. The natural numbers extended with positive infinity possess an
alternative semiring, by setting + to max and × to min. This proves to be a
convenient definition of time:

data Time = Finite Int | Infinite deriving (Eq,Ord,Show)

instance Semiring Time where
nil = epoch ; unit = Infinite
plus = max ; times = min

Thus, Time is an ordered series of discrete points, beginning at the epoch, and
extending infinitely into the future.

4 In reality, floating point numbers such as Double do violate semiring axioms due to
rounding errors. Here, we stick with Doubles for simplicity.
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epoch :: Time
epoch = Finite 0

previous :: Time -> Maybe Time
previous (Finite t) | t > 0 = Just (Finite (t - 1))
previous _ = Nothing

Every point in time has a previous time, except epoch and Infinite. The
major implication is that a contract that expires at the epoch is unobtainable,
since a contract must be acquired strictly before its expiry date.

3.2 The Contract Semiring

The contract combinators or and both form a semiring. The former is +, the
latter ×. From their informal descriptions, it is quite easy to see that both
operators are associative and commutative, and that both distributes over or.
These properties can be proved formally using the semantics defined in Sect. 4.

The identity contract for both is zero. Intuitively, acquiring (both c zero)
acquires exactly the rights and obligations of c, with exactly the same expiry
date, since zero has neither rights nor obligations, and has an infinite expiry
date. Symbolically,

both c zero = c.

The identity for or is the contract expired, which expires at the epoch, mean-
ing that actually obtaining expired is impossible. To see why this is the neutral
element, consider that upon acquiring (c ‘or’ expired), one must acquire
either c or expired. Because expired expires at the epoch, the only permissible
option is to acquire c, symbolically,

c ‘or’ expired = c.

Additionally, expired annihilates any other contract with respect to both:
because (both expired c) expires when the most short-lived contract expires,
it expires when expired does, at the epoch. But this exactly matches the defi-
nition of expired, symbolically,

both c expired = expired.

These four combinators give rise to the following semiring instance:

instance Semiring (Contract obs) where
nil = expired ; unit = zero
plus = or ; times = both

3.3 Beyond Semirings: Groups

A group is a fundamental algebraic concept which captures the notion that a
binary operator is invertible. In particular, it is useful to formalise the idea
that some contracts cancel each other, for example (one EUR) and (give (one
EUR)). Formally, a group is defined as:
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Definition 2 (Group). A group (R,+, 0,−) is a monoid (R,+, 0) equipped
with an operation (−) : R → R such that for all a ∈ R: a + −a = 0 = −a + a.

Groups pervade mathematics. For instance, integer or real addition form groups
with negation, and real multiplication forms a group with the reciprocal, to
give but two straightforward examples. Generally, two kinds of groups can be
distinguished in a semiring, depending on whether they arise from the additive
operator (+) or from the multiplicative operator (×).

For example, the natural numbers have neither additive nor multiplicative
inverses; the integers have an additive inverse, but no multiplicative inverse;
and the rationals have both, as do the reals. Tropical semirings do not have an
additive group, but they have a multiplicative one, which is the additive group
of the underlying semiring. The Time semiring has no groups.

Formally, these groups are defined as follows:

Definition 3. Let (R,+,×, 0, 1) be a semiring.

– The semiring has an additive group if there exists an additive inverse (−)
such that (R,+, 0,−) is a group.

– The semiring has a multiplicative group if there exists a multiplicative inverse
(·)−1 such that (R\{0},×, 1, (·)−1) is a group.

– A semiring that has an additive group is called a ring. (For this reason a
semiring is sometimes also called a rig, i.e. a ring without negatives.)

– A semiring with both an additive and a multiplicative group is called a field.

Notice that an additive group has all of R as its underlying set, but a multiplica-
tive group only has R without 0. This situation is analogous to the real numbers
and other fields, where division by zero is undefined.

The Contract semiring has a (multiplicative) group: the inverse of a contract
c is the contract (give c), which reverses the rights and obligations of the
two parties. Indeed, if one party acquires c, the other party acquires (give c)
at the same time. Note that give changes the primary actor of a contract: if
one party makes a choice (e.g. c1 ‘or’ c2) in c, the other party is entitled to
make that choice in (give c). This means that acquiring (both c (give c))
is equivalent to acquiring zero, since acquiring (give c) cancels out the rights
and obligations of any contract c that is not expired.5

In Haskell, we define the type classes Additive and Multiplicative for
semirings with an additive and multiplicative group, respectively:

class Semiring r => Additive r where neg :: r -> r
class Semiring r => Multiplicative r where inv :: r -> r
instance Multiplicative (Contract obs) where inv = give

Section 4.4 and below also need instances for Double and Max (Max has a multi-
plicative group if the underlying semiring has an additive group).6

5 give need not cancel out expired, since the annihilator of the semiring is excluded
from the multiplicative group.

6 The partial inv is acceptable since the annihilator, NegInfty, need not be invertible.
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instance Additive Double where neg = negate
instance Multiplicative Double where inv = recip
instance (Ord r, Additive r) => Multiplicative (Max r) where

inv (Max x) = Max (neg x)

All is now in place to formally define the denotational semantics of a contract.

4 Denotational Semantics: Expiry Date and Worth

This section presents the denotational semantics of the contract language as
implemented in Haskell, using a deep embedding [4]. In this style of embedding,
the abstract syntax tree of the contract language is explicitly reified as a Haskell
data type Contract that has a constructor for each primitive:

data Contract obs
= Zero
| Both (Contract obs) (Contract obs)
| Or (Contract obs) (Contract obs)
| Give (Contract obs)
| Truncate Time (Contract obs)
| Thereafter (Contract obs) (Contract obs)
| One Currency
| Scale obs (Contract obs)
| Get (Contract obs)
| Anytime (Contract obs)

Observe that expired is not a primitive, it can be defined as:

expired = truncate epoch zero

The appendix derives this equation from the denotational semantics using
straightforward equational reasoning. The denotational semantics itself consists
of two distinct parts: a contract’s expiry date and its worth (e.g., monetary
value).

4.1 A Contract’s Expiry Date

The expiry function in Fig. 2 calculates the earliest point at which its argument
contract can no longer be acquired. The definition has a case for each constructor
of Fig. 1. Moreover, the expiry date of expired is:

expiry expired = expiry (truncate epoch zero)

= min (expiry zero) epoch

= epoch (E1)

Recall that Time is a semiring, where nil is epoch, unit is Infinity, times is
the minimum, and plus is the maximum. Then, looking at Equation (E1) and
lines 2, 3 and 4 in Fig. 2, it follows that expiry preserves the semiring structure:
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1 expiry :: Contract obs -> Time
2 expiry Zero = Infinite
3 expiry (Both c1 c2) = min (expiry c1) (expiry c2)
4 expiry (Or c1 c2) = max (expiry c1) (expiry c2)
5 expiry (Give c) = expiry c
6 expiry (Truncate t c) = min (expiry c) t
7 expiry (Thereafter c1 c2) = max (expiry c1) (expiry c2)
8 expiry (One c) = Infinite
9 expiry (Scale o c) = expiry c

10 expiry (Get c) = expiry c
11 expiry (Anytime c) = expiry c

Fig. 2. Expiry Date

it (recursively) maps the nil, unit, times and plus of the contract semiring
to their counterparts in the Time semiring. Such a structure-preserving function
is called a (semiring) homomorphism. Because it preserves the compositional
nature of its argument, a homomorphism enables modular equational reasoning
about contracts.

4.2 The Bottom Line

As a rule, a contract is acquired because it is worth something to its holder.
How much depends on the real-world financial context and the time at which
it is acquired. This value is computed by the function worth (Fig. 3). The main
work is done by the local function go (lines 11–23). By design, go only returns
non-nil values before the contract’s expiry date, and nil ever after:

go c t = nil ⇐ t ≥ expiry c (W1)

Before the contract expiry date, go satisfies the following properties:

go expired t = nil (W2)
go zero t = unit (W3)

go (both c1 c2) t = go c1 t ‘times’ go c2 t (W4)
go (c1 ‘or’ c2) t = go c1 t ‘plus’ go c2 t (W5)

go (give c) t = inv (go c t) (W6)

Equations (W2–W6) state that go is a multiplicative semiring homomorphism.
That is, the worth of a contract is always interpreted in a generic multiplicative
semiring, such that go preserves the contract’s semiring structure (W2–W5) and
multiplicative inverses (W6). Equation (W2) is somewhat redundant: it follows
from Equation (W1) that go maps expired to nil.
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1 data Financial r obs =
2 Financial { exch :: Currency -> Time -> r
3 , disc :: Time -> r -> Time -> r
4 , snell :: (Time -> r) -> Time -> r
5 , eval :: obs -> Time -> r -> r }
6

7 worth :: Multiplicative r => Financial r obs -> Contract obs -> Time -> r
8 worth (Financial exch disc snell eval) = go where
9 go c time | time >= expiry c = nil

10 go Zero time = unit
11 go (Both c1 c2) time = go c1 time ‘times‘ go c2 time
12 go (Or c1 c2) time = go c1 time ‘plus‘ go c2 time
13 go (Give c) time = inv (go c time)
14 go (Truncate t c) time = go c time
15 go (Thereafter c1 c2) time | time < expiry c1 = go c1 time
16 | otherwise = go c2 time
17 go (One k) time = exch k time
18 go (Scale o c) time = eval o time (go c time)
19 go (Get c) time | Just t <- horizon c = disc t (go c t) time
20 | otherwise = nil
21 go (Anytime c) time | Just t <- horizon c = snell (go c) time
22 | otherwise = nil
23 horizon = previous . expiry

Fig. 3. Worth

Implementation. Let us now look at each line of go in detail. Line 9 implements
Equation (W1). Lines 10–13 implement Equations (W3–W6). In Line 14 the
worth of truncate t c is simply the worth of c, because line 9 has already
checked that time is less than the expiry date. In Lines 15 and 16 the worth of
(c1 ‘thereafter’ c2) is the worth of c1 if time has not yet passed the expiry
date of c1, otherwise it is the worth of c2.

So far, all the cases have been nicely generic. However, to define the remaining
cases, we must introduce a financial model into our abstract mathematics. This
model consists of the data type Financial, which contains all the finance-specific
know-how. This knowledge is expressed in a specific currency k’, for instance
exch k t is the value, expressed in k’ of one unit of currency k, at time t.
There are some properties that the components exch, disc and snell must
satisfy. For brevity, we refer the interested reader to the original [6] for their
definitions. The meaning of these components is best explained by their usage in
lines 17–23. For instance, line 17 says that the worth of obtaining one unit of a
specific currency k is exch k t, the value at time t of one unit of k expressed in
the financial model’s currency k’. Next, line 18 defines the worth of (scale o
c) by evaluating the observable o at time and multiplying it with the c’s worth
at time. This scaling operation is captured by the function eval.

The last two cases are identical to the version in the original paper: The
penultimate case computes the worth of (get c) (line 19 ), which is the value
of the contract c when it is acquired (t), but discounted to the current time
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(time). The function disc models this style of interest evolution: given a time
t and a value v at time t’, (disc t’ v t) is the interest-rate discounted value
of v at time t expressed in currency k’.

The final case computes the worth of (anytime c) (line 21 ). Upon acquiring
(anytime c), the primary party must acquire c, but they can do so at any time
between the acquisition and the expiry date of c. The idea is that it allows one
to choose to acquire c when it is most valuable, possibly based on exchange
and interest rates, share prices, etc. Determining the optimal time to acquire
c is complicated, and requires finding the snell-envelope of c (line 21 ). The
implementation of disc and snell is beyond the scope of this paper. The original
paper briefly sketches one possible implementation in Haskell.

4.3 Comparison with the Original

There are two main difference between the original library and ours. Firstly,
as mentioned in Sect. 2.3, their and combinator is less expressive than our both
combinator. Secondly, the original library cannot express the expired contract,7
which has no horizon, and, as a consequence, lacks the corresponding semantic
notion: the nil of the semiring. Lacking this notion, their worth function is
partial; it is simply undefined where ours is nil.

4.4 Executable Semantics

The code presented in Fig. 3 is a denotational semantics; its primary purpose
is to give a precise, formal, and generic specification. That being said, the fact
that the semantics is executable also provides a straightforward implementation,
albeit not a terribly realistic one, performance-wise.

The most immediately obvious application is to simply compute the value of
a contract. This is accomplished by the max-tropical semiring over real numbers,
Max Double. By plugging the definition of plus and times for Max into Fig. 3
it is easy to see that the or of two contracts is the maximum value of either
contract, and that both simply sums the values. The worths of expired and
zero are −∞ and 0, respectively. (It is helpful to think of −∞ as “undefined”.)
The remaining cases in Fig. 3 are determined by the financial model, static:

static :: Currency -> Double -> Financial (Max Double) (Time -> Double)

This simplistic model assumes time-invariant exchange and interest rates. The
full implementation of static can be found in the supplementary implementa-
tion.

Figure 4a shows the value at the epoch of progressively later ZCBs yielding
d100 (with a fixed interest rate of 7% per time step). Note that more interest
accrues if a contract is acquired longer before its expiry date, until the expiry date

7 For instance, their truncate epoch zero is not equal to our expired, because it can
still be acquired at the epoch.
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n (worth s7eur cn t0) ρ

0 −∞ N/A
1 100 0
2 93 -0.87
3 86.49 -1.63
4 80.44 -2.29

(a) Value of cn at the epoch.

c (worth s0eur c t0)

both c1 c2’ 300
c1 ‘and‘ c2’ 300
both c0 c2’ −∞
c0 ‘and‘ c2’ 200

(b) Compare the behaviour of both vs. and.

Fig. 4. Examples of contracts under the max-tropical semiring. Assume n ∈ [0, 4],
tn = Finite n, cn = zcb tn 100 EUR, cn’ = zcb tn 200 EUR, s7eur = static EUR
0.07, and S0eur = static EUR 0.00.

is reached and the value of the contract is −∞. ρ is the derivative with respect
to a 1% change in the interest rate, computed via automatic differentiation [1].

Figure 4b once more demonstrates the difference between both and and (the
interest rate is held at 0% to make the difference more obvious). Since neither
c1 nor c2’ has expired, both combinators behave the same, summing the values
of both contracts. However, since c0 has expired, (both c0 c2’) is −∞, while
(c0 ‘and ‘c2’) is equivalent to the remaining contract, c2’.

5 Conclusion

This paper has investigated the compositional nature of financial contracts from
the perspective of abstract algebra, and equipped them with a semiring structure.

The advantages are threefold: First, semirings have straightforward axioms
and properties, and admit a natural formulation of the denotational semantics as
a semiring homomorphism. This theory is beneficial for equational reasoning, as
is briefly demonstrated in the appendix, and it means that if the target domain
satisfies the axioms, the semantics is correct, at least for the compositional part.

Second, the aim of defining a contract semiring leads directly to the both com-
binator, which seems slightly more powerful than the and combinator of Peyton
Jones et al. [6], in the sense that it allows more contracts to be expressed in
the language directly. To clarify this point, consider that it is always possible
to define a contract that behaves like (both c1 c2) by using features from the
host language (Haskell): simply trim the expiry dates of c1 and c2 to the earlier
of the dates of c1 and c2. Such tricks are not needed when both is a primitive,
meaning that the intent of the contract is captured more precisely.

Third, formulating contracts in terms of semirings may reveal new appli-
cations inspired by semirings from the literature, such as those for automatic
differentiation8 [1,2,7], probabilities [3], polynomials, and Kleene-Algebras [5].

Acknowledgments. We are grateful for the helpful feedback of the anonymous
reviewers. Part of this work was funded by FWO project 3E221387.

8 See the code repository for a gradient-based semantics.
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Appendix: Deriving Expired

Let us derive the implementation of expired from the semantics:

worth m k expired t

[(W2): semiring homomorphism preserves nil]
= nil

[(W1): nil = worth m k c t ⇐ t ≥ expiry c]
= worth m k (truncate t’ c) t if t ≥ expiry (truncate t’ c)

[t’ ≥ min (expiry c) t’ = expiry (truncate t’ c )]
= worth m k (truncate t’ c) t if t ≥ t’

[instantiate t’ = epoch; t ≥ epoch]
= worth m k (truncate epoch c) t

[instantiate c = zero]
= worth m k (truncate epoch zero) t

The choice of zero for c in the derivation is immaterial; any contract would
do. Moreover, there are other forms of contracts that behave like expired. For
instance, (get zero) is also nil everywhere, because the getting a contract with
an infinite expiry date is ill-defined, i.e., nil. The definition above is preferable
because it relies only on the non-finance specific part of the semantics.
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Abstract. We automate deep step-by step reasoning in an LLM dia-
log thread by recursively exploring alternatives (OR-nodes) and expand-
ing details (AND-nodes) up to a given depth. Starting from a single
succinct task-specific initiator we steer the automated dialog thread to
stay focussed on the task by synthesizing a prompt that summarizes the
depth-first steps taken so far.

Our algorithm is derived from a simple recursive descent implementa-
tion of a Horn Clause interpreter, except that we accommodate our logic
engine to fit the natural language reasoning patterns LLMs have been
trained on. Semantic similarity to ground-truth facts or oracle advice
from another LLM instance is used to restrict the search space and val-
idate the traces of justification steps returned as focussed and trustable
answers. At the end, the unique minimal model of a generated Horn
Clause program collects the results of the reasoning process.

As applications, we sketch implementations of consequence predic-
tions, causal explanations, recommendation systems and topic-focussed
exploration of scientific literature.

Keywords: automation of LLM dialog threads · recursive
task-focused steering of LLM interactions · logic-programming driven
LLM reasoning · LLM-based algorithmic information retrieval ·
context-driven LLM prompt synthesis

1 Introduction

Interaction with today’s high-end LLMs like ChatGPT, GPT-4 [3,19], Claude-2
[1] and Bard [9] allows the patient and prompt-savvy user to steer the interaction
toward fulfillment of a well-specified information seeking goal. The resulting
dialog thread can be labor intensive and assumes solid prompt engineering skills
to keep the LLM focussed on the task while digging as deep as needed into
details.

This raises the obvious question: can we get back the simplicity of a one-
shot query and automatically manage the navigation in the answer-space of the
dialog thread?

We start by planning out the key steps of our proposed solution. Clearly,
we need first an elaboration or refinement process that reduces a given task to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Gibbons and D. Miller (Eds.): FLOPS 2024, LNCS 14659, pp. 117–134, 2024.
https://doi.org/10.1007/978-981-97-2300-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/xxxx_7&domain=pdf
http://orcid.org/0000-0001-7192-9421
https://doi.org/10.1007/978-981-97-2300-3_7
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a sequence of subtasks. We call this conjunctive elaboration into subtasks an
AND-step. Next, we will need a dual, disjunctive elaboration, as a generation
of alternative ways to make progress on the task. We call this an OR-step. To
advance into more detail we can rely on a recursive process that alternates these
two steps up to the desired depth.

This brings us to the key topic of this paper: an algorithm that extracts a
salient set of answers, by zooming into the desired level of detail, from a single,
succinct human prompt. To this end, we automate step-by step reasoning in
an LLM dialog thread to explore recursively alternatives (OR-steps) and expand
details (AND-steps) up to a given depth.

Our approach will follow closely the SLD-resolution algorithm for pure Horn
Clause logic [13,14]. Restriction to Horn Clauses is motivated by the fact that
LLMs are genuinely “constructive” and known not to be comfortable with nega-
tion [11,15], limiting one’s interest in either classical negation or negation-as-
failure under a closed-world assumption as present in ASP systems [8,21] or in
Prolog [27].

This makes the use of a conventional logic programming language unneces-
sary as Python’s coroutining generators are expressive enough for succinctly
implementing a simplified SLD-resolution algorithm [23]. Another departure
from logic programming as we know it, is that we will need to “unformalize”
the underlying logic to more easily interoperate with the LLMs. In fact, LLMs
do have a limited ability to generate correct logic forms of simple sentences [28].
But their training is based mostly on completion of natural language sentences
and they are more in their element with the reasoning steps humans express in
natural language.

Thus, instead of trying to force LLMs to use logic formalisms they are not
yet comfortable with, we accommodate our logic engine to fit natural language
reasoning, goal driven planning, task decomposition and association patterns with
minimal task-specific prompt engineering.

This brings us to the key features of our approach:

– SLD-resolution’s clause selection via unification is replaced by LLM-driven
dynamic clause head creation with an option of focusing by proximity of
embeddings to ground truth facts

– as dialog units are sentences, the underlying logic is propositional
– client-side management (via the API) of the LLM’s memory is based on the

equivalent of a goal stack, as used in logic-programming implementations like
[22,23], and a goal trace recording our steps on the current search path

– instead of variable bindings, answers are traces of justification steps clearly
explaining where they are derived from

– when their depth-limit is reached, the items on the goal stack are interpreted
as “abducibles”, statements that can be hypothetically assumed and then
checked against “integrity constraints” [6,12].

– our depth-bounded refinement steps support compilation of the dialog threads
to a Horn Clause program to be explored with logic programming solvers

– modular, task specific, customizable prompt engineering primitives are aggre-
gated together for “AND-step” and “OR-step” prompts
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– normalized semantic similarity measures of embeddings can be made available
when generating probabilistic logic programs

– sentences in authoritative documents or collections seen as “ground-truth
facts” can be used to select abducibles via semantic similarity or advice of an
LLM-based oracle

Overall, our approach exploits synergies between structured prompt engineer-
ing, logic-guided recursion over LLM queries and semantic search in an embed-
dings vector store.

Applications are built by customizing prompts, LLM models and recursion
level, resulting in automatically generated detailed, “hallucination-free” answers,
crisper and more accurate than what one can obtain after lengthy interactions
with conventional search engines or Chat-GPT style dialog agents.

Among potential applications we will overview the following:

– consequence predictions and causal explanations with full justification traces
– recommendation closely focussed on an initial preference seed
– actionable step-by-step advice on practical “how to repair” problems
– topic-focussed scientific literature keyphrase and key concept generation

The rest of the paper is organized as follows: Sect. 2 sketches the architecture
of our implemented system. Section 3 introduces Interactors – designed by aggre-
gating components needed for interacting with LLM APIs. Section 4 describes
Recursors – our programs steering the LLMs dialog threads while focusing on the
task at hand over multiple levels of nested OR-steps and AND-steps. Section 5
describes Refiners, specializations of Recursors checking against ground-truth
facts using semantic distances to abducible facts as well as several LLM-based
oracle agents. Section 6 describes our propositional Horn Clause model generator
that extracts the set of true facts inferred from the logic program generated by
our Recursors and Refiners. Section 7 shows how task-specific applications are
built simply by adjusting the AND-step, OR-step and oracle prompts. Section 8
discusses variations on the main theme of the paper and possible future exten-
sions. Section 9 discusses related work and Sect. 10 concludes the paper.

Note : The system has been fully implemented1 and it is deployed online2.

2 System Architecture

We start with a quick overview of an implemented system architecture and a
sketch of its execution flows, as shown in Fig. 1.

Starting from a succinct prompt (typically a nominal phrase describing the
task) an Interactor will call the LLM via its API, driven by a Recursor that ana-
lyzes the LLM responses and activates new LLM queries as it proceeds to refine
the information received up to a given depth. Refiners are Recursor subclasses
1 code at https://github.com/ptarau/recursors.
2 demo at https://deepllm.streamlit.app.

https://github.com/ptarau/recursors
https://deepllm.streamlit.app
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Fig. 1. System Architecture

that rely on semantic search in an Embeddings Store containing ground-truth
facts as well as on oracles implemented as specialized Interactors that ask the
LLM for advice on deciding the truth of, or the rating of hypotheses. Besides
returning a stream of answers, Recursors and Refiners compile their reasoning
steps to a propositional Horn Clause program available for inspection by the user
or subject for execution and analysis with logic programming tools (in particular,
with our Model builder – a fast Propositional Horn Clause theorem prover).

3 Interactors

Setting up the interaction mechanism with LLMs via an API is a multi-faceted
process involving several orthogonal aspects.

We will overview here our interactor Agent class managing the dialog with
LLMs centered around OpenAI’s gpt-4 and gpt-3.5-turbo models [3,19], but
able also to accommodate smaller footprint, locally running LLMs models like
LLaMA 2 [25], that provide an OpenAI compatible API.

An interactor is put together by designing Prompter, Tuner, Tracker and
Talker components.

Tuner. The Tuner is a wrapper around the LLM’s API, managing the API
parameters and the settings of the interaction.
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Prompters. Prompters are patterns expressed as Python dictionaries from which
substitution of $-variables with data provided at various recursion levels will
generate actual prompts to be sent to the LLMs.

Here is an overview of our Prompters’ key features and use cases:

– a Prompter is a dictionary of prompt templates for aggregated, task specific
OR and AND prompt generators or decision oracles

– on top of them we build a collection of task specific parametric prompt tem-
plates

– AND and OR prompt templates for a given task are designed together to
facilitate their experimental fine-tuning

– prompt templates instantiate one-shot instructions to the LLM that enforce
focussed, succinct answers

– possible post-processors (algorithmic or implemented as “verifier” LLM ora-
cles) can be used to discard answers when the LLM disobeys the instructions
either in requested syntactic form or in content.

We will show next a few prompt template examples. Note as the LLMs (in
this case GPT-3.5 and GPT-4) and their APIs evolve, minor edits might be
needed to adjust them to the changes.

Example 1. AND-OR prompt patterns for causal reasoning

causal_prompter = dict(

name='causal',
and_p="""We need causal explanations in this context: "$context"

Generate 3-5 explanations of 2-4 words each for the causes of "$g".
Itemize your answer, one reason for "$g" per line.

No explanations needed, just the 2-4 words noun phrase,

nothing else.

Your answer should not contain ":" or "Cause".

""",

or_p="""We need causal explanations in this context: "$context"
Generate 2-3 alternative explanations citing facts that might

cause "$g".
Itemize your answer, one noun phrase per line.

No explanations needed, just the noun phrase, nothing else.

Avoid starting your sentence with the word "Alternative".

Your answer should not contain ":" .

Your answer should avoid the words "Causes" and "causes" ."""

)

Note that the $context and current goal $g parameters will specialize the pattern
for each of the uses of its and p and or p components in the recursive descent
process. Note also the “petty” avoidance remarks in the prompt that we had
to use to ensure that the answer returned by the LLM matches the expected
output structure, given that after parsing, it has to provide the inputs of the next
recursive step.
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Example 2. Oracle pattern used to filter hypotheses generated by a Recursor

decision_prompter = dict(

name='oracle',
decider_p="""

You play the role of an oracle that decides if "$g" is relevant for

our interest in "$context".
Your answer should be "True" or "False" expressing agreement or

disagreement with the relevance of "$g".
"""

)

The pattern is used to decide about adequacy of a given subtask or alternative in
a given context. With a similar rater oracle we request ratings on a scale of 100
if we want to generate a probabilistic logic program to be analyzed with tools like
Problog [5,18].

Tracker. The Tracker is managing API messages, contexts and API costs. It
ensures that answers to questions already answered by the LLM are cached
and reused to save costs and ensure full determinism and replicability. It also
handles the on-demand migrations from an Interactor’s short-term memory to
its long-term memory. While the short-term memory is kept small enough to
fit in the LLMs message size, both memories are dictionaries used to retrieve
available cached answers. As a special case, Trackers also enable spilling of the
full content of the short-term memory to the long-term memory when a fresh
dialog thread is needed for a change of topic or focus.

Talker. The Talker is a component managing the overall interaction with the
LLM. It implements the Interactor’s high level ask method that encapsulates
the details of applying the appropriate prompt template to a given question,
activates mechanisms to trim the context to a size acceptable to the LLM, acti-
vates conversion of the content of the short-term memory to the message format
the LLM expects. It also activates possible application-specific post-processing
of the LLM’s answers and manages the retrying of the completion request if the
API is temporarily unresponsive.

4 Recursors

Recursors implement the central idea of this paper: automatically focusing a
dialog thread with an LLM, while exploring a given topic in depth.

4.1 Synthesizing the Logic Program on Recursive Descent

Starting from a succinct initiator goal, the Recursor performs a recursive descent
guided by task specific Prompters. At each step, the OR-prompter asks the LLM
to generate alternative ways to fulfill the current goal. Then, for each alternative,
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the LLM is asked to expand it to a sequence of task specific subgoals, guided
by the AND-prompter. The AND and the OR prompter templates are activated
with information about the current context and the current goal. The context is
a linearization of a chronologically ordered trace that accumulates the previously
expanded goals. The presence of this context, serving as the short term dialog
memory of the otherwise stateless LLM API, steers the generative process to
stay focussed on the task.

At a given step, the effect of the OR-prompter expanding the head h in a
series of alternatives a1, . . . , an can be described as a set of binary Horn Clauses
of the form:
h : − a1.
h : − a2.
. . .
h : − am.
more concisely expressed with a disjunctive body as:
h : − a1; a2 ; . . . ; am.
On the other other hand, the result of an AND-prompter can be described as a
set of Horn clauses of the form:

h : − b1, b2, . . . , bn.

When a depth limit is reached, the remaining unexplored goals on the goal
stack are considered as abducibles [6,12], i.e., hypotheses to be assumed until
integrity constraints might invalidate them, a process that, like in Logic Pro-
gramming, results in backtracking to explore other possibilities. Should some
of them fail, the presence of the OR-nodes at each recursive step ensures that
plenty of choices remain available, despite possible failures.

A simple way to select abducibles is to check the semantic distance of their
embeddings to embeddings in a set of ground-truth facts. For efficiency, a few
nearest neighbors of each abducible are fetched from the vector embeddings
store (see Subsect. 5.1) and their average distance to the ground truth is used to
decide if the abducible is assumed as a hypothesis. A summary of the sentences
extracted from the ground-truth facts can be used as an explanation supporting
the abducible. This can be seen as an instant constraints-driven filtering opera-
tion that results in eagerly omitting the assumption of the irrelevant abducibles
as hypotheses.

Besides returning a stream of answers, we also generate a propositional Horn
Clause program to be further explored with logic programming tools.

At the end, a minimal model [13] of the remaining rules can be obtained with
a SAT solver, although our implementation prefers a fast direct algorithm (see
Sect. 6), given that Horn Clause satisfiability is polynomial [7].

4.2 The Unfolder

Our implementation of the depth limited recursive descent encapsulates the
unfolding of AND-nodes and OR-nodes. An Unfolder instance contains two Inter-
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actor Agents, one for each node type, initialized with their jointly designed
prompter dictionary described in Sect. 3. The agents are activated with the
ask and and ask or methods and are also responsible for persisting past LLM
interactions in appropriately named unique disk caches. By alternating the cre-
ation of AND-nodes and OR-nodes we will reshape the resulting dialog thread
as a propositional Horn Clause program.

4.3 The AndOrExplorer

The process of building the propositional Horn Clause program is encapsulated
in the AndOrExplorer class, that handles:

– the invention of clause heads by an OR-node induced by a given goal
– the invention of clause bodies by an AND-node induced by the clause head.

The AndOrExplorer implements its recursive descent by relying directly on
the Python-stack and emulating Prolog’s backtracking via Python’s yield-based
coroutining mechanism. It returns the trace of expanded goals (and invented
clause heads) for each successful “proof step”, assuming all facts at the depth
limit as abducibles, subject to future validation by independent Oracle Agents.

The clause invention step is sketched by the following Python code snippet:

def new_clause(self, g, trace, topgoal):

or_context = to_context(trace, topgoal)

hs = self.unf.ask_or(g, or_context) # invent the clause heads

and_context = to_context((g, trace), topgoal)

for h in hs:

bs = self.unf.ask_and(h, and_context) # invent their bodies

yield (h, bs)

The or context is built from the generic OR-pattern instantiated to the specifics
of the step in the trace of the goals expanded so far on this resolution branch.
Note that topgoal is also passed to the context builder to help focus on the
original goal that has started the recursive descent. It is responsible for the
generation of the list of clause heads hs. For each clause head h in hs, a clause
body bs is generated by the AND-node prompter. Finally each clause is yielded
as a pair (h, bs).

Besides its resume, persist and costs methods the AndOrExplorer defines
also an appraise method meant to be overridden by its refiner subclasses.

4.4 The SVO Relation Extractor

The relation Extractor class invokes the LLM to decompose facts inferred from
the Horn Clause program into <Subject, Verb, Object> triplets, usable for
knowledge representation tasks. It also shows them in the streamlit Web app3

using the pyvis graph visualizer.
3 https://deepllm.streamlit.app/.

https://deepllm.streamlit.app/
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4.5 The Logic Programming Connection

The recursive descent algorithm is implemented as a generator of answers (traces
of steps included) to the initiator goal, in a way similar to Prolog’s SLD-
resolution algorithm operating on Horn Clauses. In fact, its Python implemen-
tation has been derived as a simplification of the Natlog [23] Horn Clause inter-
preter, where clause selection via the unification algorithms is replaced by syn-
thesis of a clause head by an OR-node. Then, given the clause head, the body of
the clause is generated by the LLM as an AND-node expansion of the synthesized
clause head.

Instead of the true or fail answer generated by a Prolog system running
the propositional Horn Clause program, the complete trace of goals generated
by the LLM and “solved” by our recursor is returned as an “explanation” of
the “reasoning steps” taken in the process. In fact, the resulting Horn Clauses
are also “compiled” on the fly to a Prolog program that could be independently
explored with a Prolog, Datalog or ASP system. However, given the presence
of loops (as the LLM might come back in the recursive process to things it has
already seen), we use instead of Prolog a low polynomial-time model builder that
is insensitive to the presence of loops [7].

5 Refiners

Refiners are extensions of Recursors evaluating AND-nodes and OR-nodes
against ground-truth facts in the embeddings store or via decision or rating
LLM-oracles (see Subsect. 5.3).

In the first case, normalized semantic distances between embeddings of a
goal hitting a depth limit and ground-truth facts are used. If close enough to a
ground-truth fact, the “abducible” goal becomes a clause head and the ground-
truth fact becomes the body of a newly generated clause. If not close enough to
any ground-truth fact, the goal becomes the head of a clause marked for failure
when compiled to the Prolog program by having as body the atom fail.

Alternatively, abducibles can be evaluated by an oracle – another LLM
instance that judges their relevance to the task in the current context, for
instance against embeddings of ground truth statements stored in a vector store.

5.1 The Embeddings Vector Store

We build a simple numpy-based vector store supporting efficiently ground-truth
collections of fact embeddings obtained via the LLM’s API. The ground-truth
facts store is then used to find the K nearest neighbors of a given query and also
to return cosine distances, usable as probabilities to decide what hypotheses
can be assumed during the recursive descent as “abducible” facts, subject to
filtering via evaluation of integrity constraints. Adopting scalable vector stores
or databases can support the use of a knowledge base possibly derived from very
large document collections.
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5.2 Filtering with Semantic Distance to Ground-Truth Facts

By using the ground-truth facts in our embeddings store the simplest way to
appraise if a given goal is “on topic” is to compute its semantic distance to its
nearest neighbor in the store, as shown in the following code snippet:

def appraise(self, g, _trace, _topgoal):

rates, neighbors = self.store.qa(g, top_k=1)

rate, neighbor = float(rates[0]), neighbors[0]

return rate > self.threshold:

The method qa that queries the store passes the goal g and the request for a
single nearest neighbor top k.

A more elaborate technique relies on k nearest neighbors fetched from the
store that would collectively “champion” the goal if their (weighted) average
semantic distance to the goal is below a threshold, fixed in advance or dynami-
cally computed or machine-learned form past appraisals.

The mechanism can also be extended to continuously check for staying close
in terms of semantic distance to the ground-truth facts.

Alternatively, the semantic distances (interpreted as probabilities) can be
used to annotate clause heads as part of a probabilistic logic program to be
evaluated later.

Oracles can also be used to implement continual appraising: at each step they
can check reasonable closeness to ground truth and task at hand. In particular,
they can mark confidence level for each rated step and then select overall highest
only.

5.3 Refining Decisions with LLM-Based Oracles

In the absence of a set of ground-truth facts relevant to a given initiator goal,
the LLM itself can be asked to make True/False decisions or generate ratings.

The LLM-Based True/False Decider. The following code snippet delegates
the steering to focus on a given context (in this case the initiator goal that has
started the recursive descent). In this case, the appraise method instantiates
the oracle prompt pattern shown in Subsect. 3.

def appraise(self, g, trace, topgoal):

advice = just_ask(self.oracle, g=g, context=topgoal)

return 'True.' == advice

More elaborate refiners can use the depth-first path trace or an LLM-
generated summary thereof instead of topgoal.
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The LLM-Based Rater. The Rater queries the LLM asking for a score on the
0 to 100 scale that is next converted into a probability. Like the Decider oracle,
it uses the goal at hand and its context. For both oracles, the prompter can be
configured to ask for an explanation sentence or paragraph to be adopted as
ground-truth in case of favorable True/False decision or high enough confidence
level.

5.4 Toward Trustable Generative AI

Both oracle types, in concert with the focussed reasoning steps enforced by cast-
ing AND/OR steps into a propositional Horn clause program provide a princi-
pled approach toward trustable generative AI, an often expressed requirement
for wide adoption of today’s LLMs in medical, educational, defense and several
other business applications as well as likely subjects of upcoming government
regulations [10].

6 The Model Builder: A Propositional Horn Clause
Satisfiability Solver

It is not unusual to have loops in the propositional Horn Clause program connect-
ing the LLM generated items by our recursors and refiners. As that would cre-
ate problems with Prolog’s depth-first execution model, we implement a simple
low-polynomial complexity propositional satisfiability checker and model builder
along the lines of [7].

The model builder works by propagating truth from facts to rules until a fix
point is reached. Given a Horn Clause h : −b1, b2, ..., bn, when all bi are known to
be true (i.e., in the model), h is also added to the model. If integrity constraints
(Horn clauses of the form false : −b1, b2, ..., bn) have also been generated by
the oracle agents monitoring our refiners, in the advent that all b1, b2, ..., bn
end up in the model, b1, b2, ..., bn implying false signals a contradiction and
thus unsatisfiability of the Horn formula associated to the generated program.
However as the items generated by our recursive process are not necessarily
expressing logically connected facts (e.g., they might be just semantic similarity
driven associations), turning on or off this draconian discarding of the model is
left as an option for the application developer. Also, the application developer
can chose to stop as soon as a proof of the original goal emerges, in a way similar
to goal-driven ASP-solvers like [2], irrespectively to unrelated contradictions
elsewhere in the program.

7 Applications

A good hint on deciding which recursor or refiner is the most appropriate for
developing an application, is the closeness of its atomic steps to processes of
human problem solving that are similar to logic inferences, e.g., by sharing a
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Fig. 2. Exploring the P vs. NP problem

similar underlying boolean algebra, lattice or preordered set structure. Besides
causal reasoning or consequence prediction most goal-oriented tasks (e.g., plan-
ning) fit this structure. It is also good to be aware that when exploring the causes
or the consequences of an initial state of the world, technological development,
military, political or judicial decision, it is likely that the LLM will generate a
richer model than if it explores names of movies, books or songs in a recom-
mender system, where titles are often overlapping semantically with unrelated
embeddings. In the former, restricting the model with a stricter oracle can even
out spurious facts. In the latter, being aware that the LLMs will work better on
very well known movies or books than when asking for recommendations similar
to a relatively new or niche product, can guide the scope of the application.

When developing an application that, starting from a keyphrase of a scientific
paper or the name of a scientific domain (e.g., as shown in Fig. 2 with the system
exploring the P vs. NP problem), an oracle set up to filter out less specific con-
cepts from encompassing more general domain can help with the return of more
salient results. In this case a second oracle, filtering out generic methodological
boilerplate concepts, shared by virtually all scientific domains will be also useful
to give more focussed results. Similar refinements can also be used when focusing
on predicting consequences of a (likely counterfactual) result (e.g., as shown in
Fig. 3).

In the case of requesting expert advice on practical common tasks (e.g.,
actionable step-by-step advice on how to repair something), the oracle can filter
out advice to contact the manufacturer or seek the advice of an expert nearby,
when the point is to receive the actual steps need to solve the problem. This can
also be implemented by a set of negative ground facts for which a refiner can try
to maximize average semantic distances or a post-processor that rejects choices
containing words or keyphrases in a blacklist.
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Fig. 3. Exploring consequences of the NP=coNP hypothesis

Another kind of application of significant practical value is to use a set of gen-
erated models to benchmark newcomer LLMs’ performance against established
best in their class like, at the time of writing this paper, OpenAI’s GPT-4. This
can be achieved with something as simple as the Jaccard distance between the
inferred models at a given depth and it can be fine-tuned to the specific task the
LLMs are planned to be used for. Related to this, when transferring from strong
LLMs like GPT-4 to weaker ones, it can be useful to train the Reinforcement
Learning loop rewards to be based on how many hits the weaker LLM gets when
recursing on a relatively small collection of “critically important topics” auto-
matically collected from the stronger LLM, thus providing a novel, potentially
very effective transfer learning mechanism.

The generated Prolog programs, models and execution traces are available
online at: https://github.com/ptarau/recursors/tree/main/examples.

8 Discussion on Limitations and Variations on the Theme

8.1 Limitations

We will next overview some of the limitations we have experienced when testing
(the current implementation of) our recursors and refiners when on several target
applications.

First, let us note that recursors are obviously not needed when one-shot
detailed descriptions of common processes (e.g., cooking recipes, tell a joke,
write a haiku) are available directly from the LLM. They are also unnecessary
for help from the LLM to write a news story, a bio, an essay, a resume or an
add, where interactive fine-tuning of the LLM’s in-context learning by the user
is a clear requirement.

https://github.com/ptarau/recursors/tree/main/examples
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The mapping between the recursively generated items and propositional logic
does not apply equally to all tasks and the inference steps work differently when
the LLM is used simply as an associative-memory connecting concepts inter-
esting as brainstorming incentives to humans, but not meant to be logically
focussed on a dominant topic or task.

Indicators like semantic similarity are not relevant for recommendation sys-
tems over items consisting of titles of movies, books or songs where their distri-
butional semantics is dominated by the more common uses of the title’s actual
word phrases.

Strictly enforcing integrity constraints generated by oracles looking at local
contexts often results, when propagated through the inference process, in unsat-
isfiability (and thus an empty model). Note however that this limitation can be
alleviated by accepting a partial model supporting the initial goal, even if the
resulting logic program might be inconsistent, an option supported by our model
generator described in Sect. 6.

There’s increased sensitivity to prompts during deeper recursive thought-to-
thought steps. In this case, careful prompt engineering is needed as recursors
can easily induce “butterfly effects” - small variations in wording of the prompt
can drastically change the resulting model.

8.2 Future Work Directions

Once the key idea of the paper for steering LLMs to generate a stream of items
focussed on the initiator goal is implemented, several “variations on the theme”
can be tried out relatively easily by overriding methods in Prompters, Recursors
and Refiners.

Granularity Refiners. At a higher granularity one can work with sentences/s-
tatements instead of noun phrases, sometime a more natural match to the under-
lying propositional logic.

At a lower granularity, one might want to use SVO triplets that LLMs are
quite good at decomposing a sentence into. The generated SVO triplets can then
serve as building blocks for Description Logics or Datalog programs.

Question Generators. Answers to LLM-generated how+wh-questions for a
given goal can be used as expansions to new goals simply by re-engineering our
AND-OR Prompters.

Generalizers. Inductive Logic Programming techniques can be used to gener-
alize the resulting propositional or triplet clauses by sharing common SVO frag-
ments, possibly in combination with Prolog-rules describing the ground-truth
background knowledge.
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Diversifiers and Harmonizers. To further restrict unwanted “hallucinatory”
generation twists diversifiers for OR-nodes and harmonizers for AND-nodes can
be expressed as additional integrity constraints. A diversifier will work by ensur-
ing no two OR-nodes are too close semantically while a harmonizer will ensure
that no two AND-nodes are too far semantically. Both could be implemented
with help of semantic distances in the embeddings vector store.

Extend Implementation Techniques. One can implement recursors by
relying on bare completion-only LLMs (e.g., GPT3) as their usual question-
answering fine-tunings (e.g., ChatGPT) can be emulated with minor prompt
engineering efforts.

To limit the scope of decider and rater oracles, one can preprocess the ground-
truth facts into k-means clusters, and restrict oracle search to the cluster closest
to the initiator goal.

Extend the Power of the Underlying Logic Language. It is possible to use
SAT-based ASP solvers [21] or Prolog-based CASP systems [2] to take advantage
of failed LLM returns rejected by our oracles, to enhance the ability of the LLMs
to reason with negative information in a principled way as well as with negative
ground-truth facts meant to avoid extending into semantically close but distinct
domains during the recursive descent.

9 Related Work

The major disruption brought by the often near-human quality of generative AI
[3,19,25] is quickly changing the landscape of query-driven information retrieval,
moving the emphasis from traditional search engines to human-friendly dialog
threads. However, the effectiveness of actionable information extraction is often
hindered by the slower partner in this interaction – the human that needs to
understand, evaluate and validate each step. In this context, our work emphasizes
the full automation of this retrieval process, starting from a succinct query term.
Thus, we are back to the one-shot simplicity of “short question by human →
arbitrarily deep, elaborated answer from the AI”, steered to stay focussed on the
actual query. As a side effect of this automation, our approach preempts most
of the usual problems with hallucinations, lack of factuality and bias that LLMs
are often blamed for.

Our recursive descent algorithm shares with work on “Chain of Thought”
prompting of LLMs [17,26] and with step by step [16] refinement of the dialog
threads the goal of extracting more accurate information from the interaction.
However our process aims to fully automate the dialog thread while also ensuring
validation of the results with help of ground-truth watching oracles and inde-
pendent LLM-based agents. Our approach shares with tools like LangChain [4]
the idea of piping together multiple instances of LLMs, computational units,
prompt templates and custom agents, except that we fully automate the process
without the need to manually stitch together the components.
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By contrast to “neuro-symbolic” AI [20], where the neural architecture is
closely intermixed with symbolic steps, in our approach the neural processing is
encapsulated in the LLMs and accessed via a declarative, high-level API. This
reduces the semantic gap between the neural and symbolic sides as their com-
munication happens at a much higher, fully automated and directly explainable
level.

In [28] LLMs are cleverly used to generate Prolog code snippets with an
enhanced CASP [2] semantics. This allows hand-building of useful applications
like a conversational AutoConcierge bot, recommending local restaurants. By
contrast, our method is generic, and “no code” applications consist simply in
queries with possible minor prompt engineering, as we adapt logic programming
to think in terms familiar to LLMs, rather than adapting LLMs to generate
application specific code snippets.

Also within Logic Programming, in relation with probabilistic approaches [5],
our abducibles acquire probabilities from normalized vector distances to ground
truths, usable to automate generation of probabilistic logic programs, thus shar-
ing objectives with typical neuro-symbolic approaches like [18]. Finally, we share
with [24] the idea to use a custom logic solver (an Intuitionistic Propositional
Theorem prover, in that case) to synthesize abducibles (the Propositional Horn
Clause model generator in our case).

10 Conclusion

We have automated deep step-by step reasoning in LLM dialog threads up to
a given depth, by recursively descending from a single succinct initiator phrase,
while staying focussed on the task at hand. In the process, we have made LLMs
function as de facto logic programming engines that mimic Horn Clause resolu-
tion. However, instead of trying to parse sentences into logic formulas, we have
accommodated our logic engine to fit the natural language reasoning patterns
LLMs have been trained on.

Semantic similarity to ground-truth facts and oracle advice from another
LLM instance has been used to restrict the search space and validate the traces of
justification steps returned as answers. This has resulted in focussed, controllable
output, enabling deep investigations into details of specific scientific domains as
well as expert-level causal reasoning or consequence predictions. As such, our
approach streamlines key use cases of LLMs as focussed information seeking
tools and enables practical application back-ends simply by customizing prompt
templates.

By casting the LLM dialog into a precise logic frame and by filtering the
LLMs reasoning via semantic closeness to ground-truth facts, we have devised a
method to extract hallucination-free focussed knowledge expressed as a logic pro-
gram that encapsulates trustable AI in a clearly expressed and easily verifiable
framework.
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Abstract. Constraint logic programming emerged in the late 80’s as a
highly declarative class of programming languages based on first-order
logic and theories with decidable constraint languages, thereby subsum-
ing Prolog restricted to equality constraints over the Herbrand’s term
domain. This approach has proven extremely successful in solving com-
binatorial problems in the industry which quickly led to the develop-
ment of a variety of constraint solving libraries in standard program-
ming languages. Later came the design of a purely declarative front-end
constraint-based modeling language, MiniZinc, independent of the con-
straint solvers, in order to compare their performances and create model
benchmarks. Beyond that purpose, the use of a high-level modeling lan-
guage such as MiniZinc to develop complete applications, or to teach con-
straint programming, is limited by the impossibility to program search
strategies, or new constraint solvers, in a modeling language, as well as
by the absence of an integrated development environment for both lev-
els of constraint-based modeling and constraint solving. In this paper,
we propose to solve those issues by taking Prolog with its constraint
solving libraries, as a unified relation-based modeling and programming
language. We present a Prolog library for high-level constraint-based
mathematical modeling, inspired by MiniZinc, using subscripted vari-
ables (arrays) in addition to lists and terms, quantifiers and iterators
in addition to recursion, together with a patch of constraint libraries
in order to allow array functional notations in constraints. We show
that this approach does not come with a significant computation time
overhead, and presents several advantages in terms of the possibility of
focussing on mathematical modeling, getting answer constraints in addi-
tion to ground solutions, programming search or constraint solvers if
needed, and debugging models within a unique modeling and program-
ming environment.

Keywords: constraint logic programming · algebraic modeling
languages · answer constraints · MiniZinc · meta-predicates · constraint
solving · constraint simplification · attributed variables · ISO-Prolog

1 Introduction

Jean-Baptiste Fourier is very well-known for his numerous contributions to math-
ematics and physics, but much less known for being the father of what is called
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today Constraint Programming. In two lectures at the French Academy of Sci-
ences given in 1823 and 1824, he considered the example of determining the
region where a given weight can be placed on a triangular table with constraints
on the maximum forces that can be exerted on each leg, in order to promote a
general problem solving method based on, first, modeling the problem at hand
with inequalities over real numbers, and second, solving them by applying gen-
eral purpose simplification rules a.k.a. Fourier Motzkin’s elimination rules today.
Quoting him, “the advantage of this method consists in that it is sufficient, in
all cases, to express the conditions of the question, which is easy, and to then
combine these expressions, by means of general rules which are always the same;
and we thus form the solution which could only have been reached by a series of
very complicated reasonings”. Furthermore, he mentions that these simplifica-
tion rules presented for linear inequalities apply as well to non-linear inequalities
a.k.a. interval arithmetic: “if the conditions are expressed by non-linear inequal-
ities, the question does not change its nature, and can still be treated by the
same principles.”. In his second lecture, he considers the optimisation problem
and describes a method for moving from vertices to vertices of the feasible region
polyhedron, in order to improve the cost up to its optimal value, a.k.a the geo-
metrical interpretation of the Simplex algorithm [9].

In the realm of Linear Programming today, several Algebraic Modeling Lan-
guages such as OPL, AMPL, Mosel, etc. have been defined as input modeling
languages with a syntax near to mathematical notations for optimization prob-
lems, using indices, sets, algebraic expressions and data handling variables. Then
external solvers interfaced with these modeling languages can be called to actu-
ally solve the problem instances defined by the model and a dataset.

In the realm of Constraint Programming, MiniZinc is a similarly high-level
constraint-based modeling language to model constraint satisfaction and opti-
mization problems in a solver-independent way [12,16]. A MiniZinc model is
usually transformed in a FlatZinc model in which the high-level constructs have
been eliminated and replaced by a flat constraint satisfaction problem that can
be solved by a variety of constraint solvers parsing FlatZinc syntax. This is the
way for instance SICStus-Prolog is interfaced with FlatZinc as a general pur-
pose constraint solver to solve problems modeled in MiniZinc [11]. Because of
the importance of global constraints, several of them are defined in MiniZinc,
kept in FlatZinc, and handled by the constraint solver, either directly as global
constraints if they are implemented as such, or by decomposition into basic con-
straints supported by the constraint solver.

Because of the importance of search in constraint programming, MiniZinc
contains some predefined common search heuristic options that are kept in
FlatZinc for their possible interpretation by the constraint solvers, in addition
to solver specific annotations in the MiniZinc model that are similarly kept in
FlatZinc [12]. Nevertheless, the absence of programming constructs in a model-
ing language like MiniZinc limits the search strategies that can be tried to solve
a complex problem, which may finally lead to abandon the high-level modeling
approach in favor of a lower level constraint programming language.
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Furthermore, when it comes to teaching constraint-based modeling and algo-
rithms for decision making, there is a need to teach constraint solving algorithms
and program them as well. The recourse to a modeling language like MiniZinc
makes it possible to focus on the declarative modeling aspects but cannot be
used to show the implementation of constraint solvers, nor implement new con-
straints. Because of its roots in first-order logic, Prolog should be a natural choice
to address these needs as both a programming language in its own right, and a
modeling language based on relations a.k.a. constraints. Nevertheless the histor-
ical focus on list data structure, and the definition of meta-predicates before the
advent of constraint logic programming, make of Prolog a poor modeling lan-
guage for complex constraint satisfaction problems, moreover exhibiting incom-
patibilities of use between some standard meta-predicates and constraint solving
libraries.

In this paper we propose solutions to those issues by presenting a general
purpose mathematical modeling library1 in Prolog, based on bounded quanti-
fiers and arrays for subscripted variables, which is essentially compatible with
MiniZinc models and obviously Prolog programming facilities for programming
search, constraint solvers, and using external interfaces.

The next section contains a motivating example for modeling the N-queens
problem and breaking all the symmetries of that placement problem on a square
(i.e. with respect to the 8 elements of the dihedral group of isometries of order
4). The recourse to mathematical notations made possible with our modeling
library using subscripted variables and bounded quantifiers rather than lists and
recursion, marks a striking gain in declarativity for engineers and students in
engineering schools more acquainted to mathematical notations than program-
ming structures. We provide some performance figures which show that this is
achieved with no computation time overhead.

In Sect. 3 we compare our modeling library in Prolog to the solver-
independent constraint-based modeling language MiniZinc [12,16]. We show the
large compatibility between both modeling languages, and describe the advan-
tages of the Prolog library approach in terms of ability to compute answer con-
straints, not just ground solutions, a definite advantage of constraint logic pro-
gramming [8] illustrated there with Fourier’s example, as well as to program
search and debug models in a unique modeling and programming environment.

In Sect. 4 we describe the main predicates of our modeling library for arrays
and iterator meta-predicates for answer constraint semantics. The development
of such a library raises however a number of subtle issues that cannot be solved
with standard Prolog meta-predicates that have been designed before the advent
of constraints. This leads us to make a proposal for extending the specification of
the behaviour of ISO-Prolog meta-predicates to attributed variables, in the realm
of Prolog answer constraint semantics. Finally, we conclude on the importance
of keeping the development of Prolog systems in both perspectives of a relation-
based declarative programming language and a constraint-based mathematical
modeling language.

1 The Prolog libraries presented here form a pack named modeling, currently available
for SWI-Prolog at https://lifeware.inria.fr/wiki/Main/Software#modeling.

https://lifeware.inria.fr/wiki/Main/Software#modeling
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2 Motivating Example

2.1 List Recursion Versus Array Iteration in the N-Queens Problem

The N-queens puzzle consists in placing N queens on an N × N chessboard such
that they do not attack each other, i.e. no pair of queens is on the same line or
diagonal. This is a classical example used in constraint programming to illustrate
the power of the active use of constraints to prune the search tree when they are
posted in advance in the paradigm of “constrain and generate”, by opposition to
pure backtracking “generate and test” programs limited to small size problems.
This makes it possible for instance to place by search 100 queens in 0.25 s CPU
time on a standard laptop, a performance out of reach of search methods without
active use of constraints to filter the domains of all variables during search.

The standard definition of this problem by Prolog clauses with constraints
over the integers uses a list of N variables representing the queens (say per
column as in Fig. 1) with a finite domain of possible values in the interval [1, N]
(representing their position in the rows) and posts the no-attack constraints by
double recursion on that list of variables, before enumerating the values in the
domain of the variables (predicate labeling/2 with ff first-fail smallest-domain
variable and-choice heuristics), as follows:

:- use_module(library(clpfd)).

queens(N, Queens):-

length(Queens, N),

Queens ins 1..N,

safe(Queens),

labeling([ff], Queens).

safe([]).

safe([QI | Tail]) :-

noattack(Tail, QI, 1),

safe(Tail).

noattack([], _, _).

noattack([QJ | Tail], QI, D) :-

QI #\= QJ,

QI #\= QJ + D,

QI #\= QJ - D,

D1 #= D + 1,

noattack(Tail, QI, D1).

The double recursion on the lists of queens and of their successor queens
on the right, is standard in Prolog where the list data structure is promoted,
mainly for historical reasons including comparison to Lisp, and where most built-
in predicates are defined on lists.

In algebraic modeling languages however, mathematical notations using sub-
scripted variables, with iteration over subscripts instead of recursion, are usually
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Fig. 1. Placement of 8 queens on a 8× 8 chessboard with no two queens in the same
column, row or diagonal, modeled as a constraint satisfaction problem, with 8 variables
Q1, . . . , Q8, representing the queens say in each column, taking integer values in the
interval [1, 8] representing the rows where they are placed.

preferred for better declarativity. This is what offers our mathematical modeling
library in Prolog. The double list recursion for posting the constraints between
each pair of queens in the program above can thus be replaced by iteration on
the indices of an array of decision variables as follows:

:- use_module(modeling).

queens(N, Queens):-

int_array(Queens, [N], 1..N),

for_all([I in 1..N-1, D in 1..N-I],

(Queens[I] #\= Queens[I+D],

Queens[I] #\= Queens[I+D]+D,

Queens[I] #\= Queens[I+D]-D)),

satisfy(Queens).

Compared to the previous Prolog program using lists and recursion, the
advantage in terms of declarativity of the constraint-based model using sub-
scripted variables should be clear, at least for engineers or students more familiar
with mathematical notations than programming structures.

2.2 Breaking Symmetries in the N-Queens Problem

The gain in declarativity becomes even more striking however, when it comes to
breaking all symmetries of the chessboard square with respect of the 8 isometries
of the dihedral group of order 4 for a square [A, B, C, D] as in Fig. 1, using
lexicographic ordering constraints [17], namely

– the reflection symmetry (AB)(CD) around the vertical axis, a variable sym-
metry in the model of Fig. 1 which can be eliminated here by constraining
the first variable to be less than the last;
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– the horizontal axis reflection (AD)(BC), i.e. a value symmetry that can be
eliminated here by constraining the first variable to be less or equal to the
mid row value;

– the diagonal reflection (BD), a variable-value symmetry that can be broken
by a lexicographic ordering constraint between the variables of the primal
model and the dual model defined by Di = j ⇔ Qj = i;

– the second diagonal reflection (AC), similarly broken using a dual model;
– the rotation by 90◦ (ABCD) broken in the same manner;
– the rotation by 180◦ (AC)(BD);
– the rotation by 270◦ (ADCB);
– (the identity).

These symmetry breaking constraints can be added to the model using lexico-
graphic ordering lex_leq/2 constraints on arrays as follows:

sym_elim(N, Queens) :-

Queens[1] #< Queens[N], % vertical reflection symmetry

Queens[1] #=< (N+1)//2, % horizontal reflection symmetry

int_array(Dual, [N], 1..N),

for_all([I, J] in 1..N, Queens[I] #= J #<==> Dual[J] #= I),

lex_leq(Queens, Dual), % first diagonal reflection

int_array(SecondDiagonal, [N], 1..N),

for_all(I in 1..N, SecondDiagonal[I] #= N + 1 - Dual[N+1-I]),

lex_leq(Queens, SecondDiagonal),

int_array(R90, [N], 1..N),

for_all(I in 1..N, R90[I] #= Dual[N+1-I]),

lex_leq(Queens, R90), % rotation symmetry by 90 degrees

int_array(R180, [N], 1..N),

for_all(I in 1..N, R180[I] #= N + 1 - Queens[N+1-I]),

lex_leq(Queens, R180),

int_array(R270, [N], 1..N),

for_all(I in 1..N, R270[I] #= N + 1 - Dual[I]),

lex_leq(Queens, R270).

Implementing arrays in ISO-Prolog is straightforward using term meta-
predicates functor/3 and arg/3, and reading/writing cells by unification (back-
trackable and non-backtrackable assignments using setarg/3 or nb_setarg/3
are also possible but not considered here).

On the other hand, implementing bounded quantifiers and iteration meta-
predicates like for_all/2 above raises some issues with the existing ISO-Prolog
meta-predicates which have been defined for the provability semantics of Prolog,
before the advent of the answer constraint semantics of Constraint Logic Pro-
gramming [8]. This justifies a new implementation of control meta-predicates
compatible with constraint solving libraries in Prolog, and probably the defini-
tion of a second level of normalization for ISO-Prolog with attributed variables
for constraint handling. These aspects are discussed in Sect. 4.3.
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2.3 Performance Figures

Table 1. CPU time in seconds and reported number of logical inferences in SWI-
Prolog for solving various variants of the N-queens problem, compared between the
recursive program on lists and the mathematical model using subscripted variables
and quantifiers. The last benchmark simply shows the logarithmic versus linear access
times in large datasets represented by arrays versus lists.

Benchmark CPU time in seconds Nb logical inferences

100-queens first solution

math model 0.373 4,552,518

list program 0.298 4,472,406

all-distinct math model 3.611 63,565,626

all-distinct list program 3.470 63,502,308

8-queens all 92 solutions

math model 0.041 757,835

list program 0.042 757,303

all-distinct math model 0.297 4,025,643

all-distinct list program 0.289 4,012,622

8-queens all 12 non-symmetrical sol.

math model 0.045 667,850

list program 0.048 664,708

all-distinct math model 0.125 1,471,542

all-distinct list program 0.128 1,509,989

102 accesses in an array of size 102 0.000 301

in a list of size 102 0.000 544

103 accesses in an array of size 103 0.001 3,001

in a list of size 103 0.003 4,144

104 accesses in an array of size 104 0.005 30,001

in a list of size 104 0.161 40,001

105 accesses in an array of size 105 0.027 300,001

in a list of size 105 13.615 400,001

106 accesses in an array of size 106 0.148 3,000,001

in a list of size 106 1567.177 4,000,144

We report here some performance figures obtained with our modeling library in
SWI-Prolog version 9.0.4, including the clpfd library of constraints over integer
variables, on a MacBook Pro 2,3 GHz Quad-Core Intel Core i7 32 GB 3733 MHz.

Table 1 shows the absence of significant difference in computation time
between the execution of our models based on arrays and universal quantifiers
for iterations, and the Prolog programs based on lists and list recursions.
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On the other hand, the speed-up due to logarithmic access in an array versus
linear access in a list (which does not occur in the list based model of the N-
queens problem) begins to show up from size 1000 in pure cell access problems.

3 Comparison to MiniZinc Modeling Language

3.1 Types

Compared to MiniZinc, the writing of the N-queens model is very similar:

int: n = 8;

array [1..n] of var 1..n: queens;

constraint forall (i in 1..n-1, d in 1..n-i)

(queens[i] != queens[i+d] /\

queens[i] != queens[i+d] + d /\

queens[i] != queens[i+d] - d);

solve satisfy;

Type declarations are necessary in MiniZinc to overload operators and constraint
predicates over the four constraint domains considered in MiniZinc: the integers,
the Booleans, the real numbers (floating points) and the domain of finite sets of
integers.

This is not implemented in our modeling library in Prolog since constraint
predicate symbols are currently not overloaded. More specifically

– constraint predicates over integers and Booleans values 0/1 of library clpfd
are prefixed and distinguished by the # symbol,

– constraints over real numbers are distinguished by enclosing between curly
brackets in the clpr library used,

– constraints on finite sets are currently not implemented.

It is worth noting however that prescriptive typing and type inference are
possible in Prolog, as demonstrated for instance in [4] using a powerful system
of subtyping constraints [2]. This could be used to parse MiniZinc models and
type check mixed MiniZinc-Prolog programs.

3.2 Programming Search

The search procedure is the second most important component of constraint
programming techniques to solve hard combinatorial problems. For that reason,
MiniZinc offers the possibility to provide a limited set of search annotations,
which can be interpreted by the solvers, for specifying and-choice heuristics
(e.g. first-fail principle), or-choice heuristics (e.g. best-first criterions) and also
some search strategies such as dichotomic search.

Of course, such search options cannot cover all needs for controlling search.
In [10], it is however shown how some more elaborated search strategies such
as Limited Discrepancy Search [7] can be specified by constraints in the model.
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In [13], a solver-independent language is proposed to control search in MiniZinc
with a limited set of instructions to execute each time a solution is found. This
is illustrated by the implementation of Large Neighborhood Search (LNS), an
important strategy for optimization problems.

In [15], search combinators are proposed to specify general search instructions
to execute at each choice point in the model. This requires interaction with the
solver at each node of the search tree which is hardly supported by constraint
solvers implemented in a different programming language.

The capability to program search at that level of granularity can however
make a decisive difference in hard combinatorial problems. For instance, in
disjunctive scheduling, it can be worth spending time to determine the best
mutual exclusion constraint to select for the next choice point, in order to prune
the search tree by constraint propagation, instead of just duplicating the real
search space with a bad selection. Sophisticated strategies, including looking-
ahead techniques for determining that most informative disjunctive constraint
by trying them all may thus become necessary to implement.

This requires the recourse to a programming language which is possible with
a programming library-based approach to modeling, like here in Prolog, a nat-
ural choice for relation-based modeling, and not possible with a pure modeling
language approach like MiniZinc or other algebraic modeling languages, beyond
a limited set of search annotations.

3.3 Answer Constraint Semantics in Fourier’s Example

Thanks to the computed answer constraint semantics of the class of constraint
logic programming languages [8], and of Prolog with its constraint-solving
libraries, the execution of MiniZinc models directly in our modeling library in
Prolog makes it possible to obtain much more informative answer constraints,
compared to the ground solutions obtained with MiniZinc solvers.

This can be illustrated by the example given by Fourier in his lecture on
constraint-based modeling and solving for systems of linear inequalities [9]. He
took the problem of placing a given weight P at unknown coordinates (X,Y )
on an isocele triangular table with a maximum force F exerted on each of the 3
legs (see Fig. 2).

By assuming that the triangle table has leg 1 at coordinates (0, 0), leg 2 at
coordinates (20, 0) and leg 3 at coordinates (0, 20), simple moment equilibrium
equations give the following model:

fourier(P, X, Y, F):-

float_array(Forces, [3], 0..F),

{Force[1]+Force[2]+Force[3] = P},

{P*X = 20*Force[2]},

{P*Y = 20*Force[3]}.

?- fourier(3, X, Y, 1).

X = Y, Y = 6.666666666666667.
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?- fourier(3.1, X, Y, 1).

false.

?- fourier(2, X, Y, 1).

{Y=20.0-10.0*_A-10.0*_B, X=10.0*_B, _=2.0-_A-_B, _B=<1.0, _A=<1.0}.

?- fourier(2, X, Y, 1), maximize(X).

X = 10.0,

{Y=10.0-10.0*_A, _=1.0-_A, _A=<1.0, _A>=0.0}.

?- fourier(2, X, Y, 1), maximize(X+Y).

X = Y, Y = 10.0.

Fig. 2. Example given by Fourier to illustrate a general purpose constraint-based mod-
eling method, applied to the placement of a weight on a triangular table with limit
constraints on the forces exerted on its legs 1, 2, 3, together with a general purpose
method for solving systems of linear inequalities over the real numbers. The inner
triangle represents the validity domain of the placement of a weight of 2 units. This
triangle is symbolically represented by the computed answer constraint for the query
fourier(2, X, Y, 1).

For a weight of 3 units, a single point is returned as unique solution. Interest-
ingly, for the placement of a weight of 2 units maximizing its coordinate along
the X axis, the value 10 is found for X together with one constraint on Y and A
which defines the vertical segment where the weight can be placed. Similarly, the
computed answer constraints returned for the placement of a weight of 2 units
without optimization criterion define symbolically the validity domain depicted
by the inner triangle in Fig. 2. It is worth noting that the computed answer
constraint set semantics are a quite unique advantage of the constraint logic
programming paradigm, compared to other declarative modeling languages that
are usually interfaced to solvers restricted to compute ground solutions and not
constraints.
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3.4 Model Debuging and Visualization in a Unique IDE

In our modeling library approach in Prolog, a MiniZinc model can be executed
in two ways:

– either by parsing the MiniZinc syntax and interpreting it directly by the
predicates of our library,

– or by parsing the FlatZinc model generated by the MiniZinc compiler which
is the standard way of evaluating backend MiniZinc constraint solvers.

A FlatZinc parser has been developed for SICStus Prolog which shows excel-
lent performance on MiniZinc challenge competitions [16].

On the other hand, the advantage of parsing MiniZinc syntax in a Prolog
system has already been demonstrated in a system like Eclipse [1]. Making it
available in a library for standard Prolog systems is however a significant con-
tribution to factorize system development efforts, and use the single Integrated
Development Environment (IDE) of Prolog to debug MiniZinc models.

For instance, the general purpose search tree visualization and interaction
library CLPGUI, developed for constraint logic programming [5], can be used
here to visualize, and restore states in, the search tree developed by our modeling
library in Prolog. This is illustrated in Fig. 3 in the model above for enumerating
all 92 solutions of the 8 queens problem.

Fig. 3. Visualization of the search tree for enumerating all the 92 solutions of the 8-
queens problem in Prolog with constraints, using the interactive graphical visualization
system CLPGUI of [5]. This illustrates the good job of constraints for pruning the search
tree in this example. Indeed, after around 5 choice points with a limited number of
possible values, the branches of the search tree become linear and lead to one solution.

From the point of view of a modeler, or of a teacher, this is a very use-
ful tool that is difficult to implement without a unique declarative program-
ming/modeling IDE. For the same reasons, model debuging is greatly facilitated
by the absence of a first transformation of the model to a FlatZinc model, fol-
lowed by a second transformation to an external constraint solver which can
create runtime errors difficult to recover.
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4 Modeling Library

4.1 Subscripted Variables with Library arrays.pl

Subscripted variables, i.e. arrays, are not normalized in ISO-Prolog but can
be easily represented by terms with functor array. Multidimensional arrays are
then represented by arrays of arrays. On top of that, library modeling.pl defines
predicates for defining arrays of Booleans, integers or real number with domain
constraints. The main predicates defined in library arrays.pl are:

array(?Array, ?Dimensions) true if Array is an array of dimension Dimen-
sions. Either creates an array of given dimensions, or returns the list of dimen-
sions of a given array, or checks the relation.

cell(+Array, +Indices, ?Cell). true if Cell is the cell or subarray cell
of a given array at given indices (integer or list of integers). Throws an error
if the indices are out of range of the array. The cell is read and written by
unification. The functional notation syntax Array[Indices] is also authorized
in constraints to denote the cell of an array without having to introduce an
existentially quantified variable for that, e.g. with the quantifier meta-predicates
described below.

array_list(?Array, ?List). true if List is the flat list of all elements in
Array. Either creates a one-dimensional array, or the list of array cells, or checks
the consistency of both representation.

array_lists(?Array, ?List). true if List is the list of lists of elements in
the array following its dimensions.

tensor(+A, +Op, +B, +Rel, ?C) equivalent to (A Op B) Rel C, where A,
B, C are arrays or lists of same dimensions, Op is a binary operation executed
element-wise, and Rel a binary predicate.

Furthermore, for the sake of generality outside the scope of our modeling
library, backtrackable and non-backtrackable imperative array cell assignments
are also defined by extra-logical predicates set_cell/3 and nb_set_cell/3
using ISO-Prolog predicate setarg/3.

4.2 Bounded Quantification Meta-predicates in quantifiers.pl

Iteration with subscripted variables is more natural to implement using quanti-
fiers on the indices rather than recursion. To this end, we introduce the following
general-purpose meta-predicates to quantify variables either universally or exis-
tentially, and distinguish them from context variables in goals:

for_all(+Args, +Goal) calls Goal for all the arguments specified in Args,
i.e. calls the conjunction Goal(Arg1), ..., Goal(ArgN). The list of arguments
Args is a list of universally quantified variables given with a finite domain (either
finite interval of integers or list of terms), plus possibly a deterministic condition
goal, using expressions of the form Args in Domain where Condition.

exists(+Vars, +Goal) to make a list of variables renamed-apart and local
to the goal.
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let(+Bindings, +Goal) to additionally apply a binding constraint =, =..,
in, #=, #<, #>, #=<, #>= between an existentially quantified variable and a
term, possibly using Array[Indices] functional notation for array cells.

list_of(+Vars, ?List) to build the list of terms specified in Args.
The introduction of those meta-predicates in our modeling library is justified

by the fact that ISO-Prolog meta-predicates bagof/3, setof/3, findall/3 have
been introduced before the advent of constraint logic programming, and of the
implementation of constraint solvers based on attributed variables, at a time
focussing on the provability semantics of Prolog.

Indeed, in his seminal paper [19], David Warren introduced an extra log-
ical meta-predicate to collect information across branches of the search tree.
Paraphrasing him, the extension takes the form of a new built-in predicate:
setof(X,P,S) to be read as: “The set of instances of X such that P is provable
is S”. This is achieved with a special mechanism introduced in the WAM [18]
for copying and memorizing terms in a list across backtracking. The non deter-
ministic goal P can thus be used as a generator of the instances to be checked
for satisfiability.

This mechanism has been used to introduce various meta-predicates for
higher-order programming in Prolog [14]. Those meta-predicates thus refer to
the provability semantics of Prolog, not the answer constraint semantics. Simi-
larly, meta-predicates forall/3, foreach/3 found in several Prolog dialects have
no normalized behaviour with respect to attributed variables and constraints.

In the success set semantics of a universal quantifier for goals, it is not clear
whether the successful bindings should be kept across backtracking. On the
other hand, in the answer constraint semantics, it is clear that the computed
answer constraints should be added conjunctively to the store of constraints. This
is precisely what is achieved by our for_all/2 meta-predicate that generates
instances of the goal by iteration, unlike for example the forall/2 predicate of
SWI-Prolog that generates instances by backtracking:

?- L=[X, Y], forall(member(V, L), V=a).

L = [X, Y].

?- L=[X, Y], for_all(V in L, V=a).

L = [a, a],

X = Y, Y = a.

4.3 Interface to Constraint Solvers with Library clp.pl

We also found it useful to create a front-end interface to existing libraries for
solving constraints over the real numbers, integers and booleans, for several rea-
sons. First, this front-end library makes it possible to use evaluable expressions
and Array[Indices] functional notation in constraints and in the definitions
of variable domains. Second, global constraints on lists of variables can now
undifferently accept arrays instead of lists.

Beyond that, some questions arise concerning the answer constraint semantics
and the copying or not by Prolog meta-predicates of the constraints attached to
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the variables. For constraint libraries using attributed variables, this amounts
to the question of whether those meta-predicates should copy the attributes or
not, in particular the constraint propagator attributes.

In the answer constraint semantics, the answer is clearly yes, and this is what
is done for instance in SWI-Prolog and Scryer-Prolog. There is however currently
a side effect concerning the duplication of the constraint propagators, e.g.

?- L=[A, B], L ins 1..2, A #=< B, bagof(W, member(W, L), L2).

L = L2, L2 = [A, B],

A in 1..2,

B#>=A,

B#>=A,

B#>=A,

B in 1..2.

This is patched in our library clp.pl by making a set union instead of con-
catenating the constraint propagators attached to two variables when they are
unified. In this respect, it is worth noting that the set union of constraint prop-
agators should not be implemented by maintaining the constraint propagation
attributes sorted, since that could severely affect the scheduling and performance
of constraint propagators.

Furthermore, a more efficient and more general solution would be to consider
the simplification of constraints on two variables that get unified. This is not
usually done in constraint programming and global constraint solvers, e.g.

?- L=[X, Y], L ins 1..3, all_distinct(L), X=Y.

L = [Y, Y],

X = Y,

Y in 1..3,

all_distinct([Y, Y]).

Symbolic simplification of constraints is however instrumental in SMT solvers
or in Constraint Handling Rules (CHR) [6]. This has been shown responsible
for drastic performance improvement in some contexts, for instance in [2,3] for
solving subtyping constraints using CHR, with better performance than dedi-
cated algorithms in CAML, thanks to the constraint simplifications performed
by CHR immediately upon unification of two variables.

4.4 Proposal for a Second-Level of Normalization of ISO-Prolog

Because of the importance of constraint-based methods in many applications of
Prolog, and because of the numerous implementations of constraint solvers in
Prolog libraries using attributed variables, we propose to specify the behaviour
of ISO-Prolog predicates with respect to attributed variables in a new level 2
norm for ISO-Prolog.

More specifically, we mainly propose to open discussion to:

1. normalize attributed variables;
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2. specify the copying or not of attributed variables in ISO-Prolog predicates
findall/3, bagof/3, setof/3;

3. define meta-predicates compatible with constraint answer semantics;
4. normalize predicates for arrays.

5 Conclusion

Last year was the 50th year of Prolog, and this remarkable longevity for a pro-
gramming language was clearly recognized as a mark of the fundamental impor-
tance of the relational programming paradigm based on first-order Horn clause
logic and constraints in decidable theories. It also showed the need to transmit
knowledge to new generations of Prolog system developpers, teachers and users,
and unite the Prolog community with new momentum.

The development of our constraint-based mathematical modeling library in
Prolog aims at going in that direction from the triple points of view of the users,
by providing a higher-level modeling library with full programming features;
of the teachers, by providing a unique environment for both constraint-based
modeling and programming; and of the system developpers, by factorizing library
development efforts, and providing use cases of standard predicates and libraries
that require some corrections and probably a normalization effort.

On-going work concerns the addition of a MiniZinc parser to our modeling
library in order to directly execute and debug MiniZinc models in a single model-
ing/programming environment, compare performances using the large database
of MiniZinc models, compute answer constraints not just ground solutions for
getting more declarative answers, and stop being blocked from programming
search for hard decision making problems.

Acknowledgments. I am grateful to my students at Ecole Polytechnique for their
interest in my courses on Constraint Programming including practical work that
evolved over the years from Prolog to MiniZinc and now back to Prolog; to Math-
ieu Hemery and Sylvain Soliman for their participation in the teaching and fruitful
discussions; to Guy-Alain Narboni for his vision of the importance of the Prolog her-
itage and the organization of the 50th year of Prolog in Paris; to Markus Triska, Ulrich
Neumerkel and Christian Jendreiko for their organization of the Scryer Meetup in
Dusseldorf; and to the reviewers for their comments.

References

1. Apt, K., Wallace, M.: Constraint Logic Programming Using Eclipse. Cambridge
University Press, Cambridge (2006)

2. Coquery, E., Fages, F.: TCLP: overloading, subtyping and parametric polymor-
phism made practical for CLP. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401,
p. 480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45619-8 42

3. Coquery, E., Fages, F.: Subtyping constraints in quasi-lattices. In: Pandya, P.K.,
Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 136–148. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-24597-1 12

https://doi.org/10.1007/3-540-45619-8_42
https://doi.org/10.1007/978-3-540-24597-1_12


150 F. Fages

4. Fages, F., Coquery, E.: Typing constraint logic programs. J. Theory Pract. Log.
Program. 1(6), 751–777 (2001)

5. Fages, F., Soliman, S., Coolen, R.: CLPGUI: a generic graphical user interface for
constraint logic programming. J. Constraints Spec. Issue User-Interact. Constraint
Satisfaction 9(4), 241–262 (2004). https://doi.org/10.1023/B:CONS.0000049203.
53383.c1
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Abstract. We describe the methods and technologies underlying the
application Grants4Companies. The application uses a logic-based expert
system to display a list of business grants suitable for the logged-in busi-
ness. To evaluate suitability of the grants, formal representations of their
conditions are evaluated against properties of the business, taken from
the registers of the Austrian public administration. The logical language
for the representations of the grant conditions is based on S-expressions.
We further describe a Proof of Concept implementation of reasoning over
the formalised grant conditions. The proof of concept is implemented in
Common Lisp and interfaces with a reasoning engine implemented in
Scryer Prolog. The application has recently gone live and is provided as
part of the Business Service Portal by the Austrian Federal Ministry of
Finance.

Keywords: Applications · Expert systems · S-Expressions · Common
Lisp · Scryer Prolog

1 Introduction

Business grants are an important tool for steering and supporting the economy.
In addition, they can be used to quickly react to and counter crises. However,
the search for suitable business grants can be a challenge for companies and
businesses in Austria. This is due to the large number of available business
grants from a multitude of different providers. While there are dedicated search
engines, companies and businesses often are simply not aware of the existence
of grants on a specific topic, and hence cannot use these engines in a targeted
search.

As an additional tool for providing targeted information about potentially
interesting business grants to businesses the application Grants4Companies was
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introduced. The application is part of the Austrian Unternehmensservicepor-
tal (USP)1 and is productive since November 2022 with around 50 visits per
month on average. The application uses data about available grants from the
Austrian Transparenzportal2 to formalise formal grant conditions, e.g., on the
type of business or the location of the head office. Data sources within the public
administration are queried and used to evaluate these formalised criteria, to dis-
play a list of grants ordered according to the feasibility of applying - i.e. whether
the business fulfils the criteria or doesn’t fulfil the criteria; a third category
contains grants for which the available information is not sufficient to decide.

While the application in the USP is written in Java3, we have also imple-
mented a Proof of Concept (PoC) for testing out new features, which we describe
in more detail in this article. In particular, this PoC contains a reasoning engine
for reasoning about the formalised grant conditions themselves. The main fea-
tures of the PoC are implemented in Common Lisp while the reasoning engine
is implemented in Scryer Prolog4, following the Lean Methodology [1] for imple-
menting proof search in logical calculi using Prolog’s backtracking mechanism.
The PoC is of interest for two reasons: First, it combines implementations in
Common Lisp and Scryer Prolog to leverage the strengths of each programming
language. Second, it provides an example and showcase for the use of declarative
programming languages in public administration. To the best of our knowledge,
such examples are currently rather rare.

The source code for the reasoning engine complete with examples of business
grants with their conditions is available under https://github.com/blellmann/
g4c-reasoner. While there is no openly accessible web interface, the reasoning
engine can be loaded into the Scryer Playground5, the freely accessible web
interface for Scryer Prolog, and used for running evaluations.

In the remainder of the article we first give a brief overview of the develop-
ment history (Sect. 2), followed by a description of the productive implemen-
tation of Grants4Companies (Sect. 3) and the technical details underlying the
representation of the grants as well as their evaluation (Sect. 4). We then provide
details about the PoC implementation (Sect. 5) including the implementation of
the reasoning engine and the interface between the Common Lisp implementa-
tion and the Prolog reasoner, before concluding with an outlook (Sect. 6). We
do not include any benchmark results or comparisons regarding efficiency of the
reasoning engine here, since the focus of the implementation is on correctness
instead of maximal efficiency, and it is part of a PoC implementation. Since
the examples of grants are taken from the official productive data set, we chose
to keep the original formulation of the examples and several concepts of the

1 The official Austrian portal for interaction between businesses and public adminis-
tration. See https://www.usp.gv.at/en/ueber-das-usp/index.html.

2 The official Austrian data base containing (amongst other information) data about
the available grants. See https://transparenzportal.gv.at.

3 Due to interoperability concerns with existing libraries.
4 See https://www.scryer.pl.
5 See https://play.scryer.pl.

https://github.com/blellmann/g4c-reasoner
https://github.com/blellmann/g4c-reasoner
https://www.usp.gv.at/en/ueber-das-usp/index.html
https://transparenzportal.gv.at
https://www.scryer.pl
https://play.scryer.pl
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representation language in German, providing additional explanations in
English. The technical terms from Austrian legislation can of course be adapted
to other languages.

2 Development History

To assess the basic feasibility of the approach, we started with a pilot project,
using Common Lisp for rapid prototyping. Grants were expressed as Lisp forms,
a natural representation when working with Lisp. The pilot was successful, and
also served as an illustration and internal tool for communicating the approach
we planned. Already in this phase of the project, particular care was taken to
explain in the UX that company data would only be processed with explicit
user consent, and no data would be stored permanently by the planned service.
In order to demonstrate the key concepts without any legal concerns, the pilot did
not use any real company data, but only a fixed set of imaginary test companies.

For the production version of our service, we replaced the Common Lisp
engine with a Java-based implementation to align the engine with architec-
tural principles of surrounding IT services, and we retained the representation of
grants as Lisp forms. As a result, the Lisp-based pilot can still be seamlessly used
on the production data of the formalised grants to quickly prototype and assess
additional features, while the Java-based Lisp parser and evaluation engine can
also be used in other IT-services that require a Java implementation for archi-
tectural or other reasons. Only the production version of the service has access
to real company data, and explicit consent of the company is required.

An additional component is the Prolog-based reasoner described in Sect. 5.1.
This component can be used independently of the production environment to
reason about grants, and is freely provided in a public repository. This com-
ponent can reason with the productive formalised grants. Since the reasoning
concerns only logical relations between the grants themselves, no company data
is used by the reasoner.

3 Grants4Companies Overview

While the main focus of this article is the presentation of the PoC implementa-
tion of extended features for Grants4Companies, for context we briefly describe
the productive application. Grants4Companies is an application in the Austrian
Unternehmensserviceportal (USP)6. The USP is Austria’s main digital portal
for the interaction between public administration and businesses with currently
more than 600.000 registered businesses and more than 120 integrated applica-
tions. It also acts as identity provider for the businesses.

After logging into the USP and starting the application Grants4Companies,
businesses consent to the use of their data from registers of public administra-
tion in line with the GDPR [10]. Following this consent, the application fetches
6 See https://www.usp.gv.at/en/index.html.

https://www.usp.gv.at/en/index.html
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available data about the companies from registers of public administration. Cur-
rently the data sources are the Unternehmensregister and the Firmenbuch, the
data used concerns, e.g., information about the geographic location of the busi-
ness, its legal type, or the area of business following the Austrian version of
the NACE-classification7. The extension to further registers is planned. Com-
panies are then presented with a list of grants, ordered according to whether
the formal grant criteria are satisfied by the company, not satisfied, or cannot
be sufficiently evaluated based on the available data. The latter option caters
for potential unavailability of necessary data from the registers, due to lack of
coverage or also maintenance downtime of the registers. The results can be fil-
tered and sorted according to the evaluation result, categories of the grants, or
application date. A screenshot of the productive version is shown in Fig. 11.

The architecture of Grants4Companies follows that of classical knowledge
based systems, with a clear separation between the knowledge base, i.e., grant
definitions including the formalised grant criteria, and evaluation engine. The
evaluation engine of the productive version of Grants4Companies is implemented
in Java. The knowledge base contains currently 45 grants which were formalised
manually. The details of the formal language used for representing the grants
will be considered in Sect. 4.1. The knowledge base is stored in a GIT repository
to keep track of historical data, and enable version control, reproducibility and
data sharing. This knowledge base is shared with the PoC implementation.

4 Representation and Evaluation of the Grant Conditions

The knowledge base containing the grants with their formalised grant conditions
is based on data about Austrian grants contained in the Austrian Transparenz-
portal8, a portal provided by the Austrian Ministry of Finance, where funding
agencies are to enter grants and the granted funding. For the PoC and the ini-
tial productive version of Grants4Companies, a number of grants were formalised
manually by us, the current knowledge base contain 45 grants. In the future this
might be extended following a rules as code approach [6], e.g., using tools like
POTATO [5,8] for automatically suggesting formalised grant conditions based
on the natural language descriptions provided by the funding agencies.

4.1 Representation of the Grants

The grant conditions are formalised as quantifier-free logical formulae. The lan-
guage contains predicates for expressing properties of the businesses related to
location, legal form, classification of business activity, etc. Examples of atomic
formulae with their intended semantics are given in Fig. 1. For ease of use
by Austrian funding agencies, these predicates are formulated in German and
7 See https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:

Statistical_classification_of_economic_activities_in_the_European_Community
_(NACE).

8 See https://transparenzportal.gv.at/tdb/tp/startpage (in German).

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://transparenzportal.gv.at/tdb/tp/startpage
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Atomic Formula Intended semantics
Betriebsstandort-in(L) The business has a location in one of the ar-

eas/regions specified in the list L
Rechtsform-in(L) The legal form of the business is one of those in

the list L
ÖNACE-in(L) The business activity classification falls under one

of the areas in the list L

Fig. 1. Examples of atomic formulae and their intended semantics

often take a list as argument. Complex formulae are built from the atomic
formulae as well as �,⊥ as usual using the standard propositional connec-
tives ¬,∨,∧,→. At the current state there was no need for quantifiers, these
might be added in the future. Working in a quantifier-free language has the
benefit of a greatly reduced complexity for the reasoning tasks, of course. For
the sake of referring to commonly used concepts, the language also contains
defined concepts. On the logical level, these are given as pairs (d,D) consist-
ing of the name d of the concept, which can be used like an atomic formula,
and its definition D, i.e., a formula not containing d. The definition might con-
tain other defined concepts, absence of cycles is assumed to be ensured exter-
nally. E.g., the concept of a legal person is introduced as the an abbrevia-
tion with name G4c/Grants_Gv.At:Ist-Juristische-Person for the formula
Rechtsform-in(L), where L = [Genossenschaft, Verein, . . . ] is a list of the
legal forms which count as legal persons in Austria. Naming the definitions in
the style of packages makes it possible to differentiate between concepts with
the same name from different funding agencies, e.g., general funding conditions
specific to the funding agencies.

On a technical level, the language used for representing the logical formulae is
based on the Lisp-syntax of S-expressions [2, 102]. In particular, the logical for-
mulae formalising the grant conditions are represented in prefix notation as lists,
where the first element is the logical connective and the following elements are its
arguments. E.g., a formula ¬A∧ (B ∨C) is represented as the S-expression (and
(neg A) (or B C)). Predicates are represented by (Common Lisp) symbols.
E.g., the predicate Betriebsstandort-in represents the fact that the business
has a location in one of a list of certain areas given by their Gemeindekennzahl,
the Austrian identification number for municipalities. To enable restriction also
on a regional or county level, also prefixes of these identification numbers are
covered. E.g., the atomic formula (Betriebsstandort-in 2 617 60101) rep-
resents the assertion that the business has a site in the county Carinthia, the
region East Styria, or the municipality of the city of Graz.

The full representation of a grant also contains in addition to the formalised
grant conditions also its name, metadata about application dates and links to
the full description on the Transparenzportal, as well as the natural language
description of the grant conditions. The latter are included as Lisp comments
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(def-concept gv.at:natürliche-oder-juristische-Person
(OR

(Rechtsform-in :Einzelunternehmen)
(gv.at:Ist-Juristische-Person)))

Fig. 2. The definition of the concept gv.at:natürliche-oder-juristische-Person.
The formula captures the condition that the applicant is a natural person, i.e., the legal
form of the company is that of a sole trader (:Einzelunternehmen), or a legal person
(captured by the defined formula gv.at:Ist-Juristische-Person).

interspersed with the formalised conditions in the spirit of literate program-
ming [4]. This allows to have human-readable explanations collected and used
for explaining the evaluation of a grant. An example of a grant in this representa-
tion is given in Fig. 3. Defined concepts (d,D) are represented as (def-concept
d D). An issue that came up right from the beginning is having one concept in
multiple different implementations. A clause specifying that the company has to
be a small or medium enterprise (SME, in German “Der Antragsteller muss ein
KMU sein”) is used in many grants; sadly there are three different definitions
for this term, one from the federal government in Austria, one from the EU, and
one from the FFG9. As mentioned, this ambiguity is solved via package names
- there are simply three functions, GV.AT:IS-KMU, FFG:IS-KMU, and EU:IS-KMU.
This enables the use of different interpretations of the same natural language
term depending on the source of the regulation. An example of a defined con-
cept is given in Fig. 2.

4.2 Evaluation of the Grants

Evaluating whether the formal conditions of a grant apply for a specific business
essentially corresponds to checking, whether the business is a model of the log-
ical formula representing these conditions. Here the business is identified with
its properties given by the data about the business available. The atomic formu-
lae are chosen to directly correspond to data fields from specific registers and
hence their evaluation is rather straightforward. Complex formulae are evaluated
according to their main logical connectives. Names d for defined concepts (d,D)
are unpacked into their definition D and then evaluated.

Of course not all the data required to evaluate whether a company satisfies
the formalised eligibility criteria of a grant is necessarily always available. While
data like location of a company needs to be provided before it is officially recog-
nized, e.g., the (Ö)NACE classification10 of the economic activities of Austrian
businesses is not complete. In particular, for a sizeable number of companies the
ÖNACE-classification has not yet been assigned. In addition, the connection to
a specific register might drop out temporarily due to maintenance work.
9 The Österreichische Förderagentur für wirtschaftsnahe Forschung, Entwicklung und
Innovation, in English Austrian Research Promotion Agency.

10 https://www.statistik.at/en/databases/classification-database.

https://www.statistik.at/en/databases/classification-database
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Fig. 3. Example grant, TP-Nr.1052703. The grant provides funding for
increasing energy efficiency. It is applicable to natural and legal persons
(GV.AT:natürliche-oder-juristische-Person) in the city of Villach (the
Unternehmenssitz or a Betriebsstandort has to be in the municipal identifi-
cation number 20201). Some other conditions cannot be checked automatically based
on the data about the company available within public administration and hence
are not formalised (e.g., that the request for funding has to be submitted at most 8
months after implementing the measures for increasing energy efficiency).

To cover these eventualities, the evaluation is done in a three-valued logic,
which allows a third truth value of unknown next to true and false. The log-
ical connectives then propagate the truth value unknown upwards, whenever
no definite evaluation to true or false is possible. To be precise, we use (so
far quantifier-free) strong Kleene-Logic K3, considered, e.g., in [3]. The truth
tables for the logical connectives are given in Fig. 5. This ensures that grants
which have been evaluated for a company to true or false while some of their
atomic components are evaluated to unknown are evaluated with the same result



158 B. Lellmann et al.

Fig. 4. Example grant in Prolog syntax, TPPNr#1052703. For the original formulation
of this particular grant, see Fig. 3

Fig. 5. The truth tables for 3-valued strong Kleene logic K3. The truth values false,
unknown, true are represented by ⊥, u and �, respectively.

when additional data becomes available and some of the atomic components are
no longer evaluated as unknown. Range-based reasoning for numeric operations
would also be possible, and is planned as future work.

As a further potential next step, the symbolic representation also allows for
some easy optimizations – for commutative connectives/operations (like AND, OR,
possibly in the future also numerical addition via +), we could reorder the argu-
ments before evaluating. By moving the subformula with the highest probability
for a negative result to the front, a short-cutting evaluation could quickly discard
grant/company pairs, allowing for mass assessments: given a newly proposed
grant, how many companies in Austria will (be able to) apply? This reordering
is not implemented yet, though.

5 PoC: Extensions and Interfaces

The PoC also contains an implementation of the evaluation of grant conditions
based on company data. However, for the purpose of this article we concen-
trate on the functionality which goes beyond that of the productive system.
In particular, the representation of grant conditions as logical formulae opens
the possibility to not just evaluate the conditions based on business data, but



Grants4Companies 159

to also reason about the conditions themselves. Interesting questions here are
in particular consistency, useful for discovering mistakes in the formalisation
of grant conditions, and logical implication, useful for finding unintended over-
lap between multiple grants in the same area. To enable such reasoning, we
implemented backwards proof search in a Gentzen-style sequent calculus (see,
e.g., [9] for the proof-theoretic background). Following the Lean-methodology [1]
we make use of Prolog’s backtracking mechanism to perform the proof search.

We use Scryer Prolog due to its strong conformance to the Prolog ISO stan-
dard, which will ease future cooperations with other organizations and public
administrations. In addition, the system is freely available and allows inspec-
tion of its entire source code, which works towards our aim of providing full
transparency and explainability of all computed results.

5.1 Symbolic Reasoning over Grants

The Proof-of-Concept has the ability to connect one or more Scryer Prolog11
sessions to the web frontend, providing a convenient REPL that is pre-loaded
with some known facts and the transpiled grant forms (see Fig. 4). We included
a prototypical implementation of logical reasoning over the formalised eligibil-
ity criteria in the form of a sequent calculus, specifically a G3-style calculus for
classical (propositional) logic (see, e.g. [9]), extended to cover basic facts about
atomic statements and the defined concepts. We use reasoning in classical logic
and not the three-valued logic used for evaluating the grants, because reasoning
about the logical properties of grant conditions is independent of the data avail-
able for particular businesses. A calculus for the three-valued logic used could
be implemented, e.g., following [7]. However, this would be useful mainly for
reasoning about which grants are shown to the business with which evaluation.

As usual, sequents are of the form A1, . . . , An ⇒ B1, . . . , Bm with n,m ≥ 0
and are interpreted as the logical formula A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm. The
standard logical rules are given in Fig. 6. Basic knowledge about implications
between atomic statements is included in the form of (rather simple) ground
sequents, and defined concepts are included in the form of separate left- and
right rules for each defined concept. The ground sequents and rules for unpack-
ing the defined concepts are given in Fig. 7. Cut-free completeness of the calculus
follows from an extension of [9, Thm.4.6.1] to the calculus with defined formu-
lae, noting that the set of ground sequents is closed under substitutions (because
no variables occur), contraction and basic cuts. In order to avoid unnecessary
repetitions, in the implementation the rules are given as facts about the term
rule(Name, Prem_List/PF), where Name is the name of the rule, Prem_List is
the list of premisses and PF is the principal formula of the rule, i.e., a sequent
with exactly one formula on the left or right hand side. The provability pred-
icate is given by prov2//2, which is true if the first argument is a derivable
sequent, and the second argument a term describing a corresponding derivation.
Examples are given in Fig. 8. The auxiliary predicate merge_sequent_list//3

11 See www.scryer.pl.

www.scryer.pl
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Fig. 6. The sequent rules of the propositional part of calculus G3

Fig. 7. The ground sequents and definition rules used in the calculus. In the definition
rules the pair (d, D) is a defined concept.

is true if the first argument contains a list Γ1 ⇒ Δ1, ..., Γn ⇒ Δn of pre-
misses, i.e., sequents, the second argument contains a sequent Σ ⇒ Π, and
the third argument contains the list of premisses merged with this sequent, i.e.,
Γ1, Σ ⇒ Π,Δ1, . . . , Γn, Σ ⇒ Π,Δn. Since the rules of the calculus are invert-
ible, we could introduce prolog cuts ! after the goals rule(Rule_name, ...) to
increase efficiency – this would not influence completeness wrt. derivability of
sequents. However, since this would limit the number of derivations found, and
to preserve monotonicity of the program, we refrain from doing so.

The result of querying for logical implication between the formalised eligi-
bility conditions of two grants is shown in Fig. 9. The prolog variable Tree is
instantiated with a term for the derivation of the result abbreviated here for the
sake of better readability.

The terms representing derivations can also be converted into human-
readable form in a formalised natural language using Prolog’s Definite Clause
Grammars. The result is a string containing html-code which can be displayed
in a browser, see Fig. 10.
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Fig. 8. Examples of the Prolog code for rules of the sequent calculus.

5.2 Interface Between Lisp and Prolog

To enable the reasoning functionality from within the Lisp-part of the PoC,
the prolog prover is called and its output on std_out interpreted. For this, the
implementation of a basic interface was necessary.

Conversion from Grant-Code in Lisp-Syntax to Prolog. Since the for-
malised grant conditions are given in the syntax of S-Expressions, they need
to be converted to Prolog terms. While there is an existing project that tran-
spiles S-expressions to ISO Prolog12, it didn’t fit our usecase; this library only
allows batch processing and not the desired interactive querying, the already-
parsed internal grant structure isn’t supported, and a few special-cases demand
a non-verbatim translation. In our implementation, negation and the typical
infix operators AND and OR get printed out with parenthesis, to ensure the right
precedence – the Prolog side ignores superfluous parens anyway.

Parsing Prolog Output. Custom parsing of Prolog output provides a nice
special case: At the beginning of an output block, one or more lines containing
a string beginning with the sequence <html> are recognized and displayed ver-
batim; this way a human-readable version of the derivations can be created in
Prolog by nesting <div>s as necessary. Some CSS provided by the POC is then
used by the browser to provide a nice visual display. Regular prolog output is
parsed via the ESRAP library.

12 https://github.com/cl-model-languages/cl-prolog2.

https://github.com/cl-model-languages/cl-prolog2
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Fig. 9. Reasoning over grants. The query is shown at the top. The variables F1 and F2
are instantiated with the names of grants, such that the conditions K1 of the first one
imply the conditions K2 of the second one. The variable Tree is instantiated with the
derivation witnessing provability of the sequent K1 ⇒ K2, abbreviated here for the sake
of space.

Fig. 10. HTML output of a Prolog reasoning.
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Fig. 11. The productive version of Grants4Companies. This figure shows the main
page with a short description at the top and the list of grants. The grants are sorted
with the applicable ones shown at the top of the list, the not applicable ones at the
bottom, and the ones requiring further data for a conclusive evaluation in the middle.
The list can be filtered, e.g., according to the topic of the grant, in this case “economy”
(“Wirtschaft”).
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6 Conclusion and Outlook

We presented Grants4Companies, an application in the Austrian public admin-
istration, which uses declarative methods to recommend business grants based
on the data available for the businesses from sources in the public administra-
tion. We also presented the Proof of Concept implementation of logical reasoning
over the formalised grant conditions, implemented in Common Lisp and Scryer
Prolog. A main interest here lies in the fact that the PoC implementation uses
declarative and logical methods in the context of an application, which is already
live in public administration.

In terms of future work we are steadily extending the list of covered grants,
and are considering automatised rules extraction methods (e.g., [5,8]) for speed-
ing up this process. Extending the coverage of the grants will necessitate the
extension of the logical language and hence the reasoning mechanisms to further
concepts and also towards (limited) reasoning with natural numbers. We envis-
age the resulting tool to become a possible basis for systematic analyses of the
Austrian landscape of business grants by stakeholders in funding agencies and
public administration.
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Abstract. Unintended failures during a computation are painful but
frequent during software development. Failures due to external reasons
(e.g., missing files, no permissions) can be caught by exception handlers.
Programming failures, such as calling a partially defined operation with
unintended arguments, are often not caught due to the assumption that
the software is correct. This paper presents an approach to verify such
assumptions. For this purpose, non-failure conditions for operations are
inferred and then checked in all uses of partially defined operations. In
the positive case, the absence of such failures is ensured. In the negative
case, the programmer could adapt the program to handle possibly failing
situations and check the program again. Our method is fully automatic
and can be applied to larger declarative programs. The results of an
implementation for functional logic Curry programs are presented.

1 Introduction

The occurrence of failures during a program execution is painful but still frequent
when developing software systems. The main reasons for such failures are

– external, i.e., outside the control of the program, like missing files or access
rights, unexpected formats of external data, etc.

– internal, i.e., programming errors like calling a partially defined operation
with unintended arguments.

External failures can be caught by exception handlers to avoid a crash of the
entire software system. Internal failures are often not caught since they should
not occur in a correct software system. In practice, however, they occur during
software development and even in deployed systems which results in expensive
debugging tasks. For instance, a typical internal failure in imperative programs
is dereferencing a pointer variable whose current value is the null pointer (due to
this often occurring failure, Tony Hoare called the introduction of null pointers
his “billion dollar mistake”1).

Although null pointer failures cannot occur in declarative programs, such
programs might contain other typical programming errors, like failures due to
incomplete pattern matching. For instance, consider the following operations
(shown in Haskell syntax):
1 http://qconlondon.com/london-2009/speaker/Tony+Hoare.
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head :: [a] → a tail :: [a] → [a]

head (x:xs) = x tail (x:xs) = xs

In a correct program, it must be ensured that head and tail are not evaluated
on empty lists. If we are not sure about the data provided at run time, we can
check the arguments of partial operations before the application. For instance,
the following code snippet defines an operation to read a command together with
some arguments from standard input (the operation words breaks a string into a
list of words separated by white spaces) and calls an operation processCmd with
the input data:

readCmd = do putStr "Input a command:"

s <- getLine

let ws = words s

case null ws of True → readCmd

False → processCmd (head ws) (tail ws)

By using the predicate null to check the emptiness of a list, it is ensured that
head and tail are not applied to an empty list in the False branch of the case
expression.

In this paper we present a fully automatic tool which can verify the non-
failure of this program. Our technique is based on analyzing the types of argu-
ments and results of operations in order to ensure that partially defined oper-
ations are called with arguments of appropriate types. The principle idea to
use type information for this purpose is not new. For instance, one can express
restrictions on arguments of operations with dependent types, as in Agda [35],
Coq [10], or Idris [11], or refinement types, as in LiquidHaskell [39,40]. Since one
has to prove that these restrictions hold during the construction of programs,
the development of such programs becomes harder [38]. Another alternative,
proposed in [20], is to annotate operations with non-fail conditions and verify
that these conditions hold at each call site by an external tool, e.g., an SMT
solver [34]. In this way, the verification is fully automatic but requires user-
defined annotations and, in some cases, also the verification of post-conditions
or contracts to state properties about result values of operations [21].

The main idea of this work is to infer non-fail conditions of operations. Since
the inference of precise conditions is undecidable in general, we approximate
them by abstract types, e.g., finite representations of sets of values. Hence, our
contributions are:

1. We define a call type for each operation. If the actual arguments belong to
the call type, the operation is reducible with some rule.

2. For each operation, we define in/out types to approximate its input/output
behavior.

3. For each call to an operation g occurring in a rule defining f , we check, by
considering the call structure and in/out types, whether the call type of g is
satisfied. If this is not the case, the call type of f is refined and we repeat the
checks with the refined call type.
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At the end of this process, each operation has some correct call type which
ensures that it does not fail on arguments belonging to its call type. Note that
the call type might be empty on always failing operations. To avoid empty call
types, one can modify the program code so that a different branch is taken in
case of a failure.

In order to make our approach accessible to various declarative languages, we
formulate and implement it in the declarative multi-paradigm language Curry
[25]. Since Curry extends Haskell by logic programming features and there are
also methods to transform logic programs into Curry programs [22], our approach
can also be applied to purely functional or logic programs. A consequence of
using Curry is the fact that programs might compute with failures, e.g., it is
not an immediate programming error to apply head and tail to possibly empty
lists. However, subcomputations involving such possibly failing calls must be
encapsulated so that it can be checked whether such a computation has no
result (this corresponds to exception handling in deterministic languages). If
this is done, one can ensure that the overall computation does not fail even in
the presence of encapsulated logic (non-deterministic) subcomputations.

The paper is structured as follows. After sketching the basics of Curry
in the next section, we introduce call types and their abstraction in Sect. 3.
Section 4 defines in/out types and methods to approximate them. The main
Sect. 5 presents our method to infer and check call types for all operations in a
program. We evaluate our approach in Sect. 6 before we conclude with a discus-
sion of related work. More details as well as correctness results and their proofs
can be found in [23].

2 Functional Logic Programming and Curry

The declarative language Curry [25] amalgamates features from functional pro-
gramming (demand-driven evaluation, strong typing, higher-order functions)
and logic programming (computing with partial information, unification, con-
straints), see [6,19] for surveys. The syntax of Curry is close to Haskell [36]. In
addition to Haskell, Curry applies rules with overlapping left-hand sides in a
(don’t know) non-deterministic manner (where Haskell always selects the first
matching rule) and allows free (logic) variables in conditions and right-hand
sides of defining rules. The operational semantics is based on an optimal lazy
evaluation strategy [4].

Curry is strongly typed so that a Curry program consists of data type defi-
nitions (introducing constructors for data types) and functions or operations on
these types. As an example, we show the definition of two operations: the list
concatenation “++” and an operation dup which returns some number having at
least two occurrences in a list:2

2 Note that Curry requires the explicit declaration of free variables, as x in the rule
of dup, to ensure checkable redundancy, except for anonymous variables, denoted by
an underscore.
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P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e
e ::= x (variable)

| c(x1, . . . , xn) (constructor application)
| f(x1, . . . , xn) (function call)
| e1 or e2 (disjunction)
| let x1, . . . , xn free in e (free variables)
| let x = e in e (let binding)
| case x of {p1 → e1; . . . ; pn → en} (case expression)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of the intermediate language FlatCurry

(++) :: [a] → [a] → [a] dup :: [Int] → Int

[] ++ ys = ys dup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _

(x:xs) ++ ys = x : (xs ++ ys) = x where x free

Since dup might deliver more than one result for an argument, e.g., dup [1,2,2,1]
yields 1 and 2, it is also called a non-deterministic operation. Such operations,
which are interpreted as mappings from values into sets of values [18], are an
important feature of contemporary functional logic languages. To express failing
computations, there is also a predefined operation failed which has no value.

Curry has more features than described so far.3 Due to these numerous fea-
tures, language processing tools for Curry (compilers, analyzers,. . . ) often use
an intermediate language where the syntactic sugar of the source language has
been eliminated and the pattern matching strategy is explicit. This intermediate
language, called FlatCurry, has also been used, apart from compilers, to spec-
ify the operational semantics of Curry programs [1] or to implement a modular
framework for the analysis of Curry programs [24]. Since we will use FlatCurry
to describe and implement our inference method, we sketch the structure of
FlatCurry programs.

Figure 1 summarizes the abstract syntax of FlatCurry. A FlatCurry program
consists of a sequence of function definitions (we omit data type definitions here),
where each function is defined by a single rule. Patterns in source programs are
compiled into case expressions, overlapping rules are joined by explicit disjunc-
tions, and arguments of constructor and function calls are variables (introduced
in left-hand sides, let expressions, or patterns). We will write F for the set of
defined operations and C for the set of constructors of a program. In order to
provide a simple definition of our inference method, we assume that FlatCurry
programs satisfy the following properties:

– All variables introduced in a rule (parameters, free variables, let bindings,
pattern variables) have unique identifiers.

3 Conceptually, Curry is intended as an extension of Haskell although not all extensions
of Haskell are actually supported.
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– For the sake of simplicity, let bindings are non-recursive, i.e., all recursion is
introduced by functions (although our implemented tool supports recursive
bindings).

– The patterns in each case expression are non-overlapping and cover all data
constructors of the type of the discriminating variable. Hence, if this type
contains n constructors, there are n branches without overlapping patterns.
This can be ensured by adding missing branches with failure expressions
(failed).

Usually, the front end of a Curry compiler transforms source programs into such
a form [3,7]. For instance, the operation head is transformed into the FlatCurry
definition

head(zs) = case zs of { x:xs → x ; [] → failed }

3 Call Types and Abstract Types

We consider a computation as non-failing if it does not stop due to a pattern
mismatch or a call to failed. In order to infer conditions on arguments of opera-
tions so that the evaluation of an operation does not fail, we will analyze the rules
of each operation.4 For instance, the operation head is not defined on empty lists
so that the condition for a non-failing evaluation of head is the non-emptiness
of the argument list. Sometimes the exact condition requires more advanced
descriptions. Consider the operation

lastTrue [True] = True

lastTrue (x:y:ys) = lastTrue (y:ys)

The evaluation of a call lastTrue l does not fail if the argument list l ends with
True. Although such lists could be finitely described using regular types [15],
such a description is impossible for arbitrary operations. For instance, if some
branch in a condition of an operation causes a failure but the condition of the
branch contains a function call, the failure is only relevant if the function call
terminates. Due to the undecidability of the halting problem, we cannot hope
to infer exact non-failure conditions.

Due to this general problem, we approximate non-failure conditions so that
the evaluation of a call with arguments satisfying the non-failure condition is
non-failing. However, there might be successfully evaluable calls which do not
satisfy the inferred non-failure condition.

In order to support different structures to approximate non-failure conditions,
we do not fix a language for call types but assume that there is a domain A of
abstract types. Elements of this domain describe sets of concrete data terms, i.e.,
terms consisting of data constructors only. There are various options for such
abstract types, like depth-k abstractions [37] or regular types [15]. The latter

4 Note that we do not consider external failures of operations, like file access errors,
since they need to be handled differently.
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have been used to infer success types to analyze logic programs [17], whereas
depth-k abstractions were used in the abstract diagnosis of functional programs
[2] or in the abstraction of term rewriting systems [8,9]. Since regular types are
more complex and computationally more expensive, we use depth-k abstractions
in our examples. In this domain, denoted by Ak, subterms exceeding the given
depth k are replaced by a specific constant (�) that represents any term. Since
the size of this domain is quickly growing for k > 1, we use k = 1 in examples,
i.e., terms are approximated by their top-level constructors. As we will see,
this is often sufficient in practice to obtain reasonable results. Nevertheless, our
technique and implementation is parametric over the abstract type domain.

If C is the set of data constructors, depth-1 types can be simply described by
the set

A1 = {D ⊆ C | all constructors of D belong to the same type} ∪ {�}

Hence, each element of A1 is either a set of data constructors of the same type
or �. The latter denotes the set of all data terms when no type information is
available.

Following the framework of abstract interpretation [14], the meaning of
abstract values is specified by a concretization function γ. For A1, γ is defined
by

γ(�) = {t | t is a data term}
γ(D) = {t | t = c(t1, . . . , tn) is a data term with c ∈ D}

Thus, ∅ is the bottom element of this domain w.r.t. the standard ordering defined
by a � � for any a, and a1 � a2 if a1 ⊆ a2.

In the following, we present a framework for the inference of call types which
is parametric over the abstract domain A. Thus, we assume that A is a lat-
tice with an ordering �, greatest lower bound (�) and least upper bound (�)
operations, a least or bottom element ⊥, and a greatest or top element �. Fur-
thermore, for each n-ary data constructor c, there is an abstract constructor
application cα which maps abstract values a1, . . . , an into an abstract value a
such that c(t1, . . . , tn) ∈ γ(a) for all t1 ∈ γ(a1), . . . , tn ∈ γ(an). For the domain
A1, this can be defined by cα(x1, . . . , xn) = {c} (it could also be defined by
cα(x1, . . . , xn) = � but this yields less precise approximations).

We use A to specify call types or non-failure conditions for operations. Let f
be a unary operation (the extension to more than one argument is straightfor-
ward). A call type C ∈ A is correct for f if the evaluation of f(t) is non-failing
for any t ∈ γ(C). For instance, the depth-1 type {:} is correct for the operations
head or tail defined above.

In order to verify the correctness of call types for a program, we have to check
whether each call of an operation satisfies its call type. Since this requires the
analysis of conditions and other operations (see the operation readCmd defined
in Sect. 1), we will approximate the input/output behavior of operations, as
described next.
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4 In/Out Types

To provide a fully automatic inference method for call types, we need some
knowledge about the behavior of auxiliary operations. For instance, consider the
operation

null [] = True

null (x:xs) = False

This operation is used in the definition of readCmd (see Sect. 1) to ensure that head
and tail are applied to non-empty lists. In order to verify this property, we have
to infer that, if “null ws” evaluates to False, the argument is a non-empty list.

For this purpose, we associate an in/out type to each operation. An in/out
type io for an n-ary operation f is a set of elements containing a sequence of
n + 1 abstract types:

io ⊆ {a1 · · · an ↪→ a | a1, . . . , an, a ∈ A}
The first n components of each element approximate input values (where we write
ε if n = 0) and the last component approximate output values associated to the
inputs. An in/out type io is correct for f if, for each value t′ of f(t1, . . . , tn),
there is some a1 · · · an ↪→ a ∈ io such that ti ∈ γ(ai) (i = 1, . . . , n) and t′ ∈ γ(a).

In/out types are disjunctions of possible input/output behaviors of an oper-
ation. For instance, a correct in/out type of null is {{[]} ↪→ {True}, {:} ↪→
{False}} (w.r.t. A1). Another trivial and less precise in/out type is {� ↪→ �}.

In/out types allow also to express non-terminating operations. For instance,
a correct in/out type for the operation loop defined by

loop = loop

is {ε ↪→ ∅}. The empty type in the result indicates that this operation does not
yield any value.

Similarly to call types, we approximate in/out types since the inference of
precise in/out types is intractable in general. For this purpose, we analyze the
definition of each operation and associate patterns to result values. Result values
are based on general information about the abstract result types of operations.
Therefore, we assume that there is a mapping R : F → A which associates
to each defined function f ∈ F an abstract type R(f) ∈ A approximating the
possible values to which f (applied to some arguments) can be evaluated. For
instance, R(loop) = ∅, R(null) = {False, True}, and R(head) = � (w.r.t. the
domain A1). Approximations for R can be computed in a straightforward way
by a fixpoint computation. Using the Curry analysis framework CASS [24], this
program analysis can be defined in 20 lines of code—basically a case distinction
on the structure of FlatCurry operations.

Our actual approximation of in/out types is defined by the rules in Fig. 2.
A sequence o1, . . . , on of objects is abbreviated by on. We use a type environ-
ment Γ which maps variables into abstract types. We denote by Γ [x �→ e] the
environment Γ ′ with Γ ′(x) = e and Γ ′(y) = Γ (y) for all x �= y. The judge-
ment Γ  e : {Γk ↪→ ak} is interpreted as “the evaluation of the expression e
in the context Γ yields a new context Γi and result value of abstract type ai,
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Var Γ x : { → Γ (x)} (x variable)

Cons Γ c(x1, . . . , xn) : { → cα(Γ (x1), . . . , Γ (xn))} (c constructor)

Func Γ f(x1, . . . , xn) : { → R(f)} (f operation)

Or
Γ e1 : io1 Γ e2 : io2

Γ e1 or e2 : io1 ∪ io2

Free
Γ [xn ] e : io

Γ let x1, . . . , xn free in e : io

Let
Γ [x ] e : io

Γ let x = e in e : io

Case
Γ1 e1 : io1 . . . Γn en : ion

Γ case x of {p1 → e1; . . . ; pn → en} : io1 ∪ . . . ∪ ion

where pi = ci(xni) and Γi = Γ [x cα
i ( ), xni ]

Fig. 2. Approximation of in/out types

for some i ∈ {1, . . . , k}.” To infer an in/out type io of an operation f defined
by f(x1, . . . , xn) = e, we derive the judgement {xn �→ �}  e : {Γk ↪→ ak} and
return the in/out type

io = {Γi(x1) · · · Γi(xn) ↪→ ai | i = 1, . . . , k}
Thus, we derive an in/out type without any restriction on the arguments.

Let us consider the inference rules in more detail. In the case of variables
or applications, the type environment is not changed and the approximated
result is returned, e.g., the abstract type of the variable (rule Var), the abstract
representation of the constructor (rule Cons), or the approximated result value of
the operation (rule Func). Rule Or combines the results of the different branches.
Rules Free and Let add the new variables to the type environment with most
general types. Although one could refine these types, we try to keep the analysis
simple since this seems to be sufficient in practice.

The most interesting rule is Case. The results from the different branches are
combined, but inside each branch, the type of the discriminating variable x is
refined to the constructor of the branch. For instance, consider the operation

null(zs) = case zs of { [] → True ; (x:xs) → False }

If we analyze the in/out type with our rules, we start with the type environment
Γ0 = {zs �→ �}. Inside the branch, Γ0 is refined to Γ1 = {zs �→ {[]}} and
Γ2 = {zs �→ {:}, x �→ �, xs �→ �}, respectively, so that the in/out type (w.r.t.
A1) derived for null is {{[]} ↪→ {True}, {:} ↪→ {False}}.

In our implementation, we keep in/out types in a normalized form where
different pairs with identical input types are joined by the least upper bound of
their output types. Moreover, the in/out types of failed branches are omitted so
that we obtain

head : {{:} ↪→ �}
tail : {{:} ↪→ �}
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5 Inference and Checking of Call Types

Based on the pieces introduced in the previous sections, we can present our
method to infer and verify call types for all operations in a given program.
Basically, our method performs the following steps:

1. The in/out types for all operations are computed (see Sect. 4).
2. Initial call types for all operations are computed by considering the left-hand

sides or case structure of their defining rules.
3. These call types are abstracted w.r.t. the abstract type domain.
4. For each call to an operation g occurring in a rule defining operation f , we

check, by considering the call structure and in/out types, whether the call
type of g is satisfied.

5. If some operation cannot be verified due to unsatisfied call type restrictions,
its call type is refined by considering the additional call-type constraints due
to operations called in its right-hand side, and start again with step 4.

This fixpoint computation terminates if the abstract type domain is finite (which
is the case for depth-k types) or it is ensured that there are only finitely many
refinements for each call type in step 5 (which could be ensured by widening
steps in infinite abstract domains [14]). In the worst case, an empty call type
might be inferred for some operation. This does not mean that this operation is
not useful but one has to encapsulate its use with some safeness check.

In the following, we describe these steps in more detail.

5.1 Initial Call Types

Concrete call types are easy to derive by considering the structure of case expres-
sions in the transformed FlatCurry program. If all constructors of some data type
are covered in non-failed branches of some case construct, there is no call type
restriction due to this pattern matching. Otherwise, the call type restriction
consists of those constructors occurring in non-failed branches. For instance, the
operation null has no call type restriction, whereas the operations head and tail

have failed branches for the empty list so that the call type restriction could be
expressed by the set of terms

{t1:t2 | t1, t2 are arbitrary terms}
As already discussed, we map such sets into a finite representation by using
abstract types. Hence, the abstract call type of an n-ary operation is a sequence
of elements of A of length n. We say that such a type is trivial if all elements
in this sequence are �. In case of the abstract type domain A1, the set above
is abstracted to {:}, thus, it is non-trivial. Since the derivation of concrete call
types and their abstraction is straightforward, we omit further details here.

5.2 Call Type Checking

We assume that two kinds of information are given for each operation f :
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Varnf Δ, z = x (z, {ε Δ(x)}, ε)}
Consnf Δ, z = c(x1, . . . , xn) (z, n → cα(Δ(xn))}, x1 . . . xn)}

Funcnf
CT (f) = a1 . . . an Δ(xi) ai (i = 1, . . . , n)
Δ, z = f(x1, . . . , xn) (z, IO(f), x1 . . . xn)}

Ornf
Δ, z = e1 Δ1 Δ, z = e2 Δ2

Δ, z = e1 or e2 Δ1 ∪ Δ2

Freenf
Δ ∪ {x1 :: , . . . , xn :: , z = e Δ

Δ, z = let x1, . . . , xn free in e Δ

Letnf
Δ, x = e Δ Δ ∪ Δ , z = e Δ

Δ, z = let x = e in e Δ

Casenf
Δr1 , z = er1 Δr1 . . . Δrk , z = erk Δrk

Δ, z = case x of {p1 → e1; . . . ; pn → en Δr1 ∪ . . . ∪ Δrk

where pi = ci(xni), Δi = (Δ ∧ [x ci]) ∪ {x1 :: , . . . , xni :: ,
and r1, . . . , rk are the reachable branches (i.e., Δrj (x) = ⊥)

Fig. 3. Call type checking

– An in/out type IO(f) approximating the input/output behavior of f .
– An abstract call type CT (f) specifying the requirements to evaluate f with-

out failure.

IO(f) can be computed as shown in Sect. 4. CT (f) can be approximated as
discussed above, but we have to show that all calls to f actually satisfy these
requirements. This is the purpose of the inference system shown in Fig. 3.

As discussed in Sect. 4, it is important to have information about the
input/output behavior of operations. Therefore, we introduced the notion of
in/out types. Now we use this information to approximate values of variables
occurring in program rules and pass this information through the rules dur-
ing checking time. For this purpose, we use variable types which are triples of
the form (z, io, x1 . . . xn) where z, x1, . . . , xn are program variables and io is an
in/out type for an n-ary operation. This is interpreted as: z might have some
value of the result type a for some a1 . . . an ↪→ a ∈ io and, in this case, x1, . . . , xn

have values of type a1, . . . , an, respectively. For instance, the variable type

(z, {{[]} ↪→ {True}, {:} ↪→ {False}}, xs)

expresses that z might have value True and xs is an empty list, or z has value
False and xs is a non-empty list. Since we approximate values, we abstract
a set of variable environments with concrete values for variables to a set of
variable types. If such a set contains only one triple for some variable and the
io component is a one-element set, we can use it for definite reasoning. To have
a more compact notation for the abstract type of a program variable, we denote
by x :: a the triple (x, {ε �→ a}, ε).
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Now we have a closer look at the rules of Fig. 3. This inference system derives
judgements of the form Δ, z = e  Δ′ containing sets of variable types Δ,Δ′,
a variable z, and an expression e. This is interpreted as “if Δ holds, then the
expression e evaluates without a failure and, if z is bound to the result of this
evaluation, Δ′ holds”. To check the call type a1 . . . an of an operation f defined
by f(x1, . . . , xn) = e, we try to derive the judgement

{x1 :: a1, . . . , xn :: an}, z = e  Δ

for some fresh variable z. Thus, we assign the call types as initial values of the
parameters and analyze the right-hand side of the operation.

Keeping the interpretation of variable types in mind, the inference rules are
not difficult to understand. Δ(x) denotes the least upper bound of all abstract
type information about variable x available in Δ, which is defined by

Δ(x) =
⊔

{a | (x, {. . . , a1 . . . an ↪→ a, . . .}, . . .) ∈ Δ}
Rule Varnf is immediate since the evaluation of a value cannot fail so that we set
the result z to the abstract type of x. Rule Consnf adds the simple condition that
z is bound to the constructor c after the evaluation (�n = � . . . � is a sequence of
n � elements). Rule Funcnf is the first interesting rule. The condition states that
the abstract arguments of the function must be smaller than the required call
type so that the concrete values are in a subset relationship. If the requirements
on call types hold, the operation is evaluable and we connect the results and
the arguments with the in/out type of the operation. The rules for disjunctions
and free variable introduction are straightforward. In rule Letnf , the result of
analyzing the local binding is used to analyze the expression. We finally discuss
the most important rule for case selections.

In rule Casenf , Δ ∧ [x �→ ci] denotes the set of variable types Δ modified by
the definite binding of x to the constructor ci. This means that, if Δ contains a
triple (x, io, xs), all result values in io which are incompatible to ci are removed.
After this modification of Δ, it may happen that Δ(x) is the empty type, i.e.,
there is no concrete value which x can have so that this branch is unreachable.
Therefore, the right-hand side of this branch need not be analyzed so that rule
Casenf does not consider them. For the remaining reachable branches, the right-
hand side is analyzed with the modified set of variable types so that the value
in the specific branch value is considered.

As an example, we check the simple operation

f(x) = let y = null(x) in case y of True → True

False → head(x)

For the abstract type domain A1, the in/out type of null is

IO(null) = {{[]} ↪→ {True}, {:} ↪→ {False}}
and the abstract call type of head is {:}. When we check the right-hand side of
the definition of f, we start the checking of the case (after having checked the
let binding) with the set of variable types
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Δ1 = {(x, {ε ↪→ �}, ε), (y, {{[]} ↪→ {True}, {:} ↪→ {False}}, x)}

The check of the first case branch is immediate. For the second case branch, we
modify the previous set of variable types to Δ2 = Δ1 ∧ [y �→ False] so that we
have

Δ2 = {(x, {ε ↪→ �}, ε), (y, {{:} ↪→ {False}}, x)}

The definite binding for y implies a definite binding for x so that Δ2 is equivalent
to

Δ3 = {(x, {ε ↪→ {:}}, ε), (y, {{:} ↪→ {False}}, x)}

Hence, if we check the call “head(x)” w.r.t. Δ3, the abstract argument type is
Δ3(x) = {:} so that the call type of head is satisfied.

As we have seen in this example, sets of variable types should be kept in a
simplified form in order to deduce most precise type information. For instance,
the definite bindings of variables, like (y, {{:} ↪→ {False}}, x), should be prop-
agated to get a definitive binding for x. Although this is not explicitly stated in
the inference rules, we assume that it is always done whenever sets of variable
types are modified.

5.3 Iterated Call Type Checking

Consider the operation

hd(x) = head(x)

Applying the inference rules of Fig. 3 is not successful: the initial abstract call
type for hd is � so that the call type requirement for head is not satisfied.

In order to compute call types for all operations, we try to refine the call type
of hd. For this purpose, we collect the requirements on variables for unsatisfied
call types during the check of an operation. If such a required type is on some
variable occurring in the left-hand side of an operation, the call type of the
operation is restricted and the operation is checked again. In case of the operation
hd, the failure in the call head(x) leads to the requirement that x must have the
abstract type {:} so that we check hd again but with this new call type—which
is now successful.

There are also cases where such a refinement is not possible. For instance,
consider the slightly modified example

hdfree(x) = let y free in head(y)

Since the type restriction {:} on variable y can not be obtained by restricting the
call type of hdfree, we assume the most restricted call type CT (hdfree) = {}.
This means that any call to hdfree might fail so that one has to encapsulate
calls to hdfree with some safeness check.

This strategy leads to an iterated analysis of call types. In each iteration,
either all call types can be verified or the call type of some operation becomes
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more restricted. This iteration always terminates if one can ensure finitely many
refinements of call types (which is the case for depth-k types).

For an efficient computation of this fixpoint computation, it is reasonable to
use call dependencies of operations so that one has to re-check only the more
restricted operations and the operations that use them. We have implemented
this strategy in our tool and obtained a good improvement compared to the
initial naive fixpoint computation. For instance, the prelude of Curry (the base
module containing a lot of basic definitions for arithmetic, lists, type classes,
etc.) contains 1262 operations (public and also auxiliary operations). After the
first iteration, the call types of 14 operations are refined so that 17 operations
are reanalyzed in the next iteration. Altogether, the check of the prelude requires
five iterations.

5.4 Extensions

Up to now, we presented the analysis of a kernel language. Since application
programs use more features, we discuss in the following how to cover all features
occurring in Curry programs.

Literals. Programs might contain numbers or characters which are not intro-
duced by explicit data definitions. Although there are conceptually infinitely
many literals, their handling is straightforward. A literal can be treated as a
0-ary constructor. Since there are only finitely many literals in each program,
the abstract types for a given program are also finite. For instance, consider the
operation

k 0 = 'a'
k 1 = 'b'

The call type of k inferred w.r.t. domain A1 is CT (k) = {0, 1}. Similarly, the
in/out type of k is IO(k) = {{0} ↪→ {'a'}, {1} ↪→ {'b'}}.

External Operations. Usually, externally defined primitive operations do not
fail so that they have trivial call types. There are a few exceptions which are
handled by explicitly defined call types, like the always failing operation failed,
or arithmetic operations like division.

Higher-Order Operations. Since it is seldom that generic higher-order oper-
ations have functional parameters with non-trivial call types, we take a sim-
ple approach to check higher-order operations. We assume that higher-order
arguments have trivial call types and check this property for each call to a
higher-order operation. Thus, a call like “map head [[1,2],[3,4]]” is considered
as potentially failing. Our practical evaluation shows this assumption provides
reasonable results in practice.
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Encapsulation. Failures might occur during run time, either due to opera-
tions with complex non-failure conditions (e.g., arithmetic) or due to the use
of logic programming techniques with search and failures. In order to ensure
an overall non-failing application in the presence of possibly failing subcom-
putations, the programmer has to encapsulate such subcomputations and then
analyze its outcome, e.g., branching on the result of the encapsulation. For this
purpose, one can use an exception handler (which represents a failing computa-
tion as an error value) or some method to encapsulate non-deterministic search
(e.g., [5,12,28,29]). For instance, the primitive operation allValues returns all
the values of its argument expression in a list so that a failure corresponds to
an empty list. In order to include such a primitive in our framework, we sim-
ply skip the analysis of its arguments. For instance, a source expression like
allValues (head ys) is not transformed into let x = head(y) in allValues(x)

(where x is fresh), but it is kept as it is. Furthermore, rule Funcnf is special-
ized for allValues so that the condition on the arguments w.r.t. the call type is
omitted and the in/out type is trivial, i.e., IO(allValues) = {� ↪→ �}. In a
similar way, other methods to encapsulate possibly non-deterministic and failing
operations, like set functions [5], can be handled.

Errors as Failures. The operation error is an external operation to emit an
error message and terminate the program (if it does not occur inside an exception
handler). Since we are mainly interested to avoid internal programming errors,
error is not considered as a failing operation in the default mode. Thus, if we
change the definition of head into (as in the prelude of Haskell)

head :: [a] → a

head [] = error "head: empty list"

head (x:xs) = x

the inferred call type is � so that the call “head []” is not considered as failing.
From some point of view, this is reasonable since the evaluation does not fail
but shows a result—the error message.

However, in safety-critical applications we want to be sure that all errors are
caught. In this case, we can still use our framework and define the call type of
error as ⊥ so that any call to error is considered as failing. Moreover, exception
handlers can be treated similarly to encapsulated search operators as described
above. In order to be flexible with the interpretation of error, our tool (see
below) provides an option to set one of these two views of error.

6 Evaluation

We have implemented the methods described above in a tool5 written in Curry.
In the following we evaluate it by discussing some examples and applying it to
various libraries.

5 Available as package https://cpm.curry-lang.org/pkgs/verify-non-fail-1.0.0.html.

https://cpm.curry-lang.org/pkgs/verify-non-fail-1.0.0.html
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First, we compare our approach to a previous tool to verify non-failing Curry
programs [20]. In that tool the programmer has to annotate partially defined
operations with non-fail conditions. Based on these conditions, the tool extracts
proof obligations from a program which are sent to an SMT solver. For instance,
consider the operation to compute the last element of a non-empty list:

last [x] = x

last (_:x:xs) = last (x:xs)

The condition to express the non-failure of this expression must be explicitly
defined as a predicate on the argument:

last'nonfail xs = not (null xs)

This predicate together with the definition of the involved operations are trans-
lated to SMT formulas and then checked by an SMT solver, e.g., Z3 [34]. Using
our approach, the abstract call type CT (last) = {:} is automatically inferred
and the definition of last is successfully checked. Actually, we tested our tool
on various libraries and could deduce almost all manually written non-fail con-
ditions of [20]. Only in four prelude operations, our tool could not infer these
non-fail conditions since they contain arithmetic conditions on integers. We leave
it for future work to combine our approach with an SMT solver to enable also
successful checks in these cases.

Another interesting example is the operation split from the library
Data.List. This operation takes a predicate and a list as arguments and splits
this list into sublists at positions where the predicate holds. It is defined in Curry
as

split :: (a → Bool) → [a] → [[a]]

split _ [] = [[]]

split p (x:xs) | p x = [] : split p xs

| otherwise = let (ys:yss) = split p xs

in (x:ys):yss

Since the pattern in the let expression is translated into partially defined selector
functions in FlatCurry, this definition cannot be directly verified by [20] due to
missing non-fail conditions for these auxiliary operations. Furthermore, a post-
condition on split must be stated and proved. Our method infers all these
conditions and verifies the non-failure of split.

If our tool is applied to a Curry module, it infers the in/out types and the
call types of all operations defined in this module and then checks all branches
and calls whether they might be failing. If this is the case, the call types are
refined and the problematic ones are reported to the user. Then the user can
decide to either accept the refined call types or modify the program code to
handle possible failures so that the call type does not need a refinement.

Table 1 contains the results of checking various Curry libraries with our tool.
The “operations” column contains the number of public (exported) operations
and the number of all operations defined in the module. Similarly, the following
three columns shows the information for public and all operations. The “in/out



182 M. Hanus

Table 1. Inference of call types for some standard libraries

Module operations in/out

types

initial

call

types

final call

types

final

failing

itera-

tions

verify

time

Prelude 862/1262 605/857 24/32 63/71 45/53 5 969

Data.Char 9/9 0/0 0/0 0/0 0/0 1 272

Data.Either 7/11 5/9 2/2 2/2 0/0 1 113

Data.List 49/87 39/73 7/15 8/16 1/1 2 290

Data.Maybe 8/9 7/8 0/0 0/0 0/0 1 113

Numeric 5/7 0/2 0/0 0/0 0/0 1 273

System.Console.GetOpt 6/47 5/41 0/0 0/0 0/0 1 287

System.IO 32/51 10/12 0/0 0/0 0/0 1 115

Text.Show 4/4 4/4 0/0 0/0 0/0 1 110

types” column shows the numbers of non-trivial in/out types. The initial and
final call types are the number of non-trivial call types computed at the beginning
and obtained after some iterations (the number of iterations is shown in the next
to last column). The “final failing” column contains the number of operations
where an empty call type is inferred, i.e., there is no precise information about the
required call types. The last column shows the verification time in milliseconds.6

As one can see from this table, even quite complex modules, like the prelude,
have only a few operations with non-trivial call types that need to be checked.
Therefore, the effort to infer and check modules is limited. The higher number
of failing operations in the prelude are the various arithmetic division operators
and enumeration and parsing operations where a precise call type cannot be
inferred.

7 Related Work

The exclusion of run-time failures at compile time is a practically relevant but
also challenging issue. Therefore, there are many approaches targeting it so that
we can only discuss a few of them. We concentrate on approaches for functional
and logic programming, although there are also many in the imperative world.
As mentioned in the introduction, the exclusion of dereferencing null pointers
is quite relevant there. As an example from object-oriented programming, the
Eiffel compiler uses appropriate type declarations and static analysis to ensure
that pointer dereference failures cannot occur in accepted programs [30].

In logic programming, there is no common definition of “non-failing” due
to different interpretations of non-determinism. Whereas we are interested to
exclude any failure in a top-level computation, other approaches, like [13,16],
consider a predicate in a logic program as non-failing if at least one answer is

6 We measured the verification time on a Linux machine running Ubuntu 22.04 with
an Intel Core i7-1165G7 (2.80 GHz) processor with eight cores.
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produced. Similarly to our approach, type abstractions are used to approximate
non-failure properties, but the concrete methods are different.

Another notion of failing programs in a dynamically typed programming
language is based on success types, e.g., as used in Erlang [27]. Success types
over-approximate possible uses of an operation so that an empty success type
indicates an operation that never evaluates to some value. Thus, success types
can show definite failures, whether we are interested in definite non-failures.

Strongly typed programming languages are a reasonable basis to check run-
time failures at compile time, since the type system already ensures that some
kind of failures cannot occur (“well-typed programs do not go wrong” [31]).
However, failures due to definitions with partial patterns are not covered by a
standard type system. Therefore, Mitchell and Runciman developed a checker for
Haskell to verify the absence of pattern-match errors due to incomplete patterns
[32,33]. Their checker extracts and solves specific constraints from pattern-based
definitions. Although these constraints have similarities to the abstract type
domain A1, our approach is generic w.r.t. the abstract type domain so that it
can also deal with more powerful abstract type domains.

An approach to handle failures caused by restrictions on number arguments
is described in [26]. It is based on generating (arithmetic) constraints which are
translated into an imperative program such that the constraints are satisfiable iff
the translated program is safe. This enables the inference of complex conditions
on numbers, but pattern matching with algebraic data types and logic-oriented
subcomputations are not supported.

Another approach to ensure the absence of failures is to make the type system
stronger or more expressive in order to encode non-failing conditions in the types.
For instance, operations in dependently typed programming languages, such as
Coq [10], Agda [35], or Idris [11], must be totally defined, i.e., terminating and
non-failing. Such languages have termination checkers but non-fail conditions
need to be explicitly encoded in the types. For instance, the definition of the
operation head in Agda [35] requires, as an additional argument, a proof that
the argument list is not empty. Thus, head could have the type signature

head : {A : Set} → (xs : List A) → is-empty xs == ff → A

Therefore, each use of head must provide, as an additional argument, an explicit
proof for the non-emptiness of the argument list xs. Type-checked Agda pro-
grams do not contain run-time failures but programming in a dependently typed
language is more challenging since the programmer has to construct non-failure
proofs.

Refinement types, as used in LiquidHaskell [39,40], are another approach
to encode non-failing conditions or more general contracts on the type level.
Refinement types extend standard types by a predicate that restricts the set of
allowed values. For instance, the applications of head to the empty list can be
excluded by the following refinement type [39]:

head :: {xs : [a] | 0 < len xs} → a
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The correctness of refinement types is checked by an SMT solver so that they are
more expressive than our non-failure conditions. On the other hand, refinement
types must be explicitly added by the programmer whereas our goal is to infer
non-failure conditions from a standard program. This allows the use of poten-
tially failing operations in encapsulated subcomputations, which is relevant to
use logic programming techniques. This aspect is also the motivation for the
non-failure checking tool proposed in [20]. As already discussed in Sect. 6, the
advantage of our tool is the automatic inference of non-failing conditions which
supports an easier application to larger programs.

8 Conclusions

In this paper we proposed a new technique and a fully automatic tool to check
declarative programs for the absence of failing computations. In contrast to
other approaches, our approach does not require the explicit specification of
non-fail conditions but is able to infer them. In order to provide flexibility with
the structure of non-fail conditions, our approach is generic w.r.t. a domain of
abstract types to describe non-fail conditions. Since we developed our approach
for Curry, it is also applicable to purely functional or logic programs. Due to
the use of Curry, we do not need to abandon all potentially failing operations.
Partially defined operations and failing evaluations are still allowed in logic-
oriented subcomputations provided that they are encapsulated in order to control
possible failures.

Although the inference of non-fail conditions is based on a fixpoint iteration
and might yield, in the worst case, an empty (i.e., always failing) condition,
our practical evaluation showed that even larger programs contain only a few
operations with non-trivial non-fail conditions which are inferred after a small
number of iterations. When a non-trivial non-fail condition is inferred for some
operation, the programmer can either modify the definition of this operation
(e.g., by adding missing case branches) or control the invocation of this operation
by checking its outcome with some control operator.

For future work, we plan to extend our approach to built-in types, like inte-
gers, and infer non-failure conditions on such types, like non-negative or positive
numbers, and check them using SMT solvers. Furthermore, it is interesting to see
whether other abstract domains, e.g., regular types, yield more precise results
in application programs.
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Abstract. Functional programming (FP) lets users focus on the busi-
ness logic of their applications by providing them with high-level and
composable abstractions. However, both automatic memory management
schemes traditionally used for FP, namely tracing garbage collection and
reference counting, may introduce latencies in places that can be hard
to predict, which limits the applicability of the FP paradigm.

We reevaluate the use of lazy reference counting in single-threaded
functional programming with guaranteed constant-time memory man-
agement, meaning that allocation and deallocation take only a bounded
and predictable amount of time. This approach does not leak memory
as long as we use uniform allocation sizes. Uniform allocation sizes were
previously considered impractical in the context of imperative program-
ming, but we find it to be surprisingly suitable for FP.

Preliminary benchmark results suggest that our approach is practical,
as its performance is on par with Koka’s existing state-of-the-art imple-
mentation of reference counting for FP, sometimes even outperforming
it. We also evaluate the effect of different allocation sizes on application
performance and suggest ways of allowing large allocation in non-mission-
critical parts of the program via Koka’s effect system.

We believe this potentially opens the door to many new industrial
applications of FP, such as its use in real-time embedded software. In fact,
the development of a high-level domain-specific language for describing
latency-critical quantum physics experiments was one of the original use
cases that prompted us to initiate this work.

1 Introduction

Functional programming allows software developers to design applications at a
very high level of abstraction. It lets them focus on immutability and function
composition to design programs in a way that can often be described as “correct
by construction”.

For example, the functional reactive programming (FRP) pattern [10,15,22],
as found in popular languages like Haskell and Elm, uses immutable data struc-
tures and higher-order functions to let users declaratively specify reactive designs,
such as animations, graphical user interfaces, and video games.

In practice however, a major problem with FRP, as well as with a number of
other functional design patterns, is that it is extremely memory-intensive—on
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each event, the old immutable states of objects that change are discarded and
reconstructed from scratch, and new closures are allocated to register actions to
be performed when new events occur. This means that typical FRP programs
continuously allocate and free lots of memory, which can translate to jerky ani-
mations and small pauses in graphical user interface rendering.

Some FRP implementations allow users to avoid needless recomputation
by telling parent components whether the state has changed [7]. This enables
the runtime to reuse computation results for unaffected parts of the GUI,
which reduces memory allocator pressure and makes the program less memory-
intensive. However, the effectiveness of this kind of optimization depends not only
on the GUI layout design, but also programmer efforts and discipline. Beginner
users may not understand the need for such optimization, or may not know for
sure if the layout is truly unchanged.

Traditional Memory Management for Functional Programming. Func-
tional programming languages typically rely on some kind of garbage collection
for automatic memory management. They often rely on generational, copying
garbage collectors [9] to efficiently process short-lived objects while performing
tracing garbage collection for older generations.

Reference counting, one of the oldest memory management techniques [5,24],
was historically considered less practical than garbage collectors in this context,
because frequent reference count updates can have a large performance impact
and because reference counting cannot handle cycles [14]. However, there has
been a recent surge in the popularity of reference counting for general-purpose
memory management. Shahriyar et al. [20] analyzed the overhead of reference
counting compared to tracing garbage collectors and introduced several strategies
for improving its performance. Ullrich and de Moura [21] showed that destruc-
tive updates enabled by precise reference counting can provide significant perfor-
mance improvements for functional programming languages. Reinking et al. [19]
introduced Perceus, an algorithm for precise reference counting with destructive
updates and specialization, and implemented the algorithm on Koka, a functional
programming language with a type and effect system. These papers showed that
functional programming languages using reference counting can have good perfor-
mance too and can compete with state-of-the-art garbage collectors.

On the other hand, latency is also a key metric for system performance,
sometimes even more important than throughput, and it has not been directly
addressed by these recent works. Indeed, eager forms of reference counting can
often lead to garbage collection pauses, sometimes even longer than those of
tracing garbage collectors [3]. For example, consider an application that rep-
resents a news feed as an infinitely-scrollable view on which various widgets
can appear. Imagine that a particular drawing-board widget interacts with user
input by letting the user draw shapes in it. Each of these shapes will be repre-
sented as some vector-graphics object in a collection of shapes that have been
drawn so far, which could grow very large. Thus, when the user finally loses
interest and scrolls past the widget, its deallocation in a normal reference count-
ing implementation will require recursively deallocating an unbounded number
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of vector-graphic objects, which is likely to cause a small pause in the scrolling
animation, making it appear jerky.

Constant-Time Memory Management for Functional Programming. In
this paper, we revisit the old idea of lazy reference counting, which avoids the long
delays introduced by cascading deallocations. Our technique works by deferring
the deallocation of an object’s fields until the memory is needed by further alloca-
tions, which can progressively reuse memory by traversing the graph of objects no
longer in use. This effectively gives us constant-time allocation and deallocation
procedures, which we refer to as constant-time memory management.

There are naturally a number of limitations and caveats to this approach.
First, in order to be truly (non-amortized) constant-time without the possibil-
ity of leaking unbounded amounts of memory, we need all allocations to share
the same size. While it means that the compiler must split up large objects
into multiple allocations, we argue that this approach is eminently practical in
the context of functional programming languages. Indeed, algebraic data type
objects tend to be on the smaller side, and we show that the performance hit
associated with splitting larger objects in this context varies from moderate to
small or insignificant.

Second, like most reference counting approaches, we do not handle cycles in
the reference graph. But we argue that in the context of functional programming,
where most data is immutable and tree-like, cycles can normally be avoided.
Depending on the compilation strategy and language features, cycles may still
be introduced in the presence of laziness, recursive closures, or OCaml-style
cyclic values. With a slight loss of expressiveness, it is possible to design pure
functional programming languages where cycles cannot be constructed, as exem-
plified by Lean [21]. We argue that the loss of expressiveness is acceptable. On
one hand, while it is true that recursive closures are traditionally implemented
through cyclic values, other implementation strategies exist, used for example
in languages like Rust and Koka. On the other hand, while some languages use
laziness to allow conveniently constructing cyclic values, it is possible to design
more restricted languages where laziness is still supported but where cyclic val-
ues cannot be constructed. Third, our approach is currently only applicable to
sequential mutators. Due to the lazy nature of our approach, it is impossible in
general to know the amount of memory actually in use by the program at any
given time. This makes some approaches to concurrent memory management
with thread-local free lists impractical.

In turn, our approach also has large advantages. While the uniform allocation
size does create internal fragmentation (which could lead to up to 2x memory
usage overhead in the worst case), it also means that we are effectively free from
external fragmentation, whose worst-case overhead can become vastly higher
than 2x, and which often cripples long-running systems in practice, leading to
degraded performance and even system failure [17].

We formalized our design, nicknamed CTRC (for constant-time reference
counting), and implemented it inside the Koka programming language, leverag-
ing its existing reference counting optimizations as well as its type-and-effect
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system. The allocator adopts the approach of Leijen et al. [13] with page-local
free lists to improve memory locality.

Our experimental results show that this approach can achieve throughput
comparable with Koka using the state-of-the-art mimalloc allocator, while pro-
viding constant-time guarantees for both allocation and deallocation, even for
cases with larger objects that require splitting into several allocations. A major
advantage of our approach is that it is extremely simple to implement: the basic
runtime is about 160 lines of C code (the entirety of which fits into four pages
of Appendix B), and does not make use of any existing system allocator beyond
the operating system’s memory page allocation routines.

This could enable the implementation of efficient automatic memory reclama-
tion for resource-constrained embedded systems, which could have future appli-
cations in the domain of hard real-time systems.

Contributions

– Although similar solutions were proposed in the past in slightly different
contexts back in 1963 [24], we present a refreshed and practical solution
to constant-time memory management for functional programming, called
CTRC (Sect. 2). CTRC was implemented by adapting the existing Koka run-
time system and compiler. Our implementation is extremely simple, which
we consider to be a major selling point.

– We formalize this new approach and show that it is sound and prevents
memory leaks, in the sense that it does not increase the peak memory usage
of programs (Sect. 2.4 and Appendix A). We also show that CTRC can be
applied only locally, to those parts of a program that are latency-sensitive.

– We experimentally justify the practicality of CTRC, showing that on our
benchmark programs, its space and time overheads are small when compared
to Perceus, a state-of-the-art reference-counting implementation (Sect. 3). We
also discuss the source of the overhead, and suggest approaches for program-
mers to reduce the overhead.

2 Presentation of Constant-Time Reference Counting

In this section, we present our basic idea of constant-time reference counting for
Functional Programming (CTRC).

2.1 Eager and Lazy Reference Counting

Reference counting is typically implemented by attaching an integer reference
count to each object, indicating the number of pointers pointing to the cur-
rent object. When pointers or variables are modified, the reference count of the
referred object is updated. As the reference count of an object becomes zero, it
is deleted and the reference counts of its fields are decremented. For example,
when deallocating a linked list, the reference count of the first node becomes
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zero, which recursively decrements the subsequent nodes and deletes them. We
shall refer to this type of reference counting as eager reference counting.

Eager reference counting allows immediate garbage collection with low pause
times compared to tracing garbage collectors, as the tracing part is done incre-
mentally by tracking reference counts rather than a separate tracing phase. How-
ever, reference counting can still have unbounded pause time as a deallocation
event can trigger a chain of deallocation.

By contrast, CTRC performs reference counting lazily. Instead of updating
reference counts for the fields of deallocated objects immediately, the updates are
postponed by storing the deallocated objects in a free list. When there is a new
allocation request, the fields of the object are freed as the object allocation is
being reused. This breaks the chain of deallocation mentioned previously, making
the allocation and deallocation of objects constant-time.

The use of constant-time reference counting mandates using only a single
allocation size, as using multiple allocation sizes may result in memory leaks,
which we discuss in Sect. 2.2. In general, large objects can always be split up into
smaller segments to fit the single allocation size requirement. Although using
a constant allocation size was traditionally considered impractical in previous
literature, our experiments show that by selecting a suitable size, the space and
performance penalty of splitting large objects is limited. While CTRC requires a
constant allocation size, there can be cases in which the program requires large
contiguous arrays, for example when interacting with graphics APIs. We show
that one can make use of an effect system to isolate the parts of a program
that need to perform variable-sized memory allocation, while maintaining the
constant-time guarantee for all other parts of the program.

2.2 Allocation Size

We now discuss why it is necessary to have a single allocation size for constant-
time memory management, overhead associated with this strategy, and criteria
for choosing allocation size.

A1 A2 AnRoot · · · ⊥

B1B2B3
· · ·

Fig. 1. Linked List with 2 Size Classes.

In the case of having multiple constant allocation sizes, one either has to
give up constant time guarantee or potentially suffer from memory leaks [3].
Consider the example shown in Fig. 1, where there are two size classes, with
small and large objects denoted by white and pale blue boxes respectively. The
last element of the small-object linked list contains a unique reference to a linked
list with large objects. Assume that the program loses the unique reference to



Being Lazy When It Counts 193

A1 at some point, causing all the small objects Ai and large objects Bi to
become unreachable. For normal reference counting schemes, the entire linked
list together with the large-object linked list is deallocated. However, for constant
time memory management schemes, the collector can only visit and deallocate
a bounded number of objects per step. Hence, if the small-object linked list
is sufficiently long, the memory collector can only deallocate the small objects,
which cannot be used to fulfill allocation for large objects. The allocator has to
allocate additional memory to fulfill large object allocations, even though there
are unused large object allocations that could be reused, causing a memory leak.

To avoid such an issue, our implementation only allows a single allocation
size, and large objects are split into segments.1 For imperative programming lan-
guages, this approach is considered infeasible as it is more common to have arrays
and objects with a large number of fields. However, for functional programming
languages, it is common to use data structures such as linked lists and other
tree-shaped linked data structures, whose nodes are usually small. This makes
our approach feasible, as shown by our experiments (Sect. 3).

There are multiple considerations when choosing the allocation size, including
memory overhead and architecture-specific details. If the allocation size is a lot
larger than the average object size, there will be severe internal fragmentation,
which wastes memory and memory bandwidth, which can cause performance
degradation. However, if the allocation size is too small, large objects are split
into multiple cells, and access to certain fields involves multiple pointer indirec-
tions, making the access slow. In addition, each cell has to store metadata such
as reference counts, so the overhead increases when large objects are split into
multiple cells. One should also consider architecture-specific details, such as the
cache line size and alignment requirements when choosing the allocation size.
This is to make sure allocations satisfy alignment requirements when packed
together, and require minimal cache access when accessing an object.

In our experiments, we choose 32 bytes as the size of each allocation, with
a header occupying 8 bytes. The target CPU architecture includes x86-64 and
aarch64, which uses 64-byte cache lines. Our objects should align to cache line
boundaries to avoid false-sharing, so it is natural to choose 64 bytes as the
allocation size. However, our early experiments found that the typical object
sizes are small, so using an allocation size of 32 bytes can improve memory and
cache utilization, while still being aligned to cache line boundaries.

Let the object size be n bytes, it requires at most � n
16� segment, where every

non-leaf segment contains a header and a pointer to the next segment. The worst-
case memory usage is four times the optimal memory usage when metadata
occupies 8 bytes. However, the actual worst-case memory usage is usually much
smaller. For example, if the smallest allocations are 32-bit integers which occupy
4 bytes each, the object size is 12 bytes together with the metadata, and the
memory overhead is 2.66 times the optimal memory usage. Note that this worst-
case memory usage is independent of the allocation and deallocation pattern,
which makes it simple to reason about statically with a tight upper bound.
1 Note that since object sizes are a constant of the program, field accesses still take

constant time, even for split objects.
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2.3 Implementation in Koka

0 4

metadata

8

refcount

31

data

Fig. 2. Cell Data Layout.

Fig. 3. Free List Layout.

We implemented the CTRC memory management scheme by extending Koka’s
C runtime and modifying the Koka compiler to split large objects into constant-
size segments. In the following, we shall use cell to denote a fixed-size memory
allocation (32 bytes, including a header of 8 bytes) and drop to denote decreasing
the reference count of an object and deallocating it when the reference count is
0. Figure 2 shows a simplified view of the memory layout for each cell, which
consists of a 32-bit metadata, 32-bit reference count refcount, and 24 bytes of
actual storage which is capable of storing three 64-bit pointers or integers. The
metadata encodes information including object type for pattern matching, the
number of pointers in the current cell, and additional data for other extensions
such as the “eagerly-deallocating-allocation” effect referred to in Sect. 2.5.

The free list is maintained as an intrusive linked list where the 8-byte header
acts as the pointer to the next cell. As cells are aligned to 32 bytes boundary, the
5 least significant bits of the free list pointers can be used for storing some of the
metadata, which includes information such as the segment’s pointer count, that
has been replaced by the intrusive pointer and can no longer reside in the object.
Note that this does not apply to pointers pointing to live objects, i.e. the normal
pointers, as the reference count must be stored in the object and 5 bits are not
enough for other metadata. The linked list is maintained with a last-in-first-out
(LIFO) order. As the last deallocated cell is likely to reside in the cache, reusing
it first can increase the chance of getting a cache hit. Figure 3 shows an example
free list layout. The cells inside the red dashed rectangle are inside the free list,
note that their headers are different from those outside the free list. Pointers
pointing to other free list cells contain metadata, such as the next cell pointer
counts on top of the dashed arrows. Pointers pointing to live cells, denoted by
solid arrows, are dropped when the free list cell is being reused.
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In case the object occupies more than 24 bytes, the compiler splits the object
into multiple segments. Each segment occupies a single cell, with pointers point-
ing to other segments in a tree-like fashion. Note that in our prototype imple-
mentation, the objects are split up in a linked-list-like fashion, i.e. each segment
can only point to one other segment, for simplicity. The runtime treats each
segment inside the free list as individual objects.

Fig. 4. Linked List Example.

Consider a linked list example, where each node contains a pointer to the
next node and 3 64-bit integers. As each node is larger than 32 bytes, it is split
into 2 segments. The example memory layout is shown in Fig. 4. The i-th node
is split into two segments Ai and A′

i, where Ai contains pointer to A′
i, pointer

to the next node Ai+1, and 1 64-bit integer. A′
i contains the remaining 2 64-

bit integers. When A1 is deallocated, it is put into the free list. When there is
another memory allocation and A1 is removed from the free list, the allocator
puts A′

1 into the free list as A1 must contain the unique reference to A′
1, A2 is

dropped at this point but not necessarily deallocated as there can still be other
references to A2.

2.4 Soundness and Garbage-Free Guarantee

Due to space limitation, we provide the details of our formalization in
Appendix A. We define the “baseline semantics” to be the typical operational
semantics for untyped lambda calculus with explicit binding, pattern matching,
and an interpretation of dup and drop as no-op instructions. The baseline seman-
tics is the observable behavior of the program and is independent of the under-
lying memory management strategy. We refer to the semantics that manage the
heap and perform eager reference counting as the “eager semantics”. Similarly,
we define the semantics of CTRC that perform lazy reference counting as the
“ lazy semantics”. In addition to the heap, the lazy semantics also has the concept
of a free list, which is a list of dropped cells that can be reused. Instead of get-
ting a fresh memory location in the heap when performing allocation, the lazy
semantics attempts to get a cell from the free list and drop its fields when the
free list is non-empty. Also, instead of recursively dropping an object when the
reference count becomes zero, the lazy semantics keeps the object in the heap
and adds it to the free list.

Our formalization reasons about program traces in different semantics. We
show that:
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1. The eager semantics and lazy semantics both simulate the baseline semantics.
This makes sure the behavior is correct when allocation does not return mem-
ory that is still being referenced. Also, this provides the notion of time for
other parts of the formalization.

2. At any point in the execution, the reference count of an object in the eager
semantics xk is smaller than that in the lazy semantics xc, i.e. xk ≤ xc.
This makes sure we never put things that are still being referenced in the
free list, so allocation does not return memory that is still being referenced,
provided the eager semantics is sound.

3. When the points-to graph is acyclic and the free list is empty, we have xk = xc

for every object.
This means that when we require additional memory from the system to fulfill
allocation, the current heap is garbage-free, provided that the execution under
the eager semantics is garbage-free at this point.

Garbage-Free Heap CTRC Heap

Eager Free Lazy Free

Lazy Free

Empty Free List

Fig. 5. Relationship between Eager free and Lazy free.

The proof is based on simulation, which means that we do not have to prove
the soundness and garbage-free properties for program transformations under the
lazy semantics. If the program transformation preserves soundness and garbage-
free properties in the eager semantics, the same guarantees hold in the lazy
semantics. Figure 5 shows the relationship between the eager and lazy semantics.

2.5 Eagerly-Deallocating-Allocation Effect

While functional programming typically uses small objects, some data structures
require large contiguous memory allocation to be efficient, such as B-Trees [6]
which benefit from a larger branching factor, and hash tables, which benefit from
being able to perform random accesses in an array. However, increasing the fixed
allocation size to satisfy these use cases causes a large increase in memory usage,
and may impact performance due to worse cache utilization. Ideally, there should
be a way of using variable-sized memory together with fixed-size constant-time
memory management.

Eagerly-Deallocating-Allocation Effect (EDA), is an extension to CTRC that
allows users to use variable-sized memory, without sacrificing the constant-time
guarantee for the whole program. The idea is to utilize the effect system to mark
parts of the program that perform variable-sized memory allocations which take
non-constant time. Users can use the effect system to prohibit calling functions
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that perform variable-sized memory allocations in timing-sensitive regions of the
program. Note that memory deallocation is still constant-time in all cases, and
users can still perform read and write operations on those variable-sized allocations
from all parts of the program. Only variable-sized allocations take unbounded time,
as they deallocate everything in the eager free list to recover space.

The runtime segregates the free list into a lazy free list and an eager free list.
The eager free list contains all large allocations and objects that can transitively
reach objects in the eager free list. For implementation, one can use 1 bit in the
metadata to determine whether or not the object can transitively reach large
objects. Deallocation operations put the object into the corresponding free list
depending on this bit, and each operation still takes constant time. If there is
insufficient memory to satisfy a variable-sized allocation, the allocator first tries
to empty the eager free list, and then the lazy free list, to try to get enough
space to fulfill the allocation. When both free lists are empty, the system should
be garbage-free, so emptying the two free lists can make sure the system does
not use more memory than necessary. The eager free list is emptied first to free
large allocations, which are more likely to be able to satisfy the large allocation
request. For normal fixed-size allocation, the allocator tries to reuse cells in the
lazy free list. When the lazy free list is empty, the allocator uses cells in the
eager free list, splitting large allocations when necessary. The allocator avoids
splitting large allocations when possible, as splitting such allocation to fulfill
small allocation requests may cause fragmentation.

3 Preliminary Experiments

cf
ol
d

de
ri
v

la
m lif
e

nq
ue

en
s

po
w

rb
tr
ee

rb
tr
ee
-c
k

0
0.
5

1
1.
5

2

R
el
at
iv
e
ru
nn

in
g
ti
m
e

Unmodified
CTRC (32 Bytes Cells)
CTRC (64 Bytes Cells)

(a) With reuse

cf
ol
d

de
ri
v

la
m lif
e

nq
ue

en
s

po
w

rb
tr
ee

rb
tr
ee
-c
k

0
0.
5

1
1.
5

2

R
el
at
iv
e
ru
nn

in
g
ti
m
e

Unmodified
CTRC (32 Bytes Cells)
CTRC (64 Bytes Cells)

(b) Without reuse

Fig. 6. Relative Running Time



198 C. K. Lam and L. Parreaux

In this section, we discuss the initial benchmarks of CTRC, implemented
by modifying the compiler and runtime system of Koka, versus Koka with the
mimalloc [13] memory allocator.

3.1 Experimental Setup

Our CTRC implementation is extremely simple, the allocator runtime contains
about 150 lines of C code that does not depend on the system memory allocator.
We included the implementation of the allocator in Appendix B, which uses
mmap for allocating new pages but can be modified to use memory from a
static buffer, and is simple to port to embedded systems. We modified the Koka
compiler2 to limit the size of each allocation and split the object when necessary.
In the benchmark, we compare the performance of different cell sizes (32 bytes
and 64 bytes) as cell size impacts both the performance and memory usage of
the application.
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Fig. 8. Histogram of statement latencies
(Sect. 3.3).

Note that neither of the CTRC implementations used here supports hybrid
reference counting, which is the ability to mix different eager and lazy allocation
styles within the same program, as described in Sect. 2.5. We anticipate that
adding support for hybrid reference counting would be straightforward and would
not significantly alter these results.3

We run the benchmarks that were included in the work by Reinking et al. [19],
as well as a few benchmarks adapted from NoFib [16], a Haskell benchmark suite,
that stress memory allocation. Each benchmark is run in a loop 100 times in
2 Commit hash: b167030.
3 The only change needed for hybrid reference counting in the CTRC allocator imple-

mentation is the addition of a check for the dirty bit stored in object headers.
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Koka, to avoid measuring only the startup and termination overhead of the run-
time. All the benchmarks are run on a desktop computer with Intel i5-13600KF
with 32GiB of RAM, running NixOS 23.11 with Linux 6.5.12 Xanmod kernel.
The benchmarks are compiled with -O3 optimization using GCC 11.3.0. The
benchmark run is pinned on a performance core with taskset, with SMT and
turbo boost disabled to ensure all the code is run at the same CPU frequency.
The relative execution time and memory usages are given in Fig. 6a, Fig. 6b and
Fig. 7. By default, Koka compiles with reuse optimization [19] enabled, which
reduces the number of deallocations by performing in-place updates when the
reference to the data structure is unique. Figure 6b shows the benchmark result
in which the reuse optimization is disabled, which demonstrates the performance
when such reuse optimization is inapplicable or not implemented, for example
when run in an interpreter.

3.2 Performance and Memory Usage

From Fig. 6a, CTRC with a 32-byte cell size has similar performance compared
with Koka unmodified, except in the N-queens (nqueens) and red-black tree
(rbtree-ck) benchmarks. For nqueens, this is because it mostly uses integer cons
lists, where each node only occupies 16 bytes in the 32-byte cell. Every access
fetches some unused memory, which under-utilizes the memory bandwidth. This
behavior is also apparent in most benchmarks when increasing the cell size from
32 bytes to 64 bytes: these benchmarks run slower in addition to using more
memory. For rbtree-ck, the slowness is caused by the compiler splitting the left-
child and right-child pointers into two segments. Tree traversal requires one
additional pointer indirection, making the running time slower. Switching the
cell size to 64 bytes removes the need for pointer indirection, which makes the
running time faster in this case.

For the lambda evaluation (lam) and game of life (life) benchmarks, they
are significantly faster compared with Koka unmodified because they involve
deallocating large collections. For example, the life benchmark allocates and
deallocates a large grid, and the lazy deallocation approach used by CTRC
provides better temporal locality. CTRC with a 32-byte cell size has on average
8.8M L1 d-cache misses per iteration, while unmodified Koka has on average
26M L1 d-cache misses per iteration for the life benchmark. Similar behavior
occurs when the reuse optimization is disabled, because in-place updates become
deallocation and allocation of the same large collection, so CTRC becomes faster
than unmodified Koka in these cases.

CTRC generally uses more memory compared to the baseline. For some
benchmarks, 64-byte cell size can have a relatively high memory overhead
because the object size is small (e.g. 16 bytes), wasting the remaining 48 bytes.
However, the advantage of CTRC is that the maximal memory overhead can
be determined statically, and is independent from the allocation/deallocation
pattern.
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Programmers can reduce the performance and memory overhead of CTRC
by changing the datatypes to pack more data into each cell. For example, instead
of using the usual cons list definition, one can use the following:

alias i32 = int32
type i32 -list

Nil
Cons1{h1: i32; t: i32 -list}
Cons2{h1: i32; h2: i32; t: i32 -list}
Cons3{h1: i32; h2: i32; h3: i32; t: i32 -list}
Cons4{h1: i32; h2: i32; h3: i32; h4: i32; t: i32 -list}

When compiled, the pointer t uses 8 bytes in 64-bit systems, and the maxi-
mal of 4 32-bit integer fields occupy 16 bytes in total. Together with the 8-byte
metadata per cell, this fully utilizes the 32-byte cell size. Note that these trans-
formations will make the code more complicated, which may cause additional
overhead if the program bottleneck is not caused by memory bandwidth limita-
tion or cache misses. For example instead of simply using cons cells to add an
element to the start of the list, the code now should check for the variant of
the first cell and change the cell type accordingly. Also, the code transformation
requires knowing the size of the fields, which may make it hard to apply the
optimization for polymorphic types. For example, we can only unroll two fields
if the data type used is a pointer instead of 32-bit integers.

There are also opportunities for data structure inlining [8], which is a well-
known approach to optimizing program performance and memory footprint.
Bruno et al. [4] uses value semantics to determine if data structures are eligible
for inlining, where data objects with value semantics are not used for reference
comparison and do not require atomic field access. In the context of functional
programming, objects automatically have value semantics, so inlining can be
applied to most objects except those behind reference cells. The problem is how
to pack the objects such that fields accessed together are placed in the same cell,
and how to maximize the utilization of cell size, which we leave as future work.

3.3 Latency Measurements

In the context of embedded programming, it is common to implement cooper-
ative scheduling by explicitly yielding program control. This does not require
a complicated program runtime and is more efficient, but requires careful coor-
dination to meet latency requirements. Unbounded latency caused by recursive
drop is particularly problematic in this scenario, because the programmer may
think that every statement in the source language corresponds to a bounded
number of steps in the machine execution. As the famous saying goes, “Any
sufficiently complicated C or Fortran program contains an [...] implementation
of half of Common Lisp”, we implemented a simple lambda calculus interpreter
to simulate the workload of complicated embedded programs and measured the
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latency per statement, to simulate the latency of cooperative scheduling. The
result is shown in Fig. 8, where “Count” is the number of statements that require
a certain amount of time to execute.

From the figure, although most statements have low latency, unmodified Koka
can occasionally get latency spikes of around 10 µs or higher, which are caused by
deallocating large data structures. The latencies of around 1 µs for unmodified
Koka and CTRC are caused by page faults, and are unavoidable when running
with virtual memory. This shows that the unbounded latency for eager reference
counting can have a measurable impact, and is not only a theoretical problem,
while CTRC mitigates the issue of unbounded latency in both memory allocation
and deallocation.

4 Related Work and Conclusion

We now discuss related work and conclude.

4.1 Related Work

Reinking et al. [19] introduced a new algorithm for optimizing reference counting
with memory reuse and specialization. Their work showed that reference counting
can achieve comparable performance with state-of-the-art memory management
systems, and sometimes even out-performing in terms of efficiency, while main-
taining low memory usage and reasonable pause time. Our implementation is
based on their work on the Koka compiler, which benefits from their reference
counting optimization. Some of the optimization, such as reuse analysis, becomes
more efficient in CTRC due to the constant allocation size guarantee.

Leijen et al. [13] implemented mimalloc, a fast memory allocator developed
for Koka and Lean. Their implementation uses free list sharding to increase
locality and reduce fragmentation. Free list sharding can be implemented in
constant time for our approach, but experiments showed no consistent perfor-
mance improvement due to worse temporal locality compared with a stack-like
approach (LIFO). Our implementation achieves competitive performance when
compared with Koka together with mimalloc, and the latter was already shown
to be competitive with existing functional programming language implementa-
tions like GHC and OCamlc, which uses traditional tracing GC, as well as Swift,
which uses reference counting. But while mimalloc is implemented in about 8k
lines of code, our prototype implementation just takes around 150 lines of C
code due to having fewer features and supporting Unix only.

Lazy reference counting is not a new concept. Back in 1963, Weizenbaum [24]
introduced a list processing system that used lazy reference counting, and pro-
vided a simple implementation of the processing system in FORTRAN. However,
due to various limitations of reference counting, such as the performance impact
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caused by frequent reference count updates and the inability to deal with cycles,
tracing garbage collection is still the preferred way for performing automatic
memory management in most high-level languages. Joisha [11,12] used the idea
of lazy reference counting to bound pause time in garbage collection. Instead of
immediately collecting all the garbage, the deallocator maintains a list of zom-
bie objects that have a reference count of zero but are yet to be reclaimed. This
avoids triggering unbounded pause time when deallocating linked lists. However,
as the system uses variable allocation size, the runtime may need to eagerly
process all the zombie objects when there is insufficient space to serve certain
allocation requests.

Boehm [3] analyzed the upper bound on the memory usage of lazy reference
counting when multiple size classes are used. When the maximum and minimum
cell size are smax and smin respectively and the number of live object is N , the
space bound is smax

smin
N . This upper bound is not better than using only one size

class and promoting all small objects to the largest size class.
Puaut [18] evaluated the performance of various dynamic memory alloca-

tion approaches, comparing their analytical worst-case allocation time with their
actual observed worst-case allocation time. Those algorithms tend to work well
in practice and the observed worst-case allocation time is not too large compared
with the average allocation time. However, their analytical worst-case time can
be very large due to the variable allocation sizes they support, and are unsuitable
for hard real-time applications. On the other hand, our work allows for simple
implementation, high throughput, and low analytical worst-case allocation time
in the portions of the program that are statically proven by the type system not
to have large allocation effects.

Bruno et al. [4] showed that object inlining can provide large improvements to
throughput and reduce memory footprint. It may be possible to perform similar
object inlining in CTRC to reduce the memory overhead of constant allocation
size, and potentially improve performance by improving cache utilization.

Blelloch and Wei [2] gave a wait-free implementation for fixed-size allocation
and free that is linearizable. This can potentially be used to implement the
concurrency extension of CTRC, which requires balancing the global and thread-
local heaps.

Blackburn and McKinley [1] introduced a hybrid garbage collector that
combined both generational collector and reference-counting collector for high
throughput and low maximum pause time. Their implementation divided the
heap into an immortal part, a reference counted space for mature objects and
a nursery space for short-lived objects with a high mutation rate. By deferring
reference count updates for short-lived objects, the system’s throughput can be
improved. While they added a time cap parameter to limit the time spent on each
garbage collection phase, our approach is inherently lazy and does not require
tuning such ad hoc parameters. In addition, as shown in Reinking et al. [19], the
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throughput of reference counting with compile-time optimization is on par with
or even better than state-of-the-art garbage collectors, without the complexity
of a hybrid garbage collector.

Wan et al. [23] designed a statically-typed language called Real-Time FRP,
that statically bounds the time and space cost of each execution step, which
avoids unbounded allocation size and infinite recursion in the computation. How-
ever, in their formalism, the time cost of allocation and deallocation are not con-
sidered, as they only bound the term size. But allocation times can be significant
in practice and could make their approach not truly real-time.

4.2 Conclusion

In this paper, we presented CTRC, a lazy reference counting system that pro-
vides a constant-time guarantee for memory allocation and deallocation oper-
ations. We also presented extensions for supporting a hybrid memory manage-
ment strategy by utilizing a type-and-effect system, and discussed challenges and
potential solutions for handling multithreaded allocation with memory sharing.
While extremely concise, our implementation in Koka is competitive with the
Koka runtime using mimalloc, a state-of-the-art memory allocator optimized for
functional programming languages, which shows that our approach is practical
and does not suffer from any significant performance penalty. We would like
to experiment with other optimization techniques, such as object inlining [4]
and profile-guided optimizations, to further reduce the performance and mem-
ory overhead of splitting objects. We leave as future work how to handle multi-
threaded allocation efficiently.

A Formalization

In this section, we present the formal operational semantics of CTRC, prove its
soundness, and show that it is garbage-free when the free list is empty (and the
free list is always used for new allocations when non-empty).
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Fig. 9. Syntax of λ1.

A.1 Syntax

Figure 9 shows the syntax of λ1 which is the same presented by Reinking et al.
[19]. It is an untyped lambda calculus extended with explicit binding, pattern
matching, as well as duplicate and drop instructions. Note that the duplicate
and drop instructions are added by the compiler into the compiled program and
are not written by the user. Constructors with fields x1, x2, . . . , xn are denoted
as C xi

n. Functions with parameter x, body e, free variables y1, y2, . . . , yn are
denoted as λyi

n

x. e.
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Fig. 10. Baseline Semantics.

We also define a few syntactic shorthands to simplify the presentation. We
define sequence e1; e2 as binding e1 to an unused variable x, functions are writ-
ten as λx. e when the free variables are not important, and define dropf v for
functions and constructors. dropf is used for dropping the fields of constructors
and free variables of functions. It is a syntactic shorthand because it can be
expanded into a fixed number of drops.

There are three different evaluation judgments, corresponding to different
operational semantics.

Baseline Semantics The baseline semantics is the typical operational seman-
tics that does not model memory management. Note that the syntax for match
expression is modified to match e {pi → ei

n}, as the variable being matched
is replaced with a value. The evaluation rules for the baseline semantics are
shown in Fig. 10, where the app rule is function application, the bind rule
is variable binding, and the match rule is pattern matching. drop and dup
instructions are ignored, as the baseline semantics does not model memory
management and these two instructions are only for reference counting. In
this paper, the baseline semantics serves as the baseline for program behavior,
where the other two operational semantics should simulate. The simulation
relation is shown with the simplified program trace defined below.

Reference Koka Semantics The reference Koka semantics, which we shall
later refer to as the eager semantics, models memory management with ref-
erence counting. The heap H is a mapping from variable to reference count
and value. The evaluation judgment H

∣
∣ e −→k H ′ ∣

∣ e′ reads as follows: given
a heap H, the expression e is evaluated to e′ with the heap updated to H ′.
This semantics is discussed in detail below.

New CTRC Semantics The new CTRC semantics, which can also be called
the lazy semantics, models memory management with lazy reference counting.
Instead of just a heap, the semantics also includes a free list F which stores
reusable allocations. The evaluation judgment H;F

∣
∣ e −→c H ′;F ′ ∣

∣ e′ reads
as follows: given a heap H and free list F , the expression e is evaluated to e′,
with the heap updated to H ′ and the free list updated to F ′.
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A.2 Reference Koka Semantics

Fig. 11. Reference Koka semantics for λ1.

Figure 11 shows the original4 Koka reference-counted heap semantics. The eval-
uation context E uniquely determines where to apply an evaluation step. The
boxes are tools we introduced to facilitate the proofs below. When the boxed
instructions are removed, the semantics become the baseline semantics without
reference counting, so the boxed instructions can be viewed as internal routines
of the memory management scheme. Note that drop and dup instructions may
be added by the compiler, i.e. they exist statically in the program, and are not
boxed. They can also be internal routines of the memory management scheme,
which are introduced on the right-hand side of evaluation rules and are boxed.
We use a dashed box to denote instructions that can either be normal or boxed.

Values are allocated in the heap with rule newk and evaluated to the variable
pointing to the allocation. The freshly allocated variable has a reference count
of 1. Function application with rule appk duplicates the captured values of the
function, drop the function allocation itself, and then perform the actual applica-
tion via substitution. Similarly, for pattern matching, rule matchk duplicates the
fields of the constructor, drop the constructor object itself, and substitute the
fields to the pattern in the matched case. The dropk and dupk rules update the
reference count of the target variable. When the reference count reaches 1, the
drop instruction instead is evaluated according to freek, which drops the fields
of the value and deallocates the allocation.

We define simplified program trace as the sequence of program states when
executed according to some operational semantics, excluding the heap, free list

4 slightly modified to merge rules related to lambda and constructor for cleaner pre-
sentation.
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and all steps that have boxed instructions. The simplified program trace corre-
sponds to the execution trace of the baseline semantics, and should be the same
for both the reference Koka semantics and the CTRC semantics.

For example, the full program-trace of val x = C1; dup x; val y =
λxz. x; drop x; drop y; λx. x according to the reference Koka semantics is

1. ∅

∣
∣ val x = C1; dup x; val y = λxz. x; drop x; drop y; λx. x

2. (newk) u �→1 C1
∣
∣ val x = u; dup x; val y = λxz. x; drop x; drop y; λx. x

3. (bindk) u �→1 C1
∣
∣ dup u; val y = λuz. u; drop u; drop y; λx. x

4. (dupk) u �→2 C1
∣
∣ val y = λuz. u; drop u; drop y; λx. x

5. (newk) u �→2 C1, w �→1 λuz. u
∣
∣ val y = w; drop u; drop y; λx. x

6. (bindk) u �→2 C1, w �→1 λuz. u
∣
∣ drop u; drop w; λx. x

7. (dropk) u �→1 C1, w �→1 λuz. u
∣
∣ drop w; λx. x

8. (freek) u �→1 C1
∣
∣ drop u; λx. x

9. (freek) ∅

∣
∣ λx. x

10. (newk) y �→1 λx. x
∣
∣ y

Each row above shows the rule used to arrive at the current state, current
heap and the resulting expression. The simplified program trace contains states
1–7, 9–10. State 8 is excluded from the simplified trace because it contains boxed
instructions.

A.3 New CTRC Semantics

We define the operational semantics for constant-time reference-counted heap in
Fig. 12, i.e. the lazy semantics. The reference count in the heap can now be zero,
indicating the value is no longer reachable and is added to the free list. The free
list, which is denoted by F , contains a list of memory locations that the program
can reuse.

The major differences between the reference Koka semantics and the CTRC
semantics are the allocation and deallocation rules. When the free list is empty,
allocation requests are met by requesting more memory from the system accord-
ing to rule newc, which is the same as the rule newk in the reference Koka
semantics. When the free list is non-empty, however, the first entry in the free
list is used to meet the request, and the fields in the original value of the entry
are dropped according to the rule newrc, where the r suffix stands for reuse.

For the previous example, the program trace is

1. ∅ ;∅

∣
∣ val x = C1; dup x; val y = λxz. x; drop x; drop y; λx. x

2. (newc) u �→1 C1 ;∅

∣
∣ val x = u; dup x; val y = λxz. x; drop x; drop y; λx. x

3. (bindc) u �→1 C1 ;∅

∣
∣ dup u; val y = λuz. u; drop u; drop y; λx. x

4. (dupc) u �→2 C1 ;∅

∣
∣ val y = λuz. u; drop u; drop y; λx. x

5. (newc) u �→2 C1, w �→1 λuz. u ;∅

∣
∣ val y = w; drop u; drop y; λx. x

6. (bindc) u �→2 C1, w �→1 λuz. u ;∅

∣
∣ drop u; drop w; λx. x

7. (dropc) u �→1 C1, w �→1 λuz. u ;∅

∣
∣ drop w; λx. x

8. (freec) u �→1 C1, w �→0 λuz. u ;w
∣
∣ λx. x

9. (newrc) u �→1 C1, w �→1 λx. x ;∅

∣
∣ drop u; w

10. (freec) u �→0 C1, w �→1 λx. x ;u
∣
∣ w

Each row above shows the rule used to arrive at the current state, current
heap, current free list, and the expression being evaluated. The simplified pro-
gram trace is the above trace excluding step 9. Note that the full trace for both
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the eager semantics and the lazy semantics are very similar, except in the last
few steps where they treat free and allocation differently. For the eager semantics,
step 8 recursively drops the field of w, while the lazy semantics just put w into
the free list. The field of w is dropped when there are new allocation requests,
which happens in step 9 above. When the states involving boxed instructions are
removed, the simplified traces for both semantics are the same and correspond
to the baseline semantics.

Fig. 12. Constant-time heap semantics for λ1

A.4 Metatheory

In this section, we prove the correctness of the CTRC semantics. We show that
the simplified program trace for the reference Koka semantics and the CTRC
semantics are equal. From this, we derive that the CTRC semantics never reuse
memory before the reference Koka semantics drop them. By the soundness of
the reference Koka semantics, the CTRC is also sound because it cannot cause
memory corruption. We then prove that the system is garbage-free when the free
list is empty. As CTRC would not request memory from the system when the free
list is non-empty, it would not allocate more memory than needed. This property
is also one that enables the eager-deallocating-allocation effect extension to work
(see Sect. 2.5). At last, we show that each memory instructions of CTRC only
perform a statically-bounded number of steps, which provides the constant-time
guarantee as promised.

Lemma 1. The eager semantics and lazy semantics simulate the baseline
semantics.

Proof. Boxed instructions do not add any non-boxed instructions when evalu-
ated, so for the simplified program trace, we can safely remove them from the
rules. The resulting rules are the same for both semantics, so their simplified
program traces are the same.
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With the simulation relation, we can define time in program execution by
the position in the simplified trace, i.e. according to the baseline semantics. We
denote the reference count of variable x at a certain time when executed accord-
ing to the eager semantics and the lazy semantics by xk and xc respectively.

Lemma 2. At any point in the program execution, we have xk ≤ xc −xf , where
xf is the number of times x occurs as a field of variables that are freed in the
eager semantics but not reused in the lazy semantics.

Proof. First, notice that if the proposition holds, the lazy execution never reuses
memory before the eager execution deallocates the variable. This is because in
order for the lazy execution to reuse memory, it has to execute the newc rule,
whereas the newk rule of the eager semantics does not deallocate anything. Let
x′
k and x′

c be the reference count after this step, we know that x′
c = 0 because

we deallocate in this step, and xk = x′
k as the eager semantics do not deallocate

in this step, we have xk = x′
k ≤ x′

c = 0 so x is already deallocated in the eager
execution.

Now we prove the proposition by induction on the evaluation rules.

Case H = ∅. Initially, the free list and heap are empty, so the proposition holds
trivially.

Case new. For allocation expressions, the newk and newc/newrc rules are exe-
cuted. In both semantics, the newly allocated value has xk = xc = 1 and
is not freed in the eager semantics, so the proposition holds for the newly
allocated value.
We now prove that the proposition still holds for all the original fields of the
value being reused. Notice that for the original eager semantics, it cannot
perform deallocation when evaluating allocation, so fk is not changed. For
newrc, the fields of the old deallocated value old are dropped, so reference
count fc for the field f is decremented n times, where n is the number of
occurrences of the variable in the fields of the deallocated object. ff is also
decremented by n, because old is now reused in the lazy semantics, and its
fields no longer contribute to ff , so the inequality still holds for f .
For other objects y, as the lazy semantics does not perform recursive drop,
the reference counts are not being changed. Also, as the eager semantics does
not perform reference count update in the case of allocation, except for the
newly allocated value, yf will not change, and the inequality still holds.

Case free For freek and freec rules, it is easy to see that freek decrements the
reference count xk of every field x of the deallocated value by n, while freec
causes xf to increase by n and no change in xc. So the proposition still holds
for all fields of the deallocated value.

Other cases For other rules, both semantics have the same behavior so they do
not affect the invariant.

Corollary 1. The lazy semantics is sound, i.e. it only reuses garbage that would
have been deallocated in the eager semantics.
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We now prove the garbage-free property for this lazy semantics, and the proof
also shows that one can perform garbage collection and get to the same state as
in the eager semantics.

Lemma 3. When the points-to graph is acyclic and the free list is empty, vk =
vc.

Proof. Note that we only have to count the number of drop calls because dups
are treated the same in both semantics, and drops are commutative so order
does not matter.

By induction on the longest distance from the root set in the points-to graph.
If the longest distance is zero, this holds because the reference count can only be
n, where n is the number of dup and drop calls, as there are no references to the
variable. For the induction case, note that every pointer pointing to the current
object has a strictly smaller longest distance, and the induction hypothesis holds
for them. If the pointer is from some garbage, by the induction hypothesis the
reference count of the garbage is the same as in the eager semantics. Because
the eager semantics is garbage-free, the reference count of the garbage has 0
reference count, which should already be dropped and added to the free list. As
the free list is empty, the memory is already being reused by the (newrc) rule
and the fields are dropped. Hence, the reference count of the current object is
equal to the number of live objects pointing to it, which is the same as in the
eager semantics.

Note that the proof requires an acyclic heap, which is also a property required
for reference counting to work. For functional programming languages without
mutation, with suitable compilation strategy, programs can guarantee to have
no reference cycles.

Corollary 2. Acyclic heaps are garbage-free when the free list is empty.

The relationship between eager reference counting and lazy reference count-
ing is shown in Fig. 5. The heap is originally garbage-free as there is no allocation.
When users perform deallocation, eager deallocation removes all garbage asso-
ciated with the object, while lazy deallocation turns the heap into the CTRC
heap. When the user empties the free list of the CTRC heap, the heap becomes
garbage-free again.

Theorem 1 (Constant-time memory management). Each memory man-
agement instruction takes constant time with the CTRC semantics.

Proof. There are three cases to consider:

Case dup This instruction is evaluated according to dupc in 1 step.
Case drop This instruction can be evaluated according to dropc or freec, where

both of them can be evaluated in 1 step. freec requires appending a variable
to the free list, which can be implemented in constant time with a linked list.

Case Allocation There are two cases for allocation, depending on whether the
free list is empty.
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Subcase Empty free list Allocation is evaluated according to rule newc,
which requests memory from the system in 1 step.

Subcase Non-empty free list Allocation reuses an allocation from the
free list and drops all its fields according to rule newrc. As we assume the
number of fields is statically bounded, and each drop instruction takes a
statically-bounded amount of CPU operations, the whole operation takes
a statically-bounded amount of CPU operations.

Note that the formalization is different from the actual implementation, we
do not distinguish between objects and segments. The compiler is responsible
for splitting objects into segments, satisfying the constant size requirement. We
do not model this compiler transformation because there can be many different
implementations, and our operational semantics do not depend on such details.
As the size is bounded, the number of fields of each object is also bounded.

B CTRC Allocator Source Code

In this appendix, we present our implementation of basic CTRC (without the
locality optimization).

The defer_drop function is used for deallocating objects, and the get_block
function is used for allocating new objects.

Header initialization and reference-count updates are handled in the Koka
runtime.

1 #include "kklib.h"
2 #include <sys/mman.h>
3
4 #define STACK_NODE_PAGES 1ull
5 #define NUM_CELLS_PER_PAGE ((4096 * STACK_NODE_PAGES /

SMALL_BLOCK) - 1)
6 #define MAGIC_BITS 0xCA
7 #define SPLIT_BIT 0x8
8
9 typedef union ctrc_cell_s {

10 struct {
11 kk_header_t header;
12 uint8_t data[SMALL_BLOCK - 8];
13 };
14 struct {
15 union ctrc_cell_s *next;
16 };
17 } ctrc_cell_t;
18 _Static_assert(sizeof(ctrc_cell_t) == SMALL_BLOCK , "

ctrc_cell_t ???");
19
20 typedef struct ctrc_page_s {
21 ctrc_cell_t *free_ptr;
22 ctrc_cell_t *drop_ptr;
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23 struct ctrc_page_s *next_page;
24 uint64_t free_counter;
25 ctrc_cell_t cells[NUM_CELLS_PER_PAGE ];
26 } ctrc_page_t;
27 _Static_assert(sizeof(ctrc_page_t) == 4096 *

STACK_NODE_PAGES ,
28 "ctrc_page_t ???");
29
30 static ctrc_page_t *last_page = NULL;
31
32 static inline void drop_cell(ctrc_cell_t *cell) {
33 // find page
34 size_t page_addr = (size_t)cell & ~((( size_t)

STACK_NODE_PAGES * 4096) - 1);
35 ctrc_page_t *page = (ctrc_page_t *) page_addr;
36 __builtin_prefetch(page , 1);
37
38 if (kk_unlikely(cell ->header._field_idx != MAGIC_BITS)

)
39 return;
40 kk_ssize_t scan_fsize = cell ->header.scan_fsize;
41 // avoid corrupting the pointer part
42 scan_fsize &= (SMALL_BLOCK - 1);
43 bool new_page = page ->drop_ptr == NULL && page ->

free_ptr == NULL &&
44 page ->free_counter == 0;
45 if (new_page) {
46 page ->next_page = last_page;
47 last_page = page;
48 }
49 if (scan_fsize == 0) {
50 cell ->next = page ->free_ptr;
51 page ->free_ptr = cell;
52 } else {
53 cell ->next = (ctrc_cell_t *)(( size_t)page ->drop_ptr

| scan_fsize);
54 page ->drop_ptr = cell;
55 }
56 }
57
58 void force_free(kk_block_t *block) {
59 // ignore
60 if (kk_unlikely(block ->header._field_idx != MAGIC_BITS

))
61 return;
62 if (block ->header.scan_fsize & SPLIT_BIT) {
63 // splitted object
64 kk_box_t box = kk_block_field(block , 0);
65 kk_assert(kk_box_is_ptr(box));
66 kk_block_t *next_block = kk_ptr_unbox(box);
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67 // ignore other ptrs ...
68 next_block ->header.scan_fsize &= SPLIT_BIT;
69 drop_cell (( ctrc_cell_t *) next_block);
70 }
71 block ->header.scan_fsize = 0;
72 drop_cell (( ctrc_cell_t *) block);
73 }
74
75 static void drop_fields(kk_block_t *block) {
76 kk_ssize_t scan_fsize = block ->header.scan_fsize & (

SMALL_BLOCK - 1);
77 if (scan_fsize & SPLIT_BIT) {
78 scan_fsize = (scan_fsize & (~ SPLIT_BIT)) + 1;
79 if (scan_fsize == 1) {
80 force_free(kk_ptr_unbox(kk_block_field(block , 0)))

;
81 return;
82 }
83 }
84 kk_context_t *context = kk_get_context ();
85 for (kk_ssize_t i = 0; i < scan_fsize; i++) {
86 kk_box_drop(kk_block_field(block , i), context);
87 }
88 }
89
90 static ctrc_page_t *mmap_cache;
91 static size_t mmap_cache_count = 0;
92 static bool use_htlb = true;
93
94 static ctrc_page_t *alloc_blocks () {
95 if (kk_unlikely(mmap_cache_count -- == 0)) {
96 unsigned long long size =
97 use_htlb ? (32 ull * 1024 ull * 1024 ull) : (64 ull

* 1024 ull);
98 mmap_cache =
99 mmap(NULL , size , PROT_WRITE | PROT_READ ,

100 MAP_PRIVATE | MAP_ANONYMOUS | (use_htlb ?
MAP_HUGETLB : 0), -1, 0);

101 if (kk_unlikely(mmap_cache == MAP_FAILED)) {
102 if (use_htlb) {
103 use_htlb = false;
104 mmap_cache_count ++;
105 return alloc_blocks ();
106 }
107 fprintf(stderr , "allocation␣error:␣%s\n", strerror

(errno));
108 exit (1);
109 }
110 madvise(mmap_cache , size , MADV_POPULATE_WRITE |

MADV_WILLNEED);
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111 mmap_cache_count = size / sizeof(ctrc_page_t) - 1;
112 }
113 ctrc_page_t *page = mmap_cache ++;
114 page ->drop_ptr = NULL;
115 page ->free_ptr = NULL;
116 page ->free_counter = NUM_CELLS_PER_PAGE;
117 return page;
118 }
119
120 static ctrc_cell_t *pop_free () {
121 if (kk_unlikely(last_page == NULL)) {
122 ctrc_page_t *page = alloc_blocks ();
123 page ->next_page = last_page;
124 last_page = page;
125 }
126 ctrc_cell_t *result = last_page ->free_ptr;
127 __builtin_prefetch(result , 1);
128 bool need_drop = false;
129 if (result == NULL) {
130 if (last_page ->free_counter > 0) {
131 result = &last_page ->cells[--last_page ->

free_counter ];
132 } else {
133 result = last_page ->drop_ptr;
134 size_t next_ptr = (size_t)result ->next;
135 result ->header.scan_fsize = next_ptr & (

SMALL_BLOCK - 1);
136 last_page ->drop_ptr = (ctrc_cell_t *)(next_ptr &

~( SMALL_BLOCK - 1));
137 need_drop = true;
138 }
139 } else {
140 last_page ->free_ptr = result ->next;
141 }
142 if (kk_unlikely(last_page ->drop_ptr == NULL &&

last_page ->free_ptr == NULL &&
143 last_page ->free_counter == 0)) {
144 last_page = last_page ->next_page;
145 __builtin_prefetch(last_page , 0);
146 }
147 if (need_drop)
148 drop_fields (( kk_block_t *) result);
149 return result;
150 }
151
152 void defer_drop(kk_block_t *block) { drop_cell ((

ctrc_cell_t *)block); }
153
154 kk_block_t *get_block () {
155 kk_block_t *block = (kk_block_t *) pop_free ();
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156 block ->header._field_idx = MAGIC_BITS;
157 return block;
158 }
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Abstract. MetaOCaml is a superset of OCaml for convenient code gen-
eration with static guarantees: the generated code is well-formed, well-
typed and well-scoped, by construction. Not only the completed gener-
ated code always compiles; code fragments with a variable escaping its
scope are detected already during code generation. MetaOCaml has been
employed for compiling domain-specific languages, generic programming,
automating tedious specializations in high-performance computing, gen-
erating efficient computational kernels and embedded programming. It
is used in education, and served as inspiration for several other metapro-
gramming systems.

Most well-known in MetaOCaml are the types for values representing
generated code and the template-based mechanism to produce such val-
ues, a.k.a., brackets and escapes. MetaOCaml also features cross-stage
persistence, generating ordinary and mutually-recursive definitions, first-
class pattern-matching and heterogeneous metaprogramming.

The extant implementation of MetaOCaml, first presented at FLOPS
2014, has been continuously evolving. We describe the current design and
implementation, stressing particularly notable additions. Among them
is a new, efficient, the easiest to retrofit translation from typed code
templates to code combinators. Scope extrusion detection unexpectedly
brought let-insertion, and a conclusive solution to the 20-year–old vexing
problem of cross-stage persistence.

Keywords: metaprogramming · staging · code generation

1 Introduction

(BER) MetaOCaml [15,18] is a superset of OCaml to generate assuredly well-
formed, well-scoped and well-typed code using code templates, also known as
brackets and escapes (see Sect. 2 for the extended example). If code is success-
fully generated, it is certain to compile. Not only all variables in it are bound:
they are bound as intended (see [13] for the discussion of unintended binding).
The guarantees apply not only to the completed code: ill-formed or ill-typed
code fragments are rejected already by the type checker. MetaOCaml permits
unrestricted manipulation of open code fragments, including storing them in
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Gibbons and D. Miller (Eds.): FLOPS 2024, LNCS 14659, pp. 219–236, 2024.
https://doi.org/10.1007/978-981-97-2300-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/xxxx_12&domain=pdf
http://orcid.org/0000-0002-2570-2186
https://doi.org/10.1007/978-981-97-2300-3_12


220 O. Kiselyov

reference cells or memo tables. However, as soon as it is detected that a free
variable in such fragment cannot possibly be bound by its intended binder, an
exception is raised with a detailed error message.

MetaOCaml has been employed for compiling domain-specific languages [20,
25,32], generic programming [30], automating tedious specializations in high-
performance computing [17], modeling of digital signal processing, generating
efficient computational kernels [2,9,19] and embedded programming. It is spread-
ing into industry.

MetaOCaml is used in metaprogramming courses at the University of Cam-
bridge and Tsukuba University, and in programming language courses at the
University of Montreal, McMaster University, etc. MetaOCaml has had an influ-
ence on the design of Scala 3 metaprogramming facilities and Eliom [27], among
others. An unexpected application is implementing sophisticated type systems
such as session types [21]: fancy (linear, dependent, resource, etc.) types are
treated as ‘run-time tags’ but at a code generation stage. Type errors produce
stack traces and can be debugged with an ordinary debugger.

MetaOCaml is being considered for merging into the mainline OCaml, in
part due to requests from industry. Preliminary steps are already taken.

The first incarnation of MetaOCaml was described at GPCE 2003 [3]. The
current, completely re-designed and re-written version was presented at FLOPS
ten years ago [15]. It was called BER MetaOCaml, to distinguish from the orig-
inal version. The original was unavailable even back then, and has faded by
now. The ‘BER’ qualification has lost its significance, too: it is no longer just
about brackets and escapes. Therefore, we shall refer to the sole extant version
as MetaOCaml.

Since 2014, MetaOCaml has developed significantly: not only has it kept
up with OCaml, it also evolved as a metaprogramming system. Notable mile-
stones include native (native-code, as opposite to bytecode) compilation, off-
shoring, ordinary and mutually recursive let-insertion, first-class patterns, the
conclusive solution to cross-stage persistence. Achieving them required solving
long-standing theoretical problems [16,19,24,31]. Here we touch upon hereto
unpublished features, also requiring theoretical development, focusing on their
design and implementation. More detailed history can be found on the Meta-
OCaml home page.1

Concretely, the paper makes the following contributions:

1. New, efficient, the easiest to retrofit into the extant type-checker translation
from typed code templates to code combinators: Sect. 3;

2. Let-insertion as the evolution of scope extrusion: Sect. 4;
3. The conclusive solution to cross-stage persistence, specifically, implementing

cross-stage persistence at all types: Sect. 5.

We start with the brief introduction to staging and MetaOCaml, and finish
with the related work in Sect. 6. MetaOCaml is available from Opam,2 among
other sources. The current version is N114.
1 https://okmij.org/ftp/ML/MetaOCaml.html#history.
2 https://opam.ocaml.org/.

https://okmij.org/ftp/ML/MetaOCaml.html#history
https://opam.ocaml.org/
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2 Introduction to Staging and MetaOCaml

The standard example to introduce staging – the “Hello World” of metaprogram-
ming – is the specialization of the power function, first described by A.P.Ershov
in 1977 [8]. The well-deserved popularity has made the example a cliche, however.
This section uses a related example: more realistic and designed to introduce
many facilities of MetaOCaml.3

Suppose we are writing code for an embedded system with a low-level CPU
that has no multiplication instruction (or it is too slow). It is worth then to try
to optimize an important particular case: multiplication by a constant, using
shifts and addition. For concreteness, let’s take the following target OCaml code
intended for the device4

let x = read int () in let y = read int () in 5∗(x+1)+y

where read int is a stand-in for reading a sensor value. For optimization we
shall use OCaml as well, now as a metalanguage. To be exact, we shall use
MetaOCaml, which adds to OCaml the facility to represent, or quote code,
using code templates, or brackets .〈. . . 〉.:
let c = .〈 let x = read int () in let y = read int () in 5∗(x+1)+y 〉.

Brackets are akin to string quotation marks ‘”’. In fact, the above code template
can be converted to a string and written to a file. Unlike strings, however, code
templates have structure: the code within a template must be a well-formed –
moreover, well-typed OCaml code. Since the sample enclosed code has the type
int, the entire template has the type int code. Code templates like above are
values – also called ‘code values’ – and can be named (bound to variables),
passed as arguments and returned from functions. The code within a template
is only quoted (and type-checked), but not evaluated. It can be written to a
file, compiled and then executed – at a ‘future stage’, so to speak. In contrast,
unquoted MetaOCaml code, which is ordinary OCaml, is executed when the
program runs: ‘now’, at the present stage.

To optimize the constant multiplication in c, we change the template to
let copt = .〈 let x = read int () in let y = read int () in .˜(mul 5 .〈(x+1)〉.)+y 〉.

Here, .˜ (called ‘escape’) marks the hole in the template; the escaped expression
mul 5 .〈(x+1)〉. is evaluated to generate the code to plug into the hole. A template
with a hole is no longer a value then. The function mul defined below is a code
generator: it takes the known multiplicand (as integer) and the code for the
other multiplicand (as a code value) and produces the code for the product.
The code value .〈(x+1)〉. passed as the second argument to mul is open, with
the free variable “x”. Passing around, splicing, storing in reference cells, etc.,

3 The complete code for the example is available at https://okmij.org/ftp/meta-
programming/tutorial/mult.ml.

4 One may quip that a platform with no support for multiplication unlikely supports
OCaml. Later in this section we mention using MetaOCaml for generating C (or
Wasm) instead.

https://okmij.org/ftp/meta-programming/tutorial/mult.ml
https://okmij.org/ftp/meta-programming/tutorial/mult.ml
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open code is the source of MetaOCaml power. In effect, we manipulate (future-
stage) variables symbolically. Although we can splice variables into larger future-
stage expressions, we cannot compare or substitute them, learn their name, or
examine the already generated code and take it apart.5 This pure generativity
of MetaOCaml helps maintain hygiene: open code can be manipulated but the
lexical scoping is still preserved.6

The code generator mul is as follows (the type annotations are optional):
let rec mul (n:int) (x:int code) : int code = match n with

| 0 → .〈0〉.
| 1 → x
| n when n < 0 → .〈 − .˜(mul (−n) x) 〉.
| n when n land 1 = 1 → .〈 .˜x + .˜(mul (n−1) x) 〉.
| n → let (m,k) = factors of two n in .〈 Int.shift left .˜(mul m x) k 〉.

where factors of two n computes the representation of the positive integer n as
m2k with m odd, and returns (m,k) as a pair. Brackets and escapes are also
called staging annotations, for a reason: if we erase them from mul, it becomes
the ordinary, well-typed OCaml function for correctly, but slowly, multiplying
two integers.

Before applying mul to copt, one may want to test it. First, let’s see the code
mul generates – in a simple context, provided by the so-called eta (which is often
used in partial evaluation and called ‘the trick’ [6]):
let eta = fun f → .〈fun x → .˜(f .〈x〉.)〉.
� val eta : (α code → β code) → (α → β) code = <fun>

eta (mul 5)
� − : (int → int) code = .〈fun x 1 → x 1 + (Int.shift left x 1 2)〉.

(shown after � is the response of the MetaOCaml top-level). The expression
eta (mul 5) hence generates the code template of a function. Code values can be
printed, which is what we see in the top-level response. The bound variable is
renamed: important to ensure hygiene [3].

Code values can also be saved as text into a file, to be compiled as ordinary
code. Code values can also be ‘run’: that is, their code can be compiled, linked in
and executed within the generator. It is useful for run-time specialization, and
also for testing. For example, we can evaluate Runcode.run (eta (mul 5)) 7 and
check that it returns 35 as expected.

Returning to the earlier copt, it evaluates to
.〈let x 1 = read int () in let y 2 = read int () in

((x 1 + 1) + (Int.shift left (x 1 + 1) 2)) + y 2〉.

5 At first blush, the inability to examine the generated code seems to preclude any
optimizations. Nevertheless, generating optimal code is possible [17,19,22,23].

6 Unless we store open code in reference cells outside the template that binds the
variables. Code generation with effects hence brings in the danger of scope extrusion.
MetaOCaml takes great pains to detect and report scope extrusion: Sect. 4.
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Compared to the original c, it uses only shifts and additions and should be faster.
There is a problem: the expression x 1 + 1 is duplicated. The problem can be
severe for a complicated expression, or even in a call to an imperative function.
To avoid duplication, MetaOCaml lets us bind an expression to a variable, using
letl :α code → ((α code →ω code) →ω code) (local let-insertion). We can also
use a general, floating let-insertion genlet (exp :α code) :α code to bind exp at the
highest possible position determined by data dependencies7 to a fresh variable,
obtaining the code value containing the variable:
.〈 let x = read int () in let y = read int () in .˜(letl .〈(x+1)〉. (mul 5))+y 〉.
� .〈let x 1 = read int () in let y 2 = read int () in

(let t 3 = x 1 + 1 in t 3 + (Int.shift left t 3 2)) + y 2〉.

.〈 let x = read int () in let y = read int () in .˜(mul 5 (genlet .〈(x+1)〉.))+y 〉.
� .〈let x 1 = read int () in let t 2 = x 1 + 1 in let y 3 = read int () in

(t 2 + (Int.shift left t 2 2)) + y 3〉.
We could have used letl or genlet in the implementation of mul. A better idea is to
leave the decision as to what, where and how to let-bind to the user, and merely
require the second argument to mul be the code value that is safe to duplicate.
MetaOCaml provides a special type α val code for such code values, which is a
subtype of α code. Values of val code types are produced from literals (with a
particular MetaOCaml annotation) or using genletv.8 Here is the re-written mul:
let rec mul (n:int) (x:int val code) : int code = match n with

| 0 → .〈0〉.
| 1 → (x :> int code)
| n when n < 0 → .〈 − .˜(mul (−n) x) 〉.
| n when n land 1 = 1 → .〈 .˜(x :> int code) + .˜(mul (n−1) x) 〉.
| n → (∗ as before ∗)

to be invoked like mul 5 (.〈y〉. [@metaocaml.value]) or mul 5 (genletv .〈(x+1)〉.).
The invocation mul 5 .〈(x+1)〉. does not type check: .〈(x+1)〉. is not of the type
α val code; mul 5 (.〈(x+1)〉. [@metaocaml.value]) does not type either since x+1
is not syntactically a value.

One might have wished for the optimization to apply to the original c tem-
plate as it was, without adding mul explicitly by hand. The explicitness is
intentional. One has to keep in mind that staging was developed as a push-
back against partial evaluators: a magic box that did everything automatically,
and sometimes to an impressive result (which could inexplicably change upon a
small, seemingly innocent modification). Programmers had no explicit control,
or understanding of what it did. Still, the point that MetaOCaml is too explicit
stands. It is indeed better thought of as an ‘assembler’ of metaprogramming. The
end users should generate code not with code templates but with abstractions
suitable to their domain – as was demonstrated in [19,23]. The explicitness of
MetaOCaml has an upside: knowing exactly what code will be produced, with
no surprises.
7 There is also a way to specify the desired binding locus [24].
8 Thus genlet is genletv followed by the upcast to code.
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The reader may have noted that an embedded system with no or very slow
hardware multiplication would unlikely run OCaml code. Generating OCaml
code was not a waste however: since the code is simple (as is often the case), it
may be converted to a low-level language such as C, using offshoring [19]. For
our example code, offshoring produces
int fn(){
int const x 26 = read int();
int const t 28 = x 26 + 1;
int const y 27 = read int();
return ((t 28 + (t 28 << 2)) + y 27); }
One may quip that GCC will automatically convert multiplication by con-

stants to shifts and additions (at least on x86 platform). However, an embedded
platform may not be supported by GCC. In fact, our running example is mod-
eled after two student projects of developing a simple DSL for robot control,
using MetaOCaml to generate and then offshore the code. The robot platform
was rather peculiar, underpowered and not supported by GCC.9

3 Implementing MetaOCaml

MetaOCaml is a programming language system, and hence looks like most other
(typed) language systems: the compiler with parsing, type-checking, optimiza-
tion and code-generation passes producing an executable; the standard library;
tools. MetaOCaml is deliberately designed to share, or piggy-back, on the par-
ent OCaml language as much as possible. It is intended to be fully source-
and binary-compatible with OCaml.10 Therefore, MetaOCaml code can use (in
source or binary) any OCaml standard or third-party library and any tool. Com-
piled MetaOCaml code can be linked with any other OCaml code. One may use
MetaOCaml as a daily driver for ordinary OCaml development, as the author
has been doing for over a decade.

MetaOCaml compiler is also engineered to be a small set of patches to the
OCaml front-end (parser and type-checker). The OCaml back-end (optimizer
and code generator) is reused, exactly as is. To this end, MetaOCaml deliberately
avoids extending any OCaml compiler data structures.

When it comes to syntax, MetaOCaml only adds three new tokens: two brack-
ets and the escape, which require all but a simple change to the OCaml grammar.
The brackets and escapes are parsed into so-called extension nodes of the OCaml
AST (a.k.a. Parsetree). One may create them using OCaml’s own notation. For
example, eta in Sect. 2 could be entered as

9 The robot is based on Daizen’s e-Gadget CORE, whose development environment
uses MPLAB C compiler for PIC18 MCU by Microchip Technology.

10 It was not the case for the original MetaOCaml.
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let eta (f: α code → β code) : (α → β) code =
[%metaocaml.bracket fun x → [%metaocaml.escape f [%metaocaml.bracket x]]]

without the bracket-escape syntax. The two notations can be mixed-and-
matched. One may design a source-level preprocessor to create the extension
nodes from any other syntax for code templates. (So far, no candidates have
been proposed however.)

The common approach of implementing quasi-quotation (of which brack-
ets and escapes are an instance), which goes back to Lisp, is translating to
code-generating combinators [3,5]. In Lisp, this translation is a source-level,
macro-expansion–like transformation. In MetaOCaml, quasi-quotation is typed,
however. It may be surprising that a source-to-source translation for brackets
and escapes is possible, in principle [16]. No changes to OCaml would be needed
then. On the other hand, type errors will be reported in terms of the translated
code, which may be confusing. Any translation to code-generating combinators
needs to associate variables with their stage, and hence to maintain a variable
environment. Handling data types requires type/constructor information. There-
fore, a translation to code-generating combinators has to do some amount of type
checking anyway. All in all, it seems a better idea to do the translation at or
after type checking.

In the original MetaOCaml, the translation to code-generating combinators
was post type-checking. A translation before or after type checking is a sepa-
rate pass, over the entire code. In the current MetaOCaml, the translation is
integrated with type checking, avoiding the overhead of a separate pass and of
scanning the code outside brackets. The cost of specifically MetaOCaml pro-
cessing is hence proportional only to the amount of the bracketed code, which is
normally a small portion of code base. Furthermore, the current type-checking–
integrated translation is designed to be the least invasive, the easiest to retrofit
into an existing type-checker, and hence easily portable. Uncannily, the transla-
tion is using what feels like only two stages to support multiple. As the warm-
up, Sect. 3.1 describes the type-checking of staged programs with brackets and
escapes, introducing the notation. Sect. 3.2 presents the modification to translate
brackets and escapes away.

3.1 Type-Checking Staged Programs

The present and the following section present the theory of MetaOCaml imple-
mentation. They use the standard in theoretical CS mathematical notation and
look theoretical. The notation, however, is the pseudo-code of the actual imple-
mentation. The efficient translation, Sect. 3.2, was first designed in the math-
ematical notation, to clarify its subtle points. The implementation later tran-
scribed the notation into OCaml code.

We start with the base calculus: it is the utterly standard simply typed
lambda calculus with integers, shown merely for the sake of notation, particularly
the notation of the typing judgment: Γ � e ⇒ e : t. The notation makes it explicit
that type checking is type reconstruction: converting an ‘untyped’ expression e
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Variables f, x, y, z
Types t ::= int | t → t
Integer constants i ::= 0, 1, . . .
Expressions e ::= i | x | e e | λx. e
Environment Γ ::= · | Γ, x:t

Variables f, x, y, z
Types t ::= int | t → t | <t>
Integer constants i ::= 0, 1, . . .
Expressions e ::= i | x | e e | λx. e | <e> | ~e
Stage n, m ≥ 0
Environment Γ ::= · | Γ, xn : t

Fig. 1. Base calculus: simply-typed lambda calculus with integers (left) and the corre-
sponding staged calculus (right)

to the type-annotated form e : t – or, in terms of the OCaml type checker,
converting from Parsetree to Typedtree.

Γ � i ⇒ i : int
x : t ∈ Γ

Γ � x ⇒ x : t

Γ � e ⇒ e : t′ → t Γ � e′ ⇒ e′ : t′

Γ � e e′ ⇒ (e : (t′ → t) e′ : t′) : t

Γ, x : t′ � e ⇒ e : t

Γ � λx. e ⇒ (λx : t′. e : t) : (t′ → t)

We assume that the initial environment Γinit to type check the whole program
contains the bindings of the standard library functions such as succ, addition,
etc. In the rule for abstraction, one may wonder where does the type t′ come
from. For the purpose of the present paper, one may consider it a ‘guess’. After
all, our subject is not type inference, but staging – to which we now turn.

Figure 1 (right) presents the staged calculus: the Base calculus extended with
bracket <e> and escape ~e expression forms and code types <t>.11 The calculus
(as MetaOCaml) is actually multi-staged : brackets may nest arbitrarily, e.g.,
<<1>>. The level of nesting is called stage. The present stage, stage 0, is outside
of any brackets. An expression at stage 1 or higher is called future-stage. The
typing judgment Γ �n e ⇒ e : t is now annotated with stage n ≥ 0. All variable
bindings in Γ are also annotated with their stage: xn : t.

The rules for integer constants and application remain the same, modulo
replacing � with �n: in general, most typing rules are unaffected by (or, are
invariant of) staging. This is a good news for implementation: adding staging to
an extant language does not affect the type checker to large extent. Here are the
changed and new rules:

xm : t ∈ Γ
m ≤ n

Γ �n x ⇒ xm : t

Γ, xn : t′ �n e ⇒ e : t

Γ �n λx. e ⇒ (λxn : t′. e : t) : (t′ → t)

Γ �n+1 e ⇒ e : t

Γ �n <e> ⇒ <e : t> : <t>

Γ �n e ⇒ e : <t>

Γ �n+1 ~e ⇒ ~(e : <t>) : t

11 The code type in the current MetaOCaml is not pre-defined, but is a library type
like Stdlib.Complex.t. Since the set of pre-defined types and values remains the same
as in OCaml, binary compatibility is maintained.
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The type-checker also annotates variable references with the stage, in addi-
tion to the type. A variable bound at stage n may be used at the same stage –
or higher (but not lower!). A present-stage variable may appear within brackets:
so-called cross-stage persistence (or, CSP). As one may expect, bracket incre-
ments the stage for its containing expression and escape decrements. Further-
more, escapes must appear within a bracket.

For example, <<~(<1>)>> has the type <<int>>, the expression <<λx. ~(f x)>>
is ill-typed but <<λx. ~(f <x>)>> is well-typed in an environment where f is
bound to a function <int> → <int> at stage 0.

After a program is type-checked and converted to the type-annotated form
(a.k.a., Typedtree), we have to compile it. The type-annotated form contains
brackets and escapes, so our compilation has to account for them. One popular
approach [3,5] is to post-process the type-annotated expression to eliminate all
brackets and escapes. The post-processed Typedtree then has the same form as
in the ordinary OCaml; therefore, we can use the OCaml back-end (optimizer
and code generator) as it is – which is what MetaOCaml does.

liftt : t → <t>
mkidt : string → <t>
mka : <t2 → t1> → <t2> → <t1>

mkl : (<t2> → <t1>) → <t2 → t1>
mkbr : <t> → <<t>>
mkes : <<t>> → <t>

Fig. 2. Code-generating combinators, see Sect. 4 for more discussion and possible imple-
mentation. Here liftt is the family indexed by type t, to be discussed in Sect. 5.

Formally, the result of post-processing is the Base calculus enriched with code
types (as well as string types and literals) and whose initial environment contains
the functions in Fig. 2. These code-generating combinators are the producers of
values of the code type. We call this calculus Base1.

3.2 Optimized Translation of Brackets and Escapes

We now present the optimized translation of Staged expressions that converts
brackets and escapes into invocations of code-generating combinators.

Figure 3 presents the translation 
e : t� of the interior of outer brackets in
Staged to the code-generating combinators.12 As mentioned earlier, we do not
have to scan the whole staging program, but only the part within brackets. The
interior translation exploits the fact that, surprisingly, the translation does not
depend on the exact future stage number. The case for x0 is discussed in Sect. 5.

12 Performed by trx translate of typing/trx.ml.
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i : int = liftint i : <int>
xm+1 : t = x : <t>

x0 : t = mkidt ”x” :<t> if x ∈ Γinit

liftt x :<t> otherwise
(e e ) : t = mka e e : <t>

λxn+1 : t . e : t = mkl (λx :<t >. e : t ) : <t → t>
~(e : <t>) = e : <t>

Fig. 3. Translation of the interior of outer brackets into Base2.

The typing judgment is now Γ �n e ⇒ e′ : t where e is an (un-annotated)
expression of the Staged calculus and e′ is the type-annotated expression of Base1
extended with ~e and stage-annotated variables. (Bindings in Γ are also stage-
annotated. For present stage, the annotation may be dropped.) Such extended
calculus is called Base2. Quite unexpectedly, Base2 has no need for brackets; it
only needs escapes, hence the changes to the OCaml Typedtree are minimal. In
fact, there are no changes at all, thanks to Typedtree attributes: an escape is
indicated by a dedicated attribute attached to a Typedtree node.

Γ n i ⇒ i : int

xm : t ∈ Γ
m ≤ n

Γ n x ⇒ xm : t

Γ n e ⇒ e : t → t Γ n e ⇒ e : t

Γ n e e ⇒ (e : (t → t) e : t ) : t

Γ, xn : t n e ⇒ e : t

Γ n λx. e ⇒ (λxn : t . e : t) : (t → t)

Γ 1 e ⇒ e : t

Γ 0 <e> ⇒ e : t : <t>

Γ n+2 e ⇒ e : t

Γ n+1 <e> ⇒ ~(mkbr e : t ) : <t>

Γ 0 e ⇒ e : <t>

Γ 1 ~e ⇒ ~(e : <t>) : t

Γ n+1 e ⇒ e : <t>

Γ n+2 ~e ⇒ ~(mkes e : <t> ) : t

Fig. 4. Type-checking and translation of Staged into Base2.

Figure 4 presents the pseudo-code of the optimized translation integrated
with type reconstruction. The figure makes it clear how the Base type recon-
struction – that is, the Typedtree construction in the ordinary OCaml – has to be
modified for staging. Most of the rules (see constant and application rules) are
unmodified. We still need to maintain the stage (as a global mutable variable in
the current implementation). The rule for lambda (and other binding forms) has
to annotate the bound variable with its stage as it is put into the environment.
We do it by adding an attribute bearing the stage to the value description of
the variable. The variable rule has to check that the stage of the variable is less
than or equal the current stage, and to put the stage-annotated variable into
Typedtree. In the implementation, nothing needs to be done for the latter: The
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Texp ident node of the Typedtree carries the value description taken from the envi-
ronment, which already has the stage attribute. The only significant changes are
the rules for brackets and escapes (represented in Parsetree as extension nodes).

The selective translation 
−� is indeed done only on the parts of the overall
Typedtree that represent future-stage sub-expressions. Therefore, when compiling
plain OCaml programs, MetaOCaml imposes no overhead: MetaOCaml-specific
processing is not even activated.

Proposition. If Γ �n e ⇒ e : t in the Staged calculus then Γ �n e ⇒ e′ : t in the
optimized translation.

Proposition. If Γ �n e ⇒ e′ : t, then e′ has no nested escapes.

Corollary. If Γinit �0 e ⇒ e′ : t then e′ is strictly a Base1 expression: it contains
no escape nodes or stage-annotated bindings. The type reconstruction hence
gives the ordinary OCaml Typedtree, which can then be processed by the OCaml
back-end as is.

Theorem. If Γ �0 e ⇒ e′ : t then Γ � ē′ ⇒ e′ : t in Base1 where ē′ is e′ with all
type annotations removed.

Evaluation. The integrated translation sounds almost too good to be true.
The goal of the formalization, and of the main theorem, is to convince that
the translation is correct. It is implemented in the current MetaOCaml (version
N114) – by literally transcribing the pseudo-code of Fig. 4 into OCaml – resulting
in simpler and shorter code. It worked on the first try, passing all tests in the
extensive MetaOCaml testing suite. No issues have been reported.

Since the very beginning BER MetaOCaml took pains to make the Typedtree
after the translation look exactly as in the plain OCaml. Time has showed that it
was wise. We remind that MetaOCaml is designed to use the OCaml back-end as
is. The OCaml back-end has been constantly enhanced with new optimizations
and facilities (FLambda, Multi-core, to name the biggest). MetaOCaml comes
to benefit from these optimizations automatically.

4 Let-Insertion

As we have seen in Sect. 2, let-insertion (particularly, genlet) is useful for effect-
ing sharing and avoiding code duplication. The importance of let-insertion has
been recognized early on in partial evaluation [11, §5.5.4]. It is commonly accom-
plished via continuation-passing (monadic) style [1,4,28] or, more conveniently,
via delimited control [12,26]. In fact, the primary motivation for the OCaml
delimited control library delimcc [14] was implementing genlet. Surprisingly, gen-
let turns out realizable in MetaOCaml much simpler, without any delimited con-
trol, piggy-backing on what MetaOCaml has had for a decade: detecting scope
extrusion.
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Detecting scope extrusion (that is, open code whose free variables shall
remain unbound) was introduced in version N103 and described in [15]. Here
is a brief reminder, using the formalization from the previous section. Figure 2
introduced code-generating combinators, but did not say what they generate.
Indeed, how is the type <t> realized, what exactly is the code value? As Sect. 2
has hinted, a code value (code template) is essentially a string containing code
text. An easier to generate representation is an algebraic data type [3]. An alge-
braic data type representing code is nothing but the abstract syntax tree (AST),
called Parsetree in the OCaml compiler. From the very beginning and up until
N103, code values in MetaOCaml were Parsetree.expression values.

In the formalism of Sect. 3.1, the AST corresponding to Base can be described
by the following OCaml data type13

type vname = string
type ast = Int of int | Var of vname | App of ast ∗ ast | Lam of vname ∗ ast

The code-generating combinators are then
type α code = ast
let mkid (n:vname) : α code = Var n
let mka (e1: (α → β) code) (e2: α code) : β code = App (e1,e2)
let mkl (f: α code → β code) : (α→β) code = let v = gensym () in Lam (v, f (Var v))

The function mkl (whose real MetaOCaml name is build fun simple) chooses a
fresh bound variable name, as explained in [3].

Such simple implementation does not suffice for detecting scope extrusion:
we need to keep track of free variables. To this end, version N103 introduced an
annotated AST:
type annot
type α code = annot ∗ ast
let mkid n = (empty, Var n)
let mka (a1,e1) (a2,e2) = (merge a1 a2, App (e1,e2))

where annot is a monoid with the unit empty and the operation merge. Specif-
ically, annot is a set of variable names that are free in the code value. The
function mkl, which introduces a new variable name, also dynamically binds it
for the dynamic extent of generating its body. It uses a dynamic binding facility
val dlet : vname → (unit → α) → α
val dbound : vname → bool

to dynamically bind a given vname for the duration of executing a thunk, and
check if vname is dynamically bound. The scope extrusion check is hence the
check that each free variable occurs only within the dynamic extent of mkl that
introduced it. Concretely,
type annot = VSet.t (∗ set of variable names ∗)
let empty = VSet.empty
let merge a1 a2 = if VSet.all dbound a1 && VSet.all dbound a2 then VSet.union a1 a2

else error ”Scope extrusion”

13 For simplicity, we hereafter restrict ourselves to two stages, as most common. There-
fore, the generated code contains no staging annotations.



MetaOCaml: Ten Years Later 231

let mkl f = let v = gensym () in
let (a,c) = dlet v (fun () → f (VSet.singleton v, Var v)) in
(VSet.remove v a, Lam (v, c))

Every code-generating combinator performs the scope extrusion check on its
arguments (for mka above, the check is integrated into the merge operation).
In reality, MetaOCaml uses a priority heap rather than set; it also takes great
pains to generate a detailed error message upon scope extrusion. See [15] for
more detail, and also the discussion on lexical scoping in the generated code
corresponding to dynamic scoping in the generator.

Turning to let-insertion, recall from Sect. 2 that genlet (exp :α code) :α code
binds exp ‘somewhere above’ to a fresh variable and returns the code value
containing the variable. One may say that genlet exp creates a promise of a let-
binding of a fresh v to exp – so-called ‘virtual let-binding’ – and returns Var v.
This is the key idea of the implementation. The virtual let-binding is carried as
yet another annotation to the code value. Concretely, annot is extended to
type vbindings = (vname ∗ (annot ∗ ast)) list
and annot = VSet.t ∗ vbindings

The merge function is extended to merge vbindings – checking, as before, for
scope extrusion and merging free variable sets. The code generating combinator
mka (and many more like it in the actual MetaOCaml) remain unchanged. The
let-insertion introduces the virtual binding, which is then propagated (floats) as
composite expressions form and their annotations are merged:
let genlet exp = let v = gensym () in ((VSet.empty,[(v,exp)]),Var v)

The combinator mkl now has to check if any expi in list of virtual bindings
(vi,expi) contains the variable that is bound by that mkl. If so, the corresponding
virtual binding has to be converted to the real let-binding; it cannot be allowed to
float further as scope extrusion occurs otherwise. We see now where exactly the
let-binding corresponding to genlet exp will be inserted: right under the closest
binder that binds a variable that is free in exp (or at the top level, if exp is
closed).

There is a bit more than meets the eye: for example, the exp in genlet exp
may itself use genlet, which induces a dependency and an order on let-bindings.

Evaluation. The implementation of let-insertion followed the just presented
outline and was relatively short, changing hardly any code, because the code
annotation infra-structure was already in place and could be reused. The exten-
sion to mutually-recursive let-insertion [24] proved to be just as straightforward.
Also straightforward is the explicit control of the insertion locus [24].

Let-insertion proved to be a valuable addition to MetaOCaml, appearing
quite often in code bases: see, e.g., the scalar promotion optimization in [19].

5 Cross-Stage Persistence

Looking back to the fragment of mul code from Sect. 2:
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let (m,k) = factors of two n in .〈 Int.shift left .˜(mul m x) k 〉.
we see k appearing inside the bracket but bound outside. The bracket con-
tains one more free variable: Int.shift left, bound in the OCaml standard library.
Program variables appearing in templates are called “cross-stage persistence”
(CSP).14 Cross-stage persistence is ubiquitous: for one, all references to stan-
dard library are CSPs.

The example highlights the two varieties of CSP: global, (standard) library
identifiers; and locally-bound identifiers. The difference is visible in the trans-
lation rules for 
x0 : t� in Fig. 3. For our example, the translation to code-
generating combinators gives:
let (m,k) = factors of two n in mka (mka (mkid ”Int.shift left”) (mul m x)) (liftint k)

The generated code will hence include the identifier Int.shift left, which, when
the code is compiled, will be taken to refer to the standard library function –
the same function it refers to in the generator. Globally-bound CSPs are hence
references to the libraries available at the present stage and assumed available
at a future stage: the ‘common knowledge’ so to speak.15

Locally-bound CSPs, in contrast, are by their very nature valid only within
their local scope and are not accessible from other code. Their values have to be
incorporated into the generated code: somehow represented in AST and eventu-
ally converted to text. This lifting, or serialization, is performed by the family
of functions liftt of Fig. 2. Serialization clearly cannot be done the same way for
all types. For integers, liftint n is just Int n. Booleans, strings, and other easily
serializable values are similar. Users may also define their own lifting functions
[17, §3.2.1].

On the other hand, when t is a function, reference, input channel, etc., type,
liftt is a puzzle. It is not clear if such a lifting is possible – or even makes sense.
Deepens the puzzle is the polymorphic
let polylift : α → α code = fun x → .〈x〉.

which has been definable in MetaOCaml since the very beginning. This definition
looks like a type-uniform serialization, which is impossible.

The long-standing, vexing puzzle has been finally solved in the latest version
of MetaOCaml – using let-insertion. That is, liftt v for any non-serializable t is
implemented essentially as genlet: choosing a fresh identifier cpsi and returning
Var”cpsi” annotated with a special virtual let-binding of cpsi to v. Unlike the
ordinary virtual let-binding, its rhs is not necessarily of code type. It is certain
however to contain no free future-stage variable; therefore, it always floats to the
very top. For example,
.〈 .˜(let f = fun x → x in .〈f〉.) 1〉.

when translated and evaluated becomes the code value that is the AST
App (Var ”csp1”, Int 1)

14 We will take ‘CSP’ to also abbreviate ‘cross-stage–persistent variable’.
15 A pun on the modal logic of code types [7].
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annotated with the special virtual let-binding of csp1 to fun x → x. Such code
value may be thought of as a ‘staged-separated’ let-binding
let csp 1 = fun x → x in .〈 csp 1 1 〉.

whose binding is in the present-stage but the body is in the future. More con-
structively, it may be thought of as a pair of the present-stage value fun x → x
and the code value .〈fun csp 1 → csp 1 1〉.. When such a code value is Run-
code.run, the code fun csp 1 → csp 1 1 is compiled and then applied to the first
component of the pair (the identity function in our case). One may say that the
binding and the body of a stage-separated let-expression are re-united. When
a CSP code value is saved into a file, it is saved as a function taking the CSP
value as the argument. When eventually invoked, the programmer will have to
somehow arrange for the appropriate value (e.g., recomputed, etc.) All in all, in
the presence of arbitrary CSP, a code value is a ‘staged’ closure, over CSPs.

Evaluation. CSPs are ubiquitous: although hardly ever mentioned in staging
literature, no practical metaprogramming system may afford to ignore them. The
experience has shown that locally-bound CSPs at function types are surprisingly
common, in cases of run-code specialization. In earlier versions of MetaOCaml,
such CSPs have been supported via a horrible hack, which only worked for byte-
code and resulted in printing of non-compilable code. At long last, the problem
has been solved.

CSPs are so common that they are used in the MetaOCaml implementation
itself. For a simple code template, rather than translating it to the code that
builds AST at the generator run-time, we may build the AST at the compila-
tion time. AST is serializable, and lifted as CSP from the compile-time to the
generator run-time. The generator then accesses it as a literal constant.

The implementation of MetaOCaml hence uses itself. The code
typing/trx.ml that contains the type-checking, translation and code-generation
combinators is used both at type-checking and code-generation time. In partic-
ular, the CSP implementation is used at both times. One gets the feeling of a
self-specializer, familiar from Futamura projections.

6 Related Work

Due to the lack of space we have to refer to [15] for the detailed discussion of
related metaprogramming systems.

Here we have to mention the very recent MacoCaml [29]: a macro-processor
for OCaml based on code templates. Unlike MetaOCaml but like Template
Haskell, Scala 3 or Zig, it generates code at compile-time to be used later in
compilation. MacoCaml has to deal with the difficult problem of modules and
module abstractions – which MetaOCaml skirts since it does not support code
templates with module expressions.16 On the other hand, MetaOCaml is more
than just brackets and escapes.
16 It is not clear if code generation of modules is needed: [10] tried to find a compelling

example but ended up implementing all candidates in the ordinary MetaOCaml.
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7 Conclusions

Ten years have passed since MetaOCaml was first presented [15]. They have seen
its increased use in research, education and even industry. It is hard to tell what
the next ten years may bring. There is no shortage of problems to solve, however,
with MetaOCaml, and in the further development of MetaOCaml. Among the
latter are significant theoretical challenges: unsound interaction of template-
based metaprogramming with polymorphism (for which [16] outlined a research
program) and GADTs.17
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Abstract. We propose MetaFM, a novel ML-style module system that
enables users to decompose multi-stage programs (i.e., programs writ-
ten in a typed multi-stage programming language) into loosely coupled
components in a manner natural with respect to type abstraction. The
distinctive aspect of MetaFM is that it allows values at different stages
to be bound in a single structure (i.e., struct · · · end). This feature is
crucial, for example, for defining a function and a macro that use one
abstract type in common, without revealing the implementation detail of
that type. MetaFM also accommodates functors, higher-kinded types, the
with type-construct, etc. with staging features. For defining semantics
and proving type safety, we employ an elaboration technique, i.e., type-
directed translation to a target language, inspired by the formalization
of F-ing Modules. Specifically, we give a set of elaboration rules for con-
verting MetaFM programs into System Fω〈〉, a multi-stage extension of
System Fω, and prove that the elaboration preserves typing. Addition-
ally, our language supports cross-stage persistence (CSP), a feature for
code reuse spanning more than one stage, without breaking type safety.

Keywords: Staging · Code generation · Macros · Module systems

1 Introduction

1.1 Multi-stage Programming

Program generation is a technique useful for several purposes such as improv-
ing performance or enhancing maintainability of programs; it can be used for
optimizing programs by exploiting information available only at runtime, and
also works as a basis for macros for eliminating so-called boilerplate code. Vari-
ous studies and implementations provide features for code generation, and their
formalizations differ from one another. Among these, a considerable amount
of studies have been done for proposing multi-stage programming (MSP) lan-
guages [5,6,12,13,16,26,31–35,38]. They enable users to write code-generating
programs in a less error-prone manner with the aid of their type systems.
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For a brief introduction to MSP, we use a simple setting similar to MetaML
[32,33] or λ© [5,6] here. In addition to ordinary constructs for typed func-
tional languages, two special constructs, bracket e and escape ∼e, are provided:
e ····= x | λx. e | e e | · · · | e | ∼e. Brackets and escapes correspond to
(hygienic) quasi-quotes and unquotes in Lisp, respectively. Owing to brackets
and escapes, every subpart of expressions has its stage; a subexpression inside
a bracket has one higher stage than outside, and conversely, a subexpression
inside an escape has one lower stage. The lowermost stage is called stage 0, and
seen from stage n, subexpressions at stage (n + 1) intuitively represent code
fragments used for building the resulting code. One can intuitively understand
the notion of stages in a graphical manner like (a) and (b) below, considering
that expressions are bumpy; brackets are convex, and escapes are concave.

The essentials of the evaluation rules are the following: (i) The ordinary (call-
by-value) β-reduction is performed only at stage 0; expressions inside brackets
are not evaluated in a usual sense except for ones inside escapes, since they rep-
resent code fragments. (ii) Escape cancels bracket; an expression of the form ∼ e
is evaluated to e when e is a “completed” code fragment, i.e., does not contain
further escapes. Such code fragments are dubbed as code values henceforth. An
example evaluation step is shown in (c) above.

After repeated reduction, a program at stage 0 hopefully reaches a code
value e , which intuitively corresponds to the end of macro expansion. Then
the bracketed expression e is “put down” to stage 0, and the evaluation of the
expression starts in turn. Especially when the number of stages is 2, stage 0 is for
code generation, and the generated program at stage 1 is for ordinary evaluation.

As an example multi-stage program, let us consider genpower, a function
that takes a natural number n and produces code for the n-th power function.
This function can be implemented like the following:

let rec aux n s = if n ≤ 0 then 1 else ∼s ∗ ∼(aux (n − 1) s)
let genpower = λn. λx. ∼(aux n x )

The application genpower 2 is, for instance, evaluated as follows (which does
not precisely conform to the operational semantics but describes overall steps):

genpower 2 −→ λx. ∼(aux 2 x ) −→∗ λx. ∼ ∼ x ∗ ∼(aux (2 − 1) x )

−→ λx. ∼ x ∗ ∼(aux (2 − 1) x ) −→ λx. ∼ x ∗ ∼(aux 1 x )

−→∗ λx. ∼ x ∗ ∼ x ∗ ∼(aux 0 x ) −→∗ λx. ∼ x ∗ ∼ x ∗ ∼ 1

−→ λx. ∼ x ∗ ∼ x ∗ 1 −→∗ λx. x ∗ (x ∗ 1)

A minimal type system for asserting the safety of staged computation is
actually quite concise; it basically suffices to equip types of the form τ , which
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is the type for code fragments that will be expressions of type τ at the next
stage. For example, genpower is assigned type int → int → int since it takes
an integer and returns a code value bracketing an expression of type int → int
at stage 1. Thanks to such typing, we can assert that programs do not get stuck
during code generation and neither does the evaluation of produced code, once
code-generating programs are successfully type-checked.

1.2 Point at Issue: Modularity

Although possibly used as an intermediate language to handle the results of
some transformations such as those guided by binding-time analysis [30], MSP
languages are intended to be written by hand as well. As long as written and
read directly by users, multi-stage programs are desirably composed of loosely
coupled smaller components for code maintainability. To this end, as widely
known, ML-family languages such as Standard ML or OCaml conventionally
have an encapsulation mechanism called a module system [7–9,14,19,21,23,24].
One can naturally expect that such a module system is also useful for MSP.

In this paper, we propose a new module system for the purpose above. Our
contributions can be summarized as follows: (1) Language design: We design
a module system named MetaFM that enables us to decompose multi-stage pro-
grams in a manner natural with respect to type abstraction. Unlike some existing
module systems equipped with staging features [16,26,35], our module system
does not assign stages to modules; instead, it allows values at different stages
to be bound in the same structure (i.e., struct · · · end). We observe that this
language design is crucial for the natural decomposition of multi-stage programs
into loosely coupled components, as exemplified in Sects. 2–3. (2) Reconcilia-
tion of staging with full-fledged ML-style modules: Based on the language
design above, we accommodate staging with some advanced features for modules
such as higher-order functors, sealing, the with type-construct, or higher-kinded
types. Our module system also supports cross-stage persistence (CSP) [33,38],
an important staging feature that enables the reuse of one common value at more
than one stage. We give semantics to our language through an elaboration, i.e.,
a type-directed translation to a target language, and show that the elaboration
is sound, i.e., that any target terms produced by the elaboration are well-typed.
(3) Target type safety: As a target language, we define System Fω〈〉, a multi-
stage extension of System Fω [11,22], and prove its type safety. The language
has its own stage polymorphism to provide CSP for MetaFM.

On the other hand, our method has the following limitations so far: (a) It
does not support the run-primitive [13,26,32,34,35], which executes code like
(run (genpower 3)) 5 −→∗ 125. This is not a severe limitation because run is
not necessary if one wants to do only compile-time code generation, and may well
be covered by some techniques orthogonal to ours, such as λ� [34]. (b) It cannot
handle first-class modules [20,24,25]. This is perhaps difficult to overcome within
our language design because unpacking them can be done only at runtime while
modules in our formalization are not staged and considered stage-0. (c) It cannot
straightforwardly extend with features that have side effects such as mutable



240 T. Suwa and A. Igarashi

module Timestamp :> sig
type t :: ∗
val precedes : t → t → bool
· · ·
∼val gen : string → t

end = struct
type t = int
val precedes ts1 ts2 = ts1 ≤ ts2
· · ·
∼val gen s =

case parseDatetime s of
| None → fail “not-a-datetime”
| Some ts → lift ts

end (a)

module MakeMap :> (Key : Ord) → sig
type key = Key.t
type t :: ∗ → ∗
val empty : ∀α. t α
· · ·
∼val gen : ∀α. list (key ∗ α) → t α

end = fun(Key : Ord) → struct
type key = Key.t
type t α = . . .
val empty = . . .
val add k v map = . . .
· · ·
∼val gen bindings = . . .

end (b)

Fig. 1. Example definition of modules in MetaFM

references due to a lack of sophistication in the semantics. We have a promising
solution to this issue nonetheless, and discuss it as part of our future work.

The rest of the paper is organized as follows: First, Sect. 2 displays examples
that motivate our language design. Section 3 compares related work and ours,
and discusses the necessity of the design. Section 4 formalizes the source lan-
guage, omitting CSP for clarity for the moment. After Sect. 5 defines the target
language and proves its type safety, Sect. 6 explains the elaboration rules and
proves their soundness. Section 7 extends our language with CSP without break-
ing the previously proved properties. Finally, Sect. 8 mentions future work and
its provisional implementation, and Sect. 9 concludes the paper. Many definitions
and proofs are in Appendix due to space limitations.

2 Motivating Examples

To showcase our motivation, consider a module Timestamp that handles abso-
lute timestamps as data of abstract type Timestamp.t, under the two-stage set-
ting, i.e., where we only have stages 0 and 1, which are for compile-time macro
expansion and runtime, respectively. The module has, for instance, a predicate
precedes of type t → t → bool that takes two timestamps and judges which is
earlier. It would be useful if the module provides a macro gen that transforms
datetime texts into the corresponding timestamps beforehand like the following:

let hasFlops2024Started =

Timestamp.precedes ∼(Timestamp.gen “2024-05-15T00:09:30+09:00”)

In our language, one can implement such Timestamp as shown in Fig. 1(a)1.
Timestamps are represented by Unix time integers, and functions are imple-
1 We here use a Haskell-like notation for kinds like type t :: ∗. We also write type

constructors before type arguments in type-level applications.
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mented as simple arithmetics. The macro gen is implemented by using an auxil-
iary function parseDatetime of type string → option int at stage 0; Although
its definition is omitted, parseDatetime parses a text and returns Some ts if the
given text is a valid datetime, where ts is the corresponding Unix timestamp,
or returns None otherwise. Most importantly, gen does not expose the internal
representation of Timestamp.t-typed values, as the ordinary functions do not.

As a side note, two additional constructs excluded from the formalization are
used in the example above. One is fail, which simply aborts the program when
evaluated. Note that allowing the use of fail at stage 0 is much less harmful
than that at stage 1; such an abort occurs before runtime. The other is lift e,
which evaluates e to a value v, and “lifts” it to v for the next stage. We should
note here that lifting and CSP are different despite their apparent resemblance,
and that one cannot lift arbitrary values; lifting functions, for example, makes
variable occurrences in the function body inconsistent as to their stage. It is thus
desirable to rule out such lifting, but that topic is out of the scope of this paper.

Another example is shown in Fig. 1(b). We here implement a functor MakeMap
for handling (finite) maps, which is equivalent to OCaml’s Map.Make; it takes a
module Key of signature Ord, which requires Key to have a type Key.t of mapping
keys and a comparison function Key.compare of type Key.t → Key.t → int used
for efficient access to values, and produces a module that provides a type t α
for maps whose keys and values are of type Key.t and α, respectively. We add to
the resulting module a macro gen that produces a map from a list of key–value
pairs beforehand. Since module expressions are not staged, we do not have any
additional difficulty in the reconciliation of functors and staging features. One
can use this macro as follows, for instance:

module StringMap = MakeMap String
val monthAbbrevToInt s =

StringMap.find s ∼(StringMap.gen [(“Jan” , 1), . . . , (“Dec” , 12)])

One important thing here is that Key.compare should be available both at
stage 0 and 1 so that both gen and ordinary functions can use it at compile-
time and runtime, respectively. Such capability is called cross-stage persistence
or CSP for short [33,38] and is known as one of the vital staging features for
practical use. We support it by bindings of the form val≥n X = E , which defines
a value X for any stage n′ such that n′ ≥ n. Based on this language design, Ord
will be (sig type t :: ∗;val≥0 compare : t → t → int end), for example.

3 Related Work and Our Approach

There are some existing studies that mix staging features with module systems,
though their goals differ from ours: Inoue et al. [16] indicated that by staging
modules we can eliminate abstraction overheads due to the use of functors, and
then Watanabe et al. [35] and Sato et al. [26] followed the approach and proposed
the formalization of such type systems. Despite the difference in the purpose,
it is apparently worth considering that we can possibly utilize them for our
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goal. However, such reuse seems somewhat unsatisfactory; to implement mod-
ules equivalent to Timestamp (or MakeMap) in such languages where only entire
modules are staged, one could do one of the following: (1) separate the module
into two, i.e., Timestamp at stage 1 for ordinary functions, and GenTimestamp at
stage 0 for defining macros; (2) do basically the same as (1), but define the type
for representing timestamps internally in a separate module TimestampImpl,
and both Timestamp and GenTimestamp include it; or (3) define Timestamp at
stage 0, and ordinary functions are bound as code values. Each option has a
kind of drawback, unfortunately. First, consider implementing the macro gen
in GenTimestamp based on (1). To assign type string → Timestamp.t to the
macro, we must provide a “backdoor” function λx. x as Timestamp.make of type
int → Timestamp.t and leave its application in code fragments produced by gen.
Things get worse when considering the MakeMap example; we cannot even pro-
vide such a backdoor so that GenMakeMap can use it (at least when functors are
generative, not applicative). Option (2) seems better in that it does not require a
backdoor, but it is a kind of expediency; it reveals TimestampImpl (or MapImpl)
to outside and thus requires another mechanism than modules that conceals the
implementation. Option (3) is good in terms of modularity, but it makes every
occurrence of ordinary values at stage 1 be like ∼(Timestamp.precedes).

Perhaps some of the most similar existing work would be Modular Macros [37]
and MacoCaml [36]; the former informally suggests a language design similar to
ours by giving some examples, and the latter gives a formalization that supports a
subset of that language design. MacoCaml offers structures (i.e., struct · · · end)
in which both values and macros can be bound, and supports CSP by level-
shifting imports import↓ inspired by Flatt [10]. Major differences between ours
and MacoCaml are that the number of stages in a structure is not limited to
two, that the type abstraction by signatures is taken into account, and that
functors can be handled. Aside from how semantics is precisely defined, ours can
perhaps be seen as an extension of MacoCaml (without mutable references) with
functors, higher-kinded types, sealing, the with type-construct, etc.

A technical challenge lies in giving semantics to our language and, at the same
time, proving that our language is type-safe and does not break type abstraction.
Indeed, defining semantics conforming to full-fledged ML-style module systems
has long been an issue by itself [4,7,14,15,23,27]. Among the line of studies, F-
ing Modules [23,24] elegantly formalizes such semantics through an elaboration
(i.e., a type-directed translation) to System Fω [11,22]. This approach seems
better than giving semantics directly on module expressions in that it does not
suffer at all from the avoidance problem [4,7,14] caused by locally defined types
under the combination of sealing (X :> S) and projection (M.X).

To define semantics for our language, we follow the elaboration approach
taken by F-ing Modules. Specifically, we translate the source language MetaFM
into System Fω〈〉, a multi-stage extension of System Fω. This is in contrast
to MacoCaml, which gives semantics directly to module expressions and might
well induce the avoidance problem when extending with features of full-fledged
ML-style modules such as sealing and projection. Although the elaboration inten-
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sively utilizes the existential quantification offered by System Fω〈〉 to demon-
strate that type abstraction is properly done, its operational essence is rather
simple; in a sense, our elaboration performs the option (3) above internally.

4 Source Language

The following defines the entire syntax for our source language MetaFM, where
meta-level notations [μ]∗ and [μ �→ ν] range over the (possibly empty) finite
sequences of μ and the finite maps from μ to ν, respectively:

M ····= X | M.X | struct [B]∗ end

| fun(X : S) → M | X X | X :> S

B ····= valn X = E | type X = T

| module X = M | include M

S ····= sig [D]∗ end | (X : S) → S

| S with type [X]∗X = T

D ····= valn X : T | type X :: K

| module X : S | include S

E ····= x | λx : T. E | E E | P | E | ∼E | · · · P ····= X | M.X

T ····= T → T | T T | P | T | · · · K ····= ∗ | K → K

The metavariables M , S, B, and D stand for modules, signatures, bindings,
and declarations, respectively. For brevity, we use the same metavariable X in
common for names of values, types, and modules bound as members of struc-
tures. The module language is quite similar to that of F-ing Modules [23,24];
modules consist of identifiers X, projections M.X, structures struct B end,
functor abstractions fun(X : S) → M , functor applications X1 X2, and sealing
X :> S. The sole essential difference is that value bindings valn X = E and
declarations valn X : T have an annotation n that specifies for which stage the
value X is defined. The binding forms ∼val X = E and val X = E used in
Sect. 1 were actually syntax sugars of val0 X = E and val1 X = E, respectively.
We do not specify the core language in detail, but both expressions E and types
T are equipped with paths P to items in structures (e.g. Timestamp.precedes).
We only formalize generative functors (i.e., ones that produce fresh abstract
types each time even if applied to the same module); we can perhaps handle
applicative ones as well in an F-ing Modules-like manner, but omit them for
simplicity.

For defining elaboration rules, we employ semantic signatures Σ and ξ [23,
24], as internal representations, and make type environments Γ track them:

Σ ····= �τ�n | �= τ :: κ� | {|R|} | ∀b. Σ → ξ ξ ····= ∃b. Σ s ····= n

R ····= [l �→ Σ ] b ····= [α :: κ]∗ Γ ····= • | Γ , X : Σ | Γ , α :: κ | Γ , x : τs

where n ranges over the set of stage numbers (i.e. the set of natural numbers).
Although s ranges over exactly the same set as n for the moment, it will be
extended for CSP in Sect. 7. Basically, �τ�n and �= τ ::κ� correspond to value
and type items in structures, respectively, and {|R|} and ∀b. Σ → ξ work respec-
tively as structure and functor signatures. Existentially quantified type variables
intuitively correspond to abstract types. For simplicity, we assume that source
variables X can be injectively embedded into the set of labels as lX .
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Γ S ξ

Γ D ∃b. R

Γ sig D end ∃b. {|R|} S-Str

Γ S1 ∃b. Σ1

Γ , b, X : Σ1 S2 ξ2

Γ (X : S1) → S2 ∃ε. ∀b. Σ1 → ξ2
S-Fun

Γ D ∃b. R

Γ ε ∃ε. ∅
Ds-Nil

Γ D1 ∃b1. R1 dom b1 ∩ domtv Γ = ∅

Γ , b1, R1 D2 ∃b2. R2

dom b2 ∩ dom b1 = ∅ dom R1 ∩ dom R2 = ∅

Γ D1 · D2 ∃(b1 · b2). R1 R2
Ds-Cons

Γ D ∃b. R
Γ K κ

Γ type X :: K ∃(α :: κ). {lX = α :: κ } D-Type

Γ T :: ∗ τ

Γ valn X : T ∃ε. {lX τ n} D-Val
Γ S ∃b. Σ

Γ module X : S ∃b. {lX Σ} D-Mod

Fig. 2. Signature elaboration rules (selective; see Fig. 11 for omitted ones)

Figure 2 displays the elaboration rules for the judgment Γ � S � ξ, which
converts syntactic signature S into semantic signature ξ. Among the rules, only
D-Val is essentially new, compared to those of F-ing Modules [23,24]; it handles
declarations of value items of type τ at stage n by signatures �τ�n.

The set of typing rules for modules and bindings is displayed in Fig. 3. The
judgment Γ � M : ξ � e intuitively states that M is assigned signature ξ
under type environment Γ , aside from the elaboration part � e for the moment;
indeed, one can read the rules just ignoring the portions with a gray background.
We explain how the elaboration works later in Sect. 5. While most of the rules
are essentially the same as those of F-ing Modules, only B-Val is new; it type-
checks the left-hand side E of a binding valn X = E as an expression at stage
n, and assigns signature �τ�n to the value item X, where τ is the resulting type.

Although we do not fix the core language, Fig. 4 displays foundational or
basic rules for judgments such as Γ �s E : τ � e. Among the rules, E-Path
essentially uses signatures �τ�n for value items; it limits the occurrence of paths
by stage number n as well as by types so that value items are used only at the
stage for which they are bound. The rules for staging, i.e., E-Brkt and E-Esc,
are fairly standard as an MSP language; an expression of the form E has a
code type τ if the subexpression E is assigned the type τ at the next stage,
and a subexpression E of ∼E is expected to be of type τ at the previous stage.

As is usual with module systems, the rules M-App and M-Seal depend on
signature matching Γ � Σ � ∃b. Σ ′ ↑ τ � e, where τ ranges over the set of finite
sequences of types. This judgment intuitively asserts that Σ can be a subtype
of ∃b. Σ ′ when the type variables in b (i.e., abstract types) are respectively
instantiated by the types listed in τ . Selected rules for signature matching are
shown in Fig. 5. Again, only U-Val is essentially new; the others are exactly the
same as the corresponding rules of F-ing Modules.

What we should note lastly is decidability. While most of the rules are syntax-
directed, U-Val requires type equivalence τ ≡ τ ′, and U-Match depends on the
guess at each τi , which makes the decidability of the whole type-checking non-
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Γ M : ξ e
Γ B : ∃b. R e

Γ struct B end : ∃b. {|R|} e
M-Str

Γ (X) = Σ
Γ X : ∃ε. Σ X

M-Var
Γ M : ∃b. {|R|} e R(lX) = Σ

Γ M.X : ∃b. Σ e#lX
M-Mem

Γ S1 ∃b. Σ1 Γ , b, X : Σ1 M2 : ξ2 e2

Γ fun(X : S1) → M2 : ∃ε. ∀b. Σ1 → ξ2 λX : Σ1 . e2
M-Fun

Γ (X1) = ∀b1. Σ1 → ξ1 Γ (X2) = Σ2

b1 = (αi :: κi)m
i=1 Γ Σ2 ∃b1. Σ1 ↑ (τi)m

i=1 e0

Γ X1 X2 : [τm/αm ] · · · [τ1/α1]ξ X1 τ1 · · · τm (e0 X2)
M-App

Γ B : ∃b. R e (omitted; basically concatenates the results for elements)

Γ B : ∃b. R e
Γ M : ∃b. Σ e

Γ module X = M : ∃b. {lX Σ} {lX = e} B-Mod

Γ n E : τ e

Γ valn X = E : ∃ε. {lX τ n} {lX = {val = e} ×n}
B-Val

Γ T :: κ τ e = Λα :: κ → ∗. λx : α τ. x

Γ type X = T : ∃ε. {lX = τ :: κ } {lX = {type = e}} B-Type

Fig. 3. Module elaboration rules (selective; see Fig. 10 for omitted ones)

trivial. The former is easy: we can prove that the evident type-level reduction
relation on well-kinded types is confluent and strongly normalizing, and can thus
check type equivalence by comparing normal forms. The latter requires a more
complicated technique, but we can indeed infer each τi as discussed in [24].

In the forthcoming two sections, we define a target language, see how the
elaboration part � e works, and show that e is well-typed in the target language.

5 Target Language and Its Type Safety

This section introduces System Fω〈〉, a multi-stage extension of System Fω
[11,22] used as a target language. The following defines the syntax:

e ····= x | λx : τ. e | e1 e2 | {[l = e]∗} | e#l | Λα :: κ. e | e τ

| pack (τ, e) as τ | unpack (α, x) = e in e | e | ∼e

τ ····= α | τ → τ | {r} | Λα :: κ. τ | τ τ | ∃α :: κ. τ | ∀α :: κ. τ | τ

κ ····= ∗ | κ → κ r ····= [l �→ τ ] γ ····= • | γ, x : τs | γ, α :: κ

Expressions e have bracket e and escape ∼e for staging in addition to
the standard constructs for typed lambda calculi, record construction {l1 =
e1, . . . , lm = em} (where the labels are assumed to be pairwise distinct), record
projection e#l, type variable abstraction Λα :: κ. e, type application e τ , and
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Γ P : Σ e

Γ (X) = Σ
Γ X : Σ X

P-Var

Γ M : ∃b. Σ e
Σ(X) = Σ Γ Σ :: ∗

Γ M.X : Σ unpack (b, x : Σ ) = e in x#lX
P-Mem

Γ s E : τ e
Γ P : τ n e

Γ n P : τ (∼×ne)#val
E-Path

Γ (x) = τs

Γ s x : τ x
E-Var

Γ T :: ∗ τ Γ , x : τs s E : τ e

Γ s (λx : T. E) : τ → τ λx : τ. e
E-Abs

Γ s+1 E : τ e

Γ s E : τ e
E-Brkt

Γ s E1 : τ → τ e1 Γ s E2 : τ e2

Γ s E1 E2 : τ e1 e2
E-App

Γ s E : τ e

Γ s+1
∼E : τ ∼e

E-Esc

Γ T :: κ τ
Γ T :: ∗ τ

Γ T :: ∗ τ
T-Code

Γ Ti :: ∗ τi (i ∈ {1, 2})
Γ T1 → T2 :: ∗ τ1 → τ2

T-Fun

Γ P : = τ :: κ e

Γ P :: κ τ
T-Path

Γ T1 :: κ → κ τ1 Γ T2 :: κ τ2

Γ T1 T2 :: κ τ1 τ2
T-App

Fig. 4. Core language elaboration rules

Γ Σ ξ ↑ τ e
b = (αi :: κi)m

i=1 Γ τi :: κi (for each i)
Γ Σ [τi/αi ]mi=1Σ e

Γ Σ ∃b. Σ ↑ (τi)m
i=1 e

U-Match

Γ Σ Σ e
Γ τ τ e

Γ τ n τ n λx : {val : τ} ×n. {val = e ((∼×nx)#val)} ×n
U-Val

∀l ∈ dom R . Γ R(l) R (l) el r̂ = {l el (x#l) | l ∈ dom R }
Γ {|R|} {|R |} λx : |R . {r̂} U-Str

Fig. 5. Signature subtyping rules (selective; see Fig. 12 for omitted ones)

pack/unpack expressions for existential quantification. Higher-kinded types τ
consist of type variables α, function types τ → τ , record types {r}, type-level
abstractions Λα :: κ. τ , type-level applications τ τ , existential (resp. universal)
quantification ∃α :: κ. τ (resp. ∀α :: κ. τ), and code types τ .

Figure 6 shows the typing rules for γ �s e : τ , which states that e is assigned
type τ at stage s under the type environment γ. The judgments � γ and γ �
τ :: κ, which are defined in Appendix, assert that γ is well-formed and that τ is
assigned the kind κ under γ, respectively. The set of rules is basically a natural
integration of System Fω with staging features, but pack/unpack-expressions
are allowed only at stage 0. This is just because it suffices for our purpose; we
could possibly allow them at arbitrary stages, but we don’t have to.

The small-step call-by-value operational semantics of System Fω〈〉 is shown
in Fig. 7. The judgment e

n−→ e′ stands for the reduction of the expression e
at stage n. As is usual in multi-stage languages, essential reductions, such as
ordinary β-reduction or access to record fields, are defined only at stage 0, and
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γ s e : τ
γ s+1 e : τ

γ s e : τ

γ s e : τ

γ s+1
∼e : τ

γ s e : τ τ ≡ τ γ τ :: ∗
γ s e : τ

γ γ(x) = τs

γ s x : τ

γ, x : τs s e : τ

γ s (λx : τ. e) : τ → τ

γ s e1 : τ → τ γ s e2 : τ

γ s e1 e2 : τ

γ τ :: κ γ 0 e : [τ/α]τ γ (∃α :: κ. τ ) :: ∗
γ 0 (pack (τ, e) as ∃α :: κ. τ ) : ∃α :: κ. τ

γ 0 e1 : ∃α :: κ. τ γ, α :: κ, x : τ0 0 e2 : τ2 γ τ2 :: ∗
γ 0 unpack (α, x) = e1 in e2 : τ2

Fig. 6. Typing rules for System Fω〈〉 (selective; see Fig. 14 for omitted ones)

e
n−→ e

e
n+1−→ e

λx : τ. e
n+1−→ λx : τ. e

e1
n−→ e1

e1 e2
n−→ e1 e2

e2
n−→ e2

v
(n)
1 e2

n−→ v
(n)
1 e2

(λx : τ. e) v(0) 0−→ [v(0)/x]e

e1
0−→ e1

unpack (α, x) = e1 in e2
0−→ unpack (α, x) = e1 in e2

unpack (α, x) = pack (τ, v(0)) as τ in e2
0−→ [v(0)/x][τ/α]e2 ∼ v(1) 1−→ v(1)

e
0−→ e

pack (τ, e) as τ
0−→ pack (τ, e ) as τ

e
n+1−→ e

e
n−→ e

e
n−→ e

∼e
n+1−→ ∼e

Fig. 7. Operational semantics of System Fω〈〉 (selective; see Fig. 15 for omitted ones)

the cancellation of brackets by escapes happens only at stage 1. Here, values v(0)

(resp. v(n)) at stage 0 (resp. at stage n ≥ 1) are defined by the following:

v(0) ····= λx : τ. e | {[l = v(0)]∗} | Λα :: κ. e | pack (τ, v(0)) as τ | v(1)

v(n) ····= x | λx : τ. v(n) | v(n) v(n) | {[l = v(n)]∗} | v(n)#l

| Λα :: κ. v(n) | v(n) τ | v(n+1) | ∼v(n−1) (The last one is for n ≥ 2 )

We have the following standard type safety properties of System Fω〈〉. Here,
we write �≥n γ if all entries in γ of the form x : τs satisfy s ≥ n. Since the
language has type equivalence, we have to take care of the so-called inversion
lemma by using an argument similar to the one in Chapter 30 of [22].

Theorem 1 (Preservation). If γ �n e : τ and e
n−→ e′, then γ �n e′ : τ .

Theorem 2 (Progress). If �≥1 γ and γ �n e : τ , then e is a value at stage n,
or there exists e′ such that e

n−→ e′.

6 Elaboration and Its Soundness

This section explains the elaboration of MetaFM programs into System Fω〈〉,
i.e., discusses the � e part of the rules in Figs. 3, 4, and 5.
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Taking the elaboration part into account, the judgment Γ �s E : τ � e
intuitively states that the core language expression E at stage s is translated
to the term e at stage s in System Fω〈〉, in addition to typing E. Basically the
same holds for the judgment Γ � M : ξ � e; it illustrates that the module M is
converted to the term e. What should be noted here is that the resulting terms
e of the module elaboration are at stage 0 in System Fω〈〉; through elaboration,
we virtually deal with modules as if they were at stage 0. In this sense, partic-
ularly, functor applications are resolved by stage-0 computation. Lastly, terms
e produced by judgments for signature subtyping such as Γ � Σ � Σ ′ � e are
intuitively “upcast functions” from the subtype to the supertype. This intuition is
justified afterwards by Theorem 3. For simplicity, in Figs. 3, 4, and 5, we assume
that source variables X can be injectively embedded into the target variables,
which is ranged over by x. The figures also use the following syntax sugars as
well as let-expressions and pack/unpack-expressions generalized for sequences,
the precise definitions of which are shown in Appendix:

e
×n := · · ·

︸︷︷︸

n

e · · ·
︸︷︷︸

n

∼

×ne := ∼ · · · ∼
︸ ︷︷ ︸

n

e τ
×n := · · ·

︸︷︷︸

n

τ · · ·
︸︷︷︸

n

We embed semantic signatures into System Fω〈〉 types by the following �−,
and use them for describing the rules and for proving type safety:

��τ�n := {val : τ} ×n ��= τ :: κ� := {type : ∀α :: κ → ∗. α τ → α τ}
�{|R|} := {�R} �{li �→ Ri}m

i=1 := {li �→ �Ri}m
i=1

�∀(αi ::κi)m
i=1. Σ → ξ := ∀α1::κ1. · · · ∀αm :: κm . �Σ → �ξ

�∃(αi ::κi)m
i=1. Σ := ∃α1::κ1. · · · ∃αm :: κm . �Σ �Γ , α::κ := �Γ, α :: κ

�Γ ,X : Σ := �Γ,X : �Σ0 �Γ , x : τs := �Γ, x : τs �• := •

The intuition for the elaboration rules involved in staging is fairly easy; leav-
ing types out of account, B-Val and E-Path convert bindings valn X = E and
variable occurrences X at stage n into let X = e

×n and ∼

×nX in essence,
respectively. The rule U-Val does similar things for building upcast functions.

Example 1. The elaboration translates Timestamp to the following in essence:

pack (int, {lt = {type = . . .}, lprecedes = {val = λts1. λts2. ts1 ≤ ts2} ,

. . . , lgen = {val = λts. . . .}}) as ∃α :: ∗. {lt : ��= α :: ∗�,
lprecedes : {val : α → α → bool} , . . . , lgen : {val : string → α }}

Although the translation above suffices for giving semantics that fulfills type
safety as shown by the theorems below, we do not assert that resulting terms are
evaluated in the same manner as programmers’ intuition on source programs.
This is a common downside of the elaboration approach, which defines semantics



An ML-Style Module System for Cross-Stage Type Abstraction in MSP 249

e
n−→ e

e
0−→ e

e ↑ n
0−→ e ↑ n

TE-StgApp
(Λσ. e) ↑ n

0−→ [n /σ]e
TE-StgBeta

γ s e : τ σ γ γ, σ 0 e : τ

γ 0 (Λσ. e) : ∀σ. τ
TT-StgAbs

γ 0 e : ∀σ. τ γ s

γ 0 e ↑ s : [s/σ]τ
TT-StgApp

σ ∈ γ γ n σ e : τ

γ n e σ : τ σ TT-BrktVar
σ ∈ γ γ n e : τ σ

γ n σ
∼

σe : τ
TT-EscVar

Fig. 8. Extension of System Fω〈〉 with stage polymorphism

only through translation2. Indeed, our translation sometimes causes a counterin-
tuitive evaluation order due to its naïveness; it does not bind identifiers to values
but to code fragments in general. This might be fine for typical items defined
by immediate values such as lambda abstractions, but some cases are essentially
unsatisfactory. For example, one may expect that val1 a = 1+2 computes 1+2
once and replaces all the occurrences of a with 3 at runtime, but this is not the
case; it replaces a with the expression 1 + 2 at compile-time. In a sense, value
items for stage ≥ 1 are used in a CBN-like manner. For the same reason, the
translation prevents the extension with features that have side effects, such as
mutable references3, in a straightforward manner. It may also enlarge the gener-
ated code and make it less performant since code fragments are copied to every
occurrence. Section 8 discusses possible improvements in the elaboration.

Nonetheless, we have the following theorems that prove that the elabora-
tion is sound in the sense that every produced term is well-typed (under some
moderate requirements for the core language; see Assumption 5 in Appendix).

Theorem 3 (Soundness of Signature Subtyping). If Γ � Σ � ∃b. Σ ′ ↑
(τi)m

i=1 � e and �Γ, b � �Σ ′ :: ∗, then �Γ �0 e : �Σ → �[τi/αi ]mi=1Σ
′ and

�Γ � τi :: κi for each i, where b = (αi ::κi)m
i=1.

Theorem 4 (Soundness of Elaboration).

1. Γ � T ::κ � τ implies �Γ � τ :: κ.
2. Γ �s E : τ � e implies �Γ �s e : τ .
3. Γ � P : Σ � e implies �Γ �0 e : �Σ.
4. Γ � D � ∃b. R (resp. Γ � D � ∃b. R) implies �Γ � �∃b. {|R|} :: ∗.
5. Γ � B : ∃b. R � e (resp. Γ � B : ∃b. R � e) implies �Γ �0 e : �∃b. {|R|}.
6. Γ � S � ξ implies �Γ � �ξ :: ∗. 7. Γ � M : ξ � e implies �Γ �0 e : �ξ.

2 One exception is Crary’s work [3]. It defines a target language as a superset of the
source language, and shows observational equivalence between source programs and
their corresponding target terms for the first time.

3 Note that mixing mutable references with staging is challenging by itself for another
reason; it easily causes the scope extrusion problem [2,18].
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7 Extension with Cross-Stage Persistence

As mentioned earlier in Sect. 1, we support cross-stage persistence (CSP) [13,33,
38] by the following binding (resp. declaration) form, which binds (resp. declares)
X as a value available at any stages n′ such that n′ ≥ n:

B ····= · · · | val≥n X = E D ····= · · · | val≥n X : T

To achieve this, we first extend System Fω〈〉 with stage variables σ:

s ····= n | n � σ e ····= · · · | Λσ. e | e ↑ s | e
σ | ∼

σe

v(0) ····= · · · | Λσ. e τ ····= · · · | ∀σ. τ | τ
σ

γ ····= · · · | γ, σ

Intuitively, stage variables work for “stage polymorphism” and can be instanti-
ated with an arbitrary natural number k. Stages s can newly be of the form
n � σ, which stands for any stages greater than or equal to n. Bracket e

σ

with a stage variable expresses arbitrarily nested brackets and is instantiated
to e

×k. We correspondingly have escape ∼

σe, which can be instantiated to
∼

×ke. Stage abstractions (Λσ. e) and stage applications e ↑ s perform general-
ization and instantiation of the stage variables, respectively. For typing, we use
stage-polymorphic types ∀σ. τ and persistent code types e

σ. Figure 8 displays
additional rules for extending System Fω〈〉 with the stage polymorphism. The
rule TT-BrktVar allows brackets with a stage variable σ to be used in “fixed”
stages n (as long as σ is valid in that scope), and expressions inside them are
regarded as being at “polymorphic” stages n�σ. TT-EscVar does the converse
by requiring persistent code types τ

σ to expressions inside escapes with σ. One
may see that stage variables are a minimal version of transition variables [13,34]
or environment classifiers [31]. We can keep the stage polymorphism minimal
here because we do not have to provide something like σ + σ′ for the elabora-
tion. Most importantly, adding these rules can be done without breaking the
type safety of System Fω〈〉, i.e., Theorems 1 and 2.

Now that the target language supports stage polymorphism, we can utilize
it to support CSP in MetaFM by extending rules as displayed in Fig. 9. Here,
we add a new semantic signature �τ�≥n for persistent value items that can be
embedded into System Fω〈〉 by using stage-polymorphic types, and Γ newly
tracks stage variables for the soundness of the expression elaboration:

Σ ····= · · · | �τ�≥n ��τ�≥n := ∀σ. {val : τ} ×n σ

Γ ····= · · · | Γ , σ �Γ , σ := �Γ, σ
An essential part of the extended rules lies in those for paths in expressions, i.e.,

E-Path, E-PersInNonpers, and E-PersInPers. These rules permit paths to
persistent values to occur at any expressions but prevent definitions of persistent
value items from depending on non-persistent ones in order for CSP to work
correctly, i.e., we do not allow expressions E of val≥n X = E to contain paths
to non-persistent values. Again, owing to such typing, we successfully extend
MetaFM with CSP without breaking the soundness shown by Theorems 3 and 4.
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Γ s E : τ e
Γ P : τ ≥n0 e n ≥ n0

Γ n P : τ (∼×n(e ↑ (n − n0)))#val
E-PersInNonPers

σ ∈ Γ Γ P : τ ≥n0 e n ≥ n0

Γ n σ P : τ (∼×n
∼

σ(e ↑ ((n − n0) σ)))#val
E-PersInPers

Γ B : ∃b. R e
σ Γ Γ , σ n σ E : τ e

Γ val≥n X = E : ∃ε. {lX τ ≥n} {lX = Λσ. {val = e} ×n σ}
B-ValPers

Γ D ∃b. R Γ T :: ∗ τ

Γ val≥n X : T ∃ε. {lX τ ≥n} D-ValPers

Γ Σ Σ e

Γ τ τ e n ≤ n0 e = ∼
×n0∼

σ (x ↑ ((n0 − n) σ ))

Γ τ ≥n τ ≥n0 λx : τ ≥n . Λσ . {val = e (e #val)} ×n0 σ
U-PersAsPers

Γ τ τ e n ≤ n0 e = ∼
×n0(x ↑ (n0 − n))

Γ τ ≥n τ n0 λx : τ ≥n . {val = e (e #val)} ×n0
U-PersAsNonPers

Fig. 9. Extension of MetaFM with cross-stage persistence

8 Future Work and Provisional Implementation

Though we have successfully given semantics to our language and proved its type
safety, several aspects can be improved further. To remedy the issues pointed out
in Sect. 6, we should desirably modify the translation about when to bind value
items. Possible solutions would be the following: (1) use the genlet primitive [17,
26] for performing let-insertion during code generation; or (2) define conversion
of programs into a flat list of bindings of the form valn x = e with functor
applications resolved, by using static interpretation (which is dubbed as SI here)
[1,8,9]. Because the former appears less suitable for proving type safety in that
it complicates formal semantics, we have been intensively studying the latter.
Our ongoing study is implying that mixing staging features with SI is fine, but
the soundness of SI itself seems not so well-established. Elsman [8] first showed
the soundness of SI for first-order functors, which is quite sufficient for typical
use cases, but it did not support higher-order ones. The SI for Futhark [9] claims
its support for higher-order ones, but it seems that its current mechanized proof
only covers functors assigned a signature of the form ∀ε. Σ → ∃ε. Σ ′ in essence.

Although its type safety has not yet been proved, we implemented a two-stage
version4 of MetaFM with an SI-based elaboration for SATYSFI [29]. SATYSFI
[28] is a statically-typed domain-specific language for typesetting documents
where commands for the markup, which are equivalent to control sequences in
LATEX like \section, can be implemented in an OCaml-like manner. Programs in
this language are basically functional, but mutable references are exceptionally

4 This is not due to some kind of limitation; just because providing two stages suffices
for most use cases. Indeed, very few realistic examples that use more than two stages
are known in the literature of multi-stage programming.
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used for numbering sections, for example. Because the module system incorpo-
rated in SATYSFI appears working fine with mutable references so far, we believe
that the SI approach is promising for solving the binding-time issue.

9 Conclusion

We have proposed MetaFM, a module system for decomposing multi-stage pro-
grams into loosely coupled components without breaking type abstraction, by
defining semantics and proving its type safety through an elaboration to Sys-
tem Fω〈〉. It supports several important features such as sealing, functors, higher-
kinded types, or CSP. Further improvements on the elaboration are nonetheless
desirable for real-world use, which can probably be done by static interpretation.

Acknowledgments. We thank the anonymous referees for a number of helpful sugges-
tions. This work is supported in part by JSPS KAKENHI Grant Number JP20H00582.

A An Example Elaboration Involving CSP

Example 2. Consider the following structure:

struct

val≥0 compare i j = j − i

val≥1 equal i j = (compare i j = 0)

end

This will be translated to the following target term:

let x1 = {lcompare = Λσ1. {val = λi. λj. j − i} σ1} in

let x2 =

let compare = x1#lcompare in

{lequal = Λσ2. {val = λi. λj. (∼∼

σ2(compare ↑ (1 � σ2)))#val i j = 0} σ2}
in

{lcompare = x1#lcompare, lequal = x2#lequal}

B Complete Definitions

This section displays definitions including ones omitted from the text.

– Figure 10: Module elaboration rules (other than the ones for CSP)
– Figure 11: Signature elaboration rules (other than the ones for CSP)
– Figure 12: Signature subtyping rules (other than the ones for CSP)
– Figure 13: Syntax sugars for System Fω〈〉 terms used in elaboration rules
– Figure 14: Typing rules for System Fω〈〉 (without CSP)
– Figure 15: Operational semantics of System Fω〈〉 (without CSP)
– Figure 16: Well-formedness, kinding, and type equivalence in System Fω〈〉
– Figure 17: Type-level parallel reduction relation for System Fω〈〉 types
– Figure 18: Miscellaneous definitions
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Γ M : ξ e
Γ B : ∃b. R e

Γ struct B end : ∃b. {|R|} e
M-Str

Γ (X) = Σ
Γ X : ∃ε. Σ X

M-Var
Γ M : ∃b. {|R|} e R(lX) = Σ

Γ M.X : ∃b. Σ e#lX
M-Mem

Γ S1 ∃b. Σ1 Γ , b, X : Σ1 M2 : ξ2 e2

Γ fun(X : S1) → M2 : ∃ε. ∀b. Σ1 → ξ2 λX : Σ1 . e2
M-Fun

Γ (X1) = ∀b1. Σ1 → ξ1 Γ (X2) = Σ2

b1 = (αi :: κi)m
i=1 Γ Σ2 ∃b1. Σ1 ↑ (τi)m

i=1 e0

Γ X1 X2 : [τm/αm ] · · · [τ1/α1]ξ X1 τ1 · · · τm (e0 X2)
M-App

Γ (X1) = Σ1 Γ S2 ξ2 Γ Σ1 ξ2 ↑ τ e0

Γ (X1 :> S2) : ξ2 pack (τ , e0 X1) as ξ2
M-Seal

Γ B : ∃b. R e Γ ε : ∃ε. ∅ {} Bs-Nil

Γ B1 : ∃b1. R1 e1 Γ , b1, R1 B2 : ∃b2. R2 e2
dom b1 ∩ domtv Γ = ∅ dom b2 ∩ dom b1 = ∅ b1 · b2 = b = (αi :: κi)m

i=1

r̂ = {lX x1#lX | lX ∈ dom R1} + {lX x2#lX | lX ∈ dom R2}
Γ B1 · B2 : ∃b. R unpack (b1, x1 : R1 ) = e1 in

unpack (b2, x2 : R2 ) =

let {X : Σ = x1#lX | (lX Σ) ∈ R1} in e2 in

pack ((αi)m
i=1, {r̂}) as b. {|R1 + R2

Bs-Cons

Γ B : ∃b. R e
Γ M : ∃b. {|R|} e

Γ include M : ∃b. R e
B-Incl

Γ n E : τ e

Γ valn X = E : ∃ε. {lX τ n} {lX = {val = e} ×n}
B-Val

Γ T :: κ τ e = Λα :: κ → ∗. λx : α τ. x

Γ type X = T : ∃ε. {lX = τ :: κ } {lX = {type = e}} B-Type

Γ M : ∃b. Σ e

Γ module X = M : ∃b. {lX Σ} {lX = e} B-Mod

Fig. 10. Module elaboration rules (other than the ones for CSP)
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Γ S ξ

Γ D ∃b. R

Γ sig D end ∃b. {|R|} S-Str

Γ S1 ∃b. Σ1

Γ , b, X : Σ1 S2 ξ2

Γ (X : S1) → S2 ∃ε. ∀b. Σ1 → ξ2
S-Fun

Γ S ∃(b1 · (α :: κ) · b2). Σ Σ(X) = = α :: κ Γ T :: κ τ

Γ S with type X = T ∃(b1 · b2). [τ/α]Σ
S-With

Γ D ∃b. R

Γ ε ∃ε. ∅
Ds-Nil

Γ D1 ∃b1. R1 dom b1 ∩ domtv Γ = ∅

Γ , b1, R1 D2 ∃b2. R2

dom b2 ∩ dom b1 = ∅ dom R1 ∩ dom R2 = ∅

Γ D1 · D2 ∃(b1 · b2). R1 R2

Ds-Cons

Γ D ∃b. R Γ S ∃b. Σ
Γ module X : S ∃b. {lX Σ} D-Mod

Γ T :: ∗ τ

Γ valn X : T ∃ε. {lX τ n} D-Val
Γ S ∃b. {|R|}

Γ include S ∃b. R
D-Incl

Γ K κ

Γ type X :: K ∃(α :: κ). {lX = α :: κ } D-Type

Fig. 11. Signature elaboration rules (other than the ones for CSP)

Γ Σ ξ ↑ τ e b = (αi :: κi)m
i=1 Γ τi :: κi (for each i)

Γ Σ [τi/αi ]mi=1Σ e

Γ Σ ∃b. Σ ↑ (τi)m
i=1 e

U-Match

Γ Σ Σ e ∀l ∈ dom R . Γ R(l) R (l) el

r̂ = {l el (x#l) | l ∈ dom R }
Γ {|R|} {|R |} λx : |R . {r̂} U-Str

Γ τ τ e

Γ τ n τ n λx : {val : τ} ×n. {val = e ((∼×nx)#val)} ×n
U-Val

τ ≡ τ

Γ = τ :: κ = τ :: κ λx : = τ :: κ . x
U-Type

domtv Γ ∩ dom b = ∅ Γ , b Σ ∃b. Σ ↑ (τi)m
i=1 e1

b = (αi :: κi)m
i=1 Γ , b [τi/αi ]mi=1ξ ξ e2 τ = b. Σ → ξ

Γ ∀b. Σ → ξ ∀b . Σ → ξ λx : τ . λx : Σ . e2 (x τ1 · · · τm (e1 x))
U-Fun

Γ ξ ξ e

ξ = ∃b. Σ domtv Γ ∩ dom b = ∅ Γ , b Σ ξ ↑ τ e

Γ ξ ξ λx : ξ . unpack (b, x : Σ ) = x in pack (τ , e x ) as ξ
U-Abs

Fig. 12. Signature subtyping rules (other than the ones for CSP)
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e ×n :=

n

e

n

∼
×ne := ∼ · · · ∼

n

e

pack (ε, e) as τ := e (let x : τ = e in e ) := (λx : τ. e ) e

pack (τ · τ , e) as ∃α :: κ. τ := pack (τ,pack (τ , e) as τ ) as ∃α :: κ. τ

(let {xi : τi = ei}m
i=1 in e ) := let x1 : τ1 = e1 in · · · let xm : τm = em in e

(in arbitrary order; where xi fv(ej ) for each i and j)

(unpack (b, x : τ) = e in e ) := unpack (α, x ) = e in unpack (b , x : τ) = x in e
(where b = (α :: κ) · b , and x fv(e ))

(unpack (ε, x : τ) = e in e ) := let x : τ = e in e

Fig. 13. Syntax sugars for System Fω〈〉 terms used in elaboration rules

γ s e : τ γ s+1 e : τ

γ s e : τ
TT-Brkt

γ s e : τ

γ s+1
∼e : τ

TT-Esc

γ s e : τ τ ≡ τ γ τ :: ∗
γ s e : τ

TT-TEq
γ γ(x) = τs

γ s x : τ
TT-Var

γ, x : τs s e : τ

γ s (λx : τ. e) : τ → τ
TT-Abs

γ s e1 : τ → τ γ s e2 : τ

γ s e1 e2 : τ
TT-App

γ s ei : τi (for each i)
γ s {l1 = e1, . . . , lm = em} : {l1 : τ1, . . . , lm : τm} TT-Rcd

γ s e : {r}
γ s e#l : r(l)

TT-Prj

α domtv γ γ, α :: κ s e : τ

γ s (Λα :: κ. e) : ∀α :: κ. τ
TT-TAbs

γ s e : ∀α :: κ. τ γ τ :: κ

γ s e τ : [τ/α]τ
TT-TApp

γ τ :: κ γ 0 e : [τ/α]τ γ (∃α :: κ. τ ) :: ∗
γ 0 (pack (τ, e) as ∃α :: κ. τ ) : ∃α :: κ. τ

TT-Pack

γ 0 e1 : ∃α :: κ. τ γ, α :: κ, x : τ0 0 e2 : τ2 γ τ2 :: ∗
γ 0 unpack (α, x) = e1 in e2 : τ2

TT-Unpack

Fig. 14. Typing rules for System Fω〈〉 (without CSP)
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e
n−→ e e

n+1−→ e

λx : τ. e
n+1−→ λx : τ. e

TE-Abs
e

n+1−→ e

Λα :: κ. e
n+1−→ Λα :: κ. e

TE-TAbs

e1
n−→ e1

e1 e2
n−→ e1 e2

TE-App1
e2

n−→ e2

v
(n)
1 e2

n−→ v
(n)
1 e2

TE-App2
e

n−→ e

e τ
n−→ e τ

TE-TApp

(λx : τ. e) v(0) 0−→ [v(0)/x]e
TE-Beta

(Λα :: κ. e) τ
0−→ [τ/α]e

TE-TBeta

ei
n−→ ei

{l1 = v
(n)
1 , . . . , li−1 = v

(n)
i−1, li = ei , li+1 = v

(n)
i+1, . . . , lm = v(n)

m }
n−→ {l1 = v

(n)
1 , . . . , li−1 = v

(n)
i−1, li = ei , li+1 = v

(n)
i+1, . . . , lm = v(n)

m }

TE-Rcd

e
n−→ e

e#l
n−→ e #l

TE-Prj1
{l1 = v

(0)
1 , . . . , lm = v

(0)
m }#li

0−→ v
(0)
i

TE-Prj2

e
0−→ e

pack (τ, e) as τ
0−→ pack (τ, e ) as τ

TE-Pack

e1
0−→ e1

unpack (α, x) = e1 in e2
0−→ unpack (α, x) = e1 in e2

TE-Unpack1

unpack (α, x) = pack (τ, v(0)) as τ in e2
0−→ [v(0)/x][τ/α]e2

TE-Unpack2

e
n+1−→ e

e
n−→ e

TE-Brkt
e

n−→ e

∼e
n+1−→ ∼e

TE-Esc1
∼ v(1) 1−→ v(1)

TE-Esc2

Fig. 15. Operational semantics of System Fω〈〉 (without CSP)
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γ
•

γ α domtv γ

γ, α :: κ

γ τ :: ∗
γ, x : τs

γ σ γ

γ, σ

γ τ :: κ
γ, α :: κ τ :: κ

γ (Λα :: κ. τ) :: κ → κ

γ τ1 :: κ → κ γ τ2 :: κ

γ τ1 τ2 :: κ

γ γ(x) = κ

γ α :: κ

γ τ1 :: ∗ γ τ2 :: ∗
γ τ1 → τ2 :: ∗

γ τ :: ∗
γ τ :: ∗ TK-Code

γ τi :: ∗ (for each i)
γ {l1 : τ1, . . . , lm : τm} :: ∗

γ, α :: κ τ :: ∗
γ (∃α :: κ. τ) :: ∗

γ, α :: κ τ :: ∗
γ (∀α :: κ. τ) :: ∗

σ γ γ, σ τ :: ∗
γ (∀σ. τ) :: ∗ TK-StgPoly

σ ∈ γ γ τ :: ∗
γ τ σ :: ∗ TK-PersCode

τ ≡ τ
τ ≡ τ

τ1 ≡ τ2

τ2 ≡ τ1

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τ1 ≡ τ1 τ2 ≡ τ2

τ1 → τ1 ≡ τ2 → τ2

τ ≡ τ

Λα :: κ. τ ≡ Λα :: κ. τ

τ1 ≡ τ1 τ2 ≡ τ2

τ1 τ2 ≡ τ1 τ2 (Λα :: κ. τ ) τ ≡ [τ/α]τ

α ftv(τ)
Λα :: κ. τ α ≡ τ

dom r = dom r ∀l ∈ dom r. r(l) ≡ r (l)
{r} ≡ {r }

τ ≡ τ

τ σ ≡ τ σ

τ ≡ τ

∃α :: κ. τ ≡ ∃α :: κ. τ

τ ≡ τ

∀α :: κ. τ ≡ ∀α :: κ. τ

τ ≡ τ

τ ≡ τ

τ ≡ τ

∀σ. τ ≡ ∀σ. τ

Fig. 16. Well-formedness, kinding, and type equivalence in System Fω〈〉

τ τ
τ τ

τ τ

Λα :: κ. τ Λα :: κ. τ

τ1 τ1 τ2 τ2

τ1 τ2 τ2 τ2

τ1 τ1 τ2 τ2

(Λα :: κ. τ1) τ2 [τ2/α]τ1

τ1 τ1 τ2 τ2

τ1 → τ2 τ2 → τ2

dom r = dom r ∀l ∈ dom r. r(l) r (l)
{r} {r }

τ τ

∀σ. τ ∀σ. τ

τ τ

τ σ τ σ

τ τ

∀α :: κ. τ ∀α :: κ. τ

τ τ

∃α :: κ. τ ∃α :: κ. τ

τ τ

τ τ

Fig. 17. Type-level parallel reduction relation for System Fω〈〉 types
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Σ(X) Σ(X · X) := (Σ(X))(X)

{|R|}(X) := R(lX)

dom b dom ε := ∅

dom((α :: κ) · b) := {α dom b

domtv Γ

domtv(Γ , X : Σ) := domtv Γ

domtv(Γ , α :: κ) := (domtv Γ ) α}
domtv(Γ , x : τs) := domtv Γ

domtv(Γ , σ) := domtv Γ

domtv • := ∅

Γ , b = Γ Γ , ε := Γ

Γ , ((α :: κ) · b) := (Γ , α :: κ), b

γ1, γ2 = γ

γ1, • := γ1

γ1, (γ2, x : τs) := (γ1, γ2), x : τs

γ1, (γ2, α :: κ) := (γ1, γ2), α :: κ

γ1, (γ2, σ) := (γ1, γ2), σ

fsv(τ) (selected)

fsv( τ σ) := fsv(τ) ∪ {σ}
fsv(∀σ. τ) := fsv(τ) \ {σ}

fsv(τ1 → τ2) = fsv(τ1) ∪ fsv(τ2)

γ s
γ n

σ ∈ γ

γ n σ

Γ (X)

(Γ , X : Σ)(X) :=
Σ (if X = X)
Γ (X) (if X = X)

(Γ , α :: κ)(X) := Γ (X)

(Γ , x : τn)(X) := Γ (X)

(Γ , σ)(X) := Γ (X)

[s /σ]e (selected)

[s /σ] e σ := [s /σ]e σ (if σ = σ)

[n/σ] e σ := [s /σ]e ×n

[n σ /σ] e σ := [n σ /σ]e ×n σ

[s /σ](∼σ e) := ∼
σ [s /σ]e (if σ = σ)

[n/σ](∼σe) := ∼
×n[n/σ]e

[n σ /σ](∼σe) := ∼
×n

∼
σ [n σ /σ]e

[s /σ](Λσ . e) := Λσ . [s /σ]e (if σ = σ)

[s /σ]τ (selected)

[s /σ] τ σ := τ σ (if σ = σ)

[n/σ] τ σ := τ ×n

[n σ /σ] τ σ := τ ×n σ

[s /σ](∀σ . τ) := ∀σ . [s /σ]τ (if σ = σ)

[s /σ]s [s /σ]n := n

[s /σ](n σ ) := n σ (if σ = σ)

[s /σ](n σ) := s + n

s + k
n + k := (n + k) (where the last n + k is a meta-level integer addition)

(n σ) + k := (n + k) σ (where n + k is a meta-level integer addition)

σ ∈ γ
σ ∈ γ

σ ∈ γ, x : τs

σ ∈ γ

σ ∈ γ, α :: κ σ ∈ γ, σ

σ = σ σ ∈ γ

σ ∈ γ, σ

Γ , R = Γ Γ , ∅ := Γ

Γ , ({lX Σ} R) := (Γ , X : Σ), R (in arbitrary order)

f1 + f2 = f f1 + f2 := {x f1(x) | x ∈ dom f1 \ dom f2} f2

Fig. 18. Miscellaneous definitions
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C Proofs for Target Type Safety

Lemma 1 (Substitution of terms). If γ, x : (τ ′)s′
, γ′ �s e : τ and γ �s′

e′ :
τ ′, then γ, γ′ �s [e′/x]e : τ .

Proof. By straightforward induction on the derivation of γ, x : (τ ′)s′
, γ′ �s e : τ .

Lemma 2. (Substitution of types).

1. If γ, α :: κ′, γ′ � τ :: κ and γ � τ ′ :: κ′, then γ, [τ ′/α]γ′ � [τ ′/α]τ :: κ.
2. τ1 ≡ τ2 implies [τ ′/α]τ1 ≡ [τ ′/α]τ2.
3. If γ, α :: κ′, γ′ �s e : τ and γ � τ ′ :: κ′, then γ, [τ ′/α]γ′ �s [τ ′/α]e : τ .

Proof. By straightforward induction on the derivation of γ, α :: κ′, γ′ � τ :: κ,
τ1 ≡ τ2, and γ, α :: κ′, γ′ �s e : τ , respectively.

Lemma 3 (Substitution of stages).

1. If γ, σ, γ′ � s and γ � s′, then γ, [s′/σ]γ′ � [s′/σ]s.
2. τ1 ≡ τ2 implies [s′/σ]τ1 ≡ [s′/σ]τ2.
3. If γ, σ, γ′ � τ :: κ and γ � s′, then γ, [s′/σ]γ′ � [s′/σ]τ :: κ.
4. If γ, σ, γ′ �s e : τ and γ � s′, then γ, [s′/σ]γ′ �[s′/σ]s [s′/σ]e : [s′/σ]τ .

Proof. 1. By a case analysis on s and s′.
– Case s = n: Trivially holds.
– Case s = n � σ′ and σ′ �= σ: Easy.
– Case s = n � σ:

• Case s′ = n′: We have [s′/σ]s = (n+n′), which makes the goal trivial.
• Case s′ = n′ � σ′: By γ � s′, we have σ′ ∈ γ. Since [s′/σ]s = (n +

n′) � σ′, we clearly have γ, [s′/σ]γ′ � [s′/σ]s.
2. By straightforward induction on the derivation of τ1 ≡ τ2.
3. By induction on the derivation of γ, σ, γ′ � τ :: κ.

– Case
σ′ �∈ γ, σ, γ′ γ, σ, γ′, σ′ � τ ′ :: ∗

γ, σ, γ′ � ∀σ′. τ ′ :: ∗ TK-StgPoly: By IH, we first have

γ, [s′/σ](γ′, σ′) � [s′/σ]τ ′ :: ∗, namely γ, [s′/σ]γ′, σ′ � [s′/σ]τ ′ :: ∗ by

σ �= σ′. This derives
γ, [s′/σ]γ′, σ′ � [s′/σ]τ ′ :: ∗

γ, [s′/σ]γ′ � ∀σ′. [s′/σ]τ ′ :: ∗ TK-StgPoly.

– Case
σ′ ∈ γ, σ, γ′ γ, σ, γ′ � τ ′ :: ∗

γ, σ, γ′ � τ ′ σ′
:: ∗

TK-PersCode: By IH for γ, σ, γ′ �

τ ′ :: ∗, we have γ, [s′/σ]γ′ � [s′/σ]τ ′ :: ∗.
• Case where σ′ �= σ: Since [s′/σ] τ ′ σ′

= [s′/σ]τ ′ σ′
and either γ or γ′

contains σ′, we can derive:
σ′ ∈ γ, [s′/σ]γ′ γ, [s′/σ]γ′ � τ ′ :: ∗

γ, [s′/σ]γ′ � [s′/σ] τ ′ σ′
:: ∗

TK-PersCode.

• Case where σ′ = σ and s′ = n: We have [s′/σ] τ ′ σ′
= [s′/σ]τ ′ ×n,

and we can clearly derive γ, [s′/σ]γ′ � [s′/σ]τ ′ ×n :: ∗ by repeatedly
applying TK-Code.
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• Case where σ′ = σ and s′ = n � σ′′: We have [s′/σ] τ ′ σ′
=

[s′/σ]τ ′ ×n σ′′
and can derive γ, [s′/σ]γ′ � [s′/σ]τ ′ ×n :: ∗ in the

same manner as the previous case. Since we have σ′′ ∈ γ by γ � s′,
we can derive:

σ′′ ∈ γ, [s′/σ]γ′ γ, [s′/σ]γ′ � [s′/σ]τ ′ ×n :: ∗
γ, [s′/σ]γ′ � [s′/σ]τ ′ ×n σ′′

:: ∗
TK-PersCode.

– The other cases are straightforward.
4. By induction on the derivation of γ, σ, γ′ �s e : τ .

– Case
σ′ �∈ γ, σ, γ′ γ, σ, γ′, σ′ �0 e′ : τ ′

γ, σ, γ′ �0 (Λσ′. e′) : ∀σ′. τ ′ TT-StgAbs: By IH, we first have

γ, [s′/σ](γ′, σ′) �0 [s′/σ]e′ : [s′/σ]τ ′, namely γ, [s′/σ]γ′, σ′ �0 [s′/σ]e′ :
[s′/σ]τ ′ by σ �= σ′. This enables us to derive:

σ′ �∈ γ, [s′/σ]γ′ γ, [s′/σ]γ′, σ′ �0 [s′/σ]e′ : [s′/σ]τ ′

γ, [s′/σ]γ′ �0 [s′/σ](Λσ′. e′) : [s′/σ](∀σ′. τ ′)
TT-StgAbs.

– Case
γ, σ, γ′ �0 e1 : ∀σ1. τ1 γ, σ, γ′ � s2

γ, σ, γ′ �0 e1 ↑ s2 : [s2/σ1]τ1
TT-StgApp: By IH, we have

γ, [s′/σ]γ′ �0 [s′/σ]e1 : [s′/σ](∀σ1. τ1). We can assume σ1 �= σ w.l.o.g.
here, and thus have [s′/σ](∀σ1. τ1) = ∀σ1. [s′/σ]τ1. By 1, from γ, σ, γ′ �
s2, we have γ, [s′/σ]γ′ � [s′/σ]s2. Therefore, we can derive:
γ, [s′/σ]γ′ �0 [s′/σ]e1 : ∀σ1. [s′/σ]τ1 γ, [s′/σ]γ′ � [s′/σ]s2

γ, [s′/σ]γ′ �0 ([s′/σ]e1) ↑ ([s′/σ]s2) : [[s′/σ]s2/σ1][s′/σ]τ1
TT-StgApp,

i.e., we have γ, [s′/σ]γ′ �0 [s′/σ](e1 ↑ s2) : [s′/σ]([s2/σ1]τ1).

– Case
σ′ ∈ γ, σ, γ′ γ, σ, γ′ �n�σ′

e′ : τ ′

γ, σ, γ′ �n e′ σ′
: τ ′ σ′ TT-BrktVar: By IH, we have

γ, [s′/σ]γ′ �[s′/σ](n�σ′) [s′/σ]e′ : [s′/σ]τ ′.
• Case σ′ �= σ: Since [s′/σ](n � σ′) = n � σ′ and either γ or γ′ contains

σ′, we can derive:
σ′ ∈ γ, [s′/σ]γ′ γ, [s′/σ]γ′ �n�σ′

[s′/σ]e′ : [s′/σ]τ ′

γ, [s′/σ]γ′ �n [s′/σ]e′ σ′
: [s′/σ]τ ′ σ′ TT-BrktVar,

i.e., we have γ, [s′/σ]γ′ �n [s′/σ] e′ σ′
: [s′/σ] τ ′ σ′

.
• Case σ′ = σ and s′ = n′: We have [s′/σ](n � σ′) = (n + n′), and thus

by repeatedly applying TT-Brkt, we can derive:
γ, [n′/σ]γ′ �n+n′

[n′/σ]e′ : [n′/σ]τ ′
TT-Brkt

...
TT-Brkt

γ, [n′/σ]γ′ �n [n′/σ]e′ ×n′
: [n′/σ]τ ′ ×n′

,

i.e., we have γ, [n′/σ]γ′ �[s′/σ]n [n′/σ] e′ σ′
: [n′/σ] τ ′ σ′

.
• Case σ′ = σ and s′ = n′ �σ′′: We have [s′/σ](n�σ′) = (n+n′)�σ′′,

and we can derive γ, [s′/σ]γ′ �n�σ′′
[s′/σ]e′ ×n′

: [s′/σ]τ ′ ×n′
in the

same way as the previous case. Since σ′′ ∈ γ holds by γ � s′, we can
further derive:
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σ′′ ∈ γ, [s′/σ]γ′

γ, [s′/σ]γ′ �n�σ′′
[s′/σ]e′ ×n′

: [s′/σ]τ ′ ×n′

γ, [s′/σ]γ′ �n [s′/σ]e′ ×n′ σ′′
: [s′/σ]τ ′ ×n′ σ′′ TT-BrktVar,

i.e., we have γ, [s′/σ]γ′ �[s′/σ]n [s′/σ] e′ σ′
: [s′/σ] τ ′ σ′

.

– Case
σ′ ∈ γ, σ, γ′ γ, σ, γ′ �n e′ : τ

σ′

γ, σ, γ′ �n�σ′
∼

σ′
e′ : τ

TT-EscVar: By IH, we first have

γ, [s′/σ]γ′ �n [s′/σ]e′ : [s′/σ] τ
σ′

.
• Case σ′ �= σ: Since [s′/σ] τ

σ′
= [s′/σ]τ σ′

, we can derive:
γ, [s′/σ]γ′ �n [s′/σ]e′ : [s′/σ]τ σ′

γ, [s′/σ]γ′ �n�σ′
∼

σ′
[s′/σ]e′ : [s′/σ]τ

TT-EscVar.

• Case σ′ = σ and s′ = n′: We have [s′/σ] τ
σ′

= [n′/σ]τ ×n′
, and this

enables us to derive:
γ, [n′/σ]γ′ �n [n′/σ]e′ : [n′/σ]τ ×n′

TT-Esc

...
TT-Esc

γ, [n′/σ]γ′ �n+n′
∼

×n′
[n′/σ]e′ : [n′/σ]τ

,

i.e., we have γ, [s′/σ]γ′ �[s′/σ](n�σ′) [s′/σ](∼σ′
e′) : [s′/σ]τ .

• Case σ′ = σ and s′ = n′ �σ′′: We have [s′/σ] τ
σ′

= [n′/σ]τ ×n′ σ′′
.

Since we have σ′′ ∈ γ by γ � s′, we can derive:

σ′′ ∈ γ, [s′/σ]γ′ γ, [s′/σ]γ′ �n [s′/σ]e′ : [n′/σ]τ ×n′ σ′′

TT-EscVar

γ, [s′/σ]γ′ �n�σ′′
∼

σ′′
[s′/σ]e′ : [n′/σ]τ ×n′

TT-Esc

...
TT-Esc

γ, [s′/σ]γ′ �(n+n′)�σ′′
∼

×n′
∼

σ′′
[s′/σ]e′ : [n′/σ]τ

i.e., we have γ, [s′/σ]γ′ �[s′/σ](n�σ′) [s′/σ](∼σ′
e′) : [s′/σ]τ .

– Case
γ, σ, γ′ �s e : τ ′ τ ≡ τ ′ γ, σ, γ′ � τ :: ∗

γ, σ, γ′ �s e : τ
TT-TEq: By IH, we

have γ, [s′/σ]γ′ �[s′/σ]s [s′/σ]e : [s′/σ]τ ′. By 2 and 3, we also have
[s′/σ]τ ≡ [s′/σ]τ ′ and γ, [s′/σ]γ′ � [s′/σ]τ :: ∗, respectively. Therefore,
we can derive:

γ, [s′/σ]γ′ �[s′/σ]s [s′/σ]e : [s′/σ]τ ′ [s′/σ]τ ≡ [s′/σ]τ ′

γ, [s′/σ]γ′ � [s′/σ]τ :: ∗
γ, [s′/σ]γ′ �[s′/σ]s [s′/σ]e : [s′/σ]τ

TT-TEq.

– The other cases are straightforward.

Lemma 4 (Equivalence of the two equivalences). τ1 ≡ τ2 iff τ1 ��∗ τ2.

Proof. Mostly the same as Lemma 30.3.5 of [22].

Lemma 5. τ1 � τ ′
1 implies [τ1/α]τ � [τ ′

1/α]τ .

Proof. By induction on the structure of τ .
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Lemma 6. If τ1 � τ ′
1 and τ2 � τ ′

2, then [τ1/α]τ2 � [τ ′
1/α]τ ′

2.

Proof. Do the same thing as Lemma 30.3.7 of [22] by using Lemma 5.

Lemma 7 (One-step diamond property). If τ � τ1 and τ � τ2, then there
exists τ ′ such that τ1 � τ ′ and τ2 � τ ′.

Proof. By induction on the derivation of τ � τ1.

– Case
τ ′
1 � τ ′′

1 τ ′
2 � τ ′′

2

(Λα :: κ. τ ′
1) τ ′

2 � [τ ′′
2 /α]τ ′′

1

: The last rule for deriving τ � τ2 is one of

the following:
• Case

τ � τ
is trivial.

• Case
τ ′
1 � τ ′′′

1 τ ′
2 � τ ′′′

2

(Λα :: κ. τ ′
1) τ ′

2 � [τ ′′′
2 /α]τ ′′′

1

: By IH, there exist τ ′′′′
1 and τ ′′′′

2 such

that τ ′′
1 � τ ′′′′

1 , τ ′′′
1 � τ ′′′′

1 , τ ′′
2 � τ ′′′′

2 , and τ ′′′
2 � τ ′′′′

2 . Therefore, by
Lemma 6, we have [τ ′′

2 /α]τ ′′
1 � [τ ′′′′

2 /α]τ ′′′′
1 and [τ ′′′

2 /α]τ ′′′
1 � [τ ′′′′

2 /α]τ ′′′′
1 .

• Case
(Λα :: κ. τ ′

1) � τ0 τ ′
2 � τ ′′′

2

(Λα :: κ. τ ′
1) τ ′

2 � τ0 τ ′′′
2

: By IH, from τ ′
2 � τ ′′

2 and τ ′
2 � τ ′′′

2 ,

there exists τ ′′′′
2 such that τ ′′

2 � τ ′′′′
2 and τ ′′′

2 � τ ′′′′
2 . The last rule for

deriving (Λα :: κ. τ ′
1) � τ0 is either of the following:

* Case
Λα :: κ. τ ′

1 � Λα :: κ. τ ′
1

: Since τ0 = Λα :: κ. τ ′
1, we can derive

τ ′
1 � τ ′′

1 τ ′′′
2 � τ ′′′′

2

τ0 τ ′′′
2 � [τ ′′′′

2 /α]τ ′′
1

and, at the same time, have [τ ′′
2 /α]τ ′′

1 �

[τ ′′′′
2 /α]τ ′′

1 by Lemma 5 and τ ′′
2 � τ ′′′′

2 .

* Case
τ ′
1 � τ ′′′

1

Λα :: κ. τ ′
1 � Λα :: κ. τ ′′′

1

: By IH, from τ ′
1 � τ ′′

1 and τ ′
1 � τ ′′′

1 ,

there exists τ ′′′′
1 such that τ ′′

1 � τ ′′′′
1 and τ ′′′

1 � τ ′′′′
1 . Since τ0 =

Λα :: κ. τ ′′′
1 , we can derive

τ ′′′
1 � τ ′′′′

1 τ ′′′
2 � τ ′′′′

2

τ0 τ ′′′
2 � [τ ′′′′

2 /α]τ ′′′′
1

and, at the same

time, have [τ ′′′
2 /α]τ ′′′

1 � [τ ′′′′
2 /α]τ ′′′′

1 by Lemma 6, τ ′′′
1 � τ ′′′′

1 , and
τ ′′′
2 � τ ′′′′

2 .

The other cases are more straightforward.

Lemma 8 (Confluence). If τ �∗ τ1 and τ �∗ τ2, then there exists τ ′ such
that τ1 �∗ τ ′ and τ2 �∗ τ ′.

Proof. By repeated use of Lemma 7.

Lemma 9. If τ1 ��∗ τ2, then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′.

Proof. By induction on the “length” of τ1 ��∗ τ2.

– Case τ1 = τ2 trivially holds by τ ′ := τ1.
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– Case τ1 � τ0 and τ0 ��∗ τ2 (where � means the transposition of �): By
IH, there exists τ ′′ such that τ0 �∗ τ ′′ and τ2 �∗ τ ′′. By Lemma 8, from
τ0 � τ and τ0 �∗ τ ′′, there exists τ ′ such that τ �∗ τ ′ and τ ′′ �∗ τ ′. By
transitivity, from τ2 �∗ τ ′′ and τ ′′ �∗ τ ′, we have τ2 �∗ τ ′. Thus, both
τ1 �∗ τ ′ and τ2 �∗ τ ′ hold.

– Case τ1 � τ0 and τ0 ��∗ τ2: Again, there exists τ ′ such that τ0 �∗ τ ′ and
τ2 �∗ τ ′ by IH. Then, by transitivity, from τ1 � τ0 and τ0 �∗ τ ′, we also
have τ1 �∗ τ ′.

Corollary 1. If τ1 ≡ τ2, then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′.

Proof. Immediate from Lemma 4 and Lemma 9.

Lemma 10 (Preservation of forms by reduction on types).

1. If τ1 → τ2 �∗ τ ′, then there exist τ ′
1 and τ ′

2 such that τ ′ = τ ′
1 → τ ′

2, τ1 �∗ τ ′
1,

and τ2 �∗ τ ′
2.

2. If ∀α :: κ. τ1 �∗ τ ′, then there exists τ ′
1 such that τ ′ = ∀α :: κ. τ ′

1 and
τ1 �∗ τ ′

1.
3. If ∃α :: κ. τ1 �∗ τ ′, then there exists τ ′

1 such that τ ′ = ∃α :: κ. τ ′
1 and

τ1 �∗ τ ′
1.

4. If {l1 : τ1, . . . , lm : τm} �∗ τ ′, then there exist τ ′
1, . . . , τ

′
m such that τ ′ = {l1 :

τ ′
1, . . . , lm : τ ′

m} and τi �∗ τ ′
i for each i.

5. If τ1 �∗ τ ′, then there exists τ ′
1 such that τ ′ = τ ′

1 and τ1 �∗ τ ′
1.

Proof. By straightforward induction on the “length” of reduction sequences.

Lemma 11 (Inversion).

1. If γ �s (λx : τ1. e) : τ , τ ≡ τ ′
1 → τ ′

2, and γ � τ ′
1 → τ ′

2 :: ∗, then we have
τ1 ≡ τ ′

1, γ, x : τs
1 �s e : τ ′

2, and γ � τ1 :: ∗.
2. If γ �s (Λα :: κ. e) : τ , τ ≡ ∀α :: κ′. τ ′, and γ � (∀α :: κ′. τ ′) :: ∗, then we

have κ = κ′ and γ, α :: κ �s e : τ ′.
3. If γ �0 (pack (τ1, e) as τ2) : τ , τ ≡ ∃α :: κ. τ ′

1, and γ � (∃α :: κ. τ ′
1) :: ∗,

then we have τ ≡ τ2, γ � τ1 :: ∗, and γ �0 e : [τ1/α]τ ′
1.

4. If γ �s {l1 = e1, . . . , lm = em} : τ , τ ≡ {l1 : τ ′
1, . . . , lm : τ ′

m}, and γ � {l1 :
τ ′
1, . . . , lm : τ ′

m} :: ∗, then, for each i ∈ {1, . . . , m}, we have γ �s ei : τ ′
i .

5. If γ �s e : τ , τ ≡ τ ′
1 , and γ � τ ′

1 :: ∗, then we have γ �s+1 e : τ ′
1.

6. If γ �0 (Λσ. e) : τ , τ ≡ ∀σ. τ ′, and γ � (∀σ. τ ′) :: ∗, then we have γ, σ �0 e : τ ′.

Proof. By induction on the derivation. We only show 1; the others can be proved
in a similar manner. The last rule for deriving γ �s (λx : τ1. e) : τ is either TT-

TEq or TT-Abs.

– Case
γ �s (λx : τ1. e) : τ ′ τ ′ ≡ τ γ � τ :: ∗

γ �s (λx : τ1. e) : τ
TT-TEq: Since we can

derive
τ ′ ≡ τ τ ≡ τ ′

1 → τ ′
2

τ ′ ≡ τ ′
1 → τ ′

2

, we have τ1 ≡ τ ′
1, γ, x : τs

1 �s e : τ ′
2, and

γ � τ1 :: ∗ by IH.
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– Case
γ, x : τs

1 �s e : τ2

γ �s (λx : τ1. e) : τ1 → τ2
TT-Abs: By Collorary 1 and τ1 → τ2 ≡ τ ′

1 →
τ ′
2, there exists τ ′′ such that τ1 → τ2 �∗ τ ′′ and τ ′

1 → τ ′
2 �∗ τ ′′. Then,

by Lemma 10, there exist τ ′′
1 and τ ′′

2 such that τ ′′ = τ ′′
1 → τ ′′

2 , τ1 �∗ τ ′′
1 ,

τ2 �∗ τ ′′
2 , τ ′

1 �∗ τ ′′
1 , and τ ′

2 �∗ τ ′′
2 . Thus, by Lemma 4, we have τ2 ≡ τ ′′

2

and τ ′′
2 ≡ τ ′

2. Since γ � τ ′
2 :: ∗ holds by tracing back the derivation of the

assumption γ � τ ′
1 → τ ′

2 :: ∗, we can derive:

γ, x : τs
1 �s e : τ2

τ2 ≡ τ ′′
2 τ ′′

2 ≡ τ ′
2

τ2 ≡ τ ′
2 γ � τ ′

2 :: ∗
TT-TEq

γ, x : τs
1 �s e : τ ′

2.

Lemma 12. γ �s e : τ implies � γ and γ � τ :: ∗.
Proof. By straightforward induction on the derivation of γ �s e : τ .

Theorem 1 (Preservation). If γ �n e : τ and e
n−→ e′, then γ �n e′ : τ .

Proof. By induction on the derivation of γ �n e : τ . We implicitly use Lemma 12
in the proof below.

– Case
γ �n+1 e1 : τ ′

γ �n e1 : τ ′ TT-Brkt: The last rule for deriving e1
n−→ e′ is TE-

Brkt, and thus we have e1
n+1−→ e′

1 and e′ = e′
1 . By IH, we have γ �n+1 e′

1 :

τ ′, and can thereby derive
γ �n+1 e′

1 : τ ′

γ �n e′
1 : τ ′ TT-Brkt.

– Case
γ �n−1 e1 : τ

γ �n
∼e1 : τ

TT-Esc: The last rule for deriving ∼e1
n−→ e′ is either

TE-Esc1 or TE-Esc2.
• Case TE-Esc1 is straightforward by IH.
• Case TE-Esc2: We have n = 1, e1 = v(1) , and e′ = v(1). By Lemma 11,

we have γ �1 v(1) : τ .

– Case

γ �0 e1 : ∃α :: κ. τ1
γ, α :: κ, x : τ0

1 �0 e2 : τ γ � τ :: ∗
γ �0 unpack (α, x) = e1 in e2 : τ

TT-Unpack: The last rule for deriv-

ing (unpack (α, x) = e1 in e2)
n−→ e′ is either TE-Unpack1 or TE-

Unpack2.
• Case TE-Unpack1 is straightforward from IH.
• Case TE-Unpack2: We have n = 0, e1 = (pack (τ ′

1, v
(0)) as τ ′), and

e′ = [v(0)/x][τ ′
1/α]e2. By Lemma 11, we have ∃α :: κ. τ1 ≡ τ ′, γ � τ ′

1 :: ∗,
and γ �0 v(0) : [τ ′

1/α]τ1. Then, by Lemma 2, from γ, α :: κ, x : τ0
1 �0 e2 : τ

and γ � τ ′
1 :: ∗, we have γ, x : [τ ′

1/α]τ0
1 �0 [τ ′

1/α]e2 : [τ ′
1/α]τ . Since

α �∈ ftv(τ) holds by γ � τ :: ∗, we have [τ ′
1/α]τ = τ . Therefore, by

Lemma 1, we have γ �0 [v(0)/x][τ ′
1/α]e2 : τ .
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– Case
γ �0 e1 : ∀σ. τ ′ γ � s2

γ �0 e1 ↑ s2 : [s2/σ]τ ′ TT-StgApp: The last rule for deriving (e1 ↑
s2)

n−→ e′ is either TE-StgApp or TE-StgBeta.
• Case TE-StgApp is straightforward by IH.
• Case TE-StgBeta: We have n = 0, s2 = n′, e = Λσ. e11, and e′ =

[n′/σ]e11. By Lemma 11, we have γ, σ �0 e11 : τ ′. Therefore, by Lemma 3,
we have γ �0 [n′/σ]e11 : [n′/σ]τ ′.

– Cases TT-StgAbs, TT-BrktVar, and TT-EscVar contradict the assump-
tion e

n−→ e′.

The other cases can be shown in similar ways by using IH and Lemma 11.

Lemma 13. Suppose �≥1 γ and γ does not contain stage variables.

1. If γ �0 v(0) : τ → τ ′, then v(0) is of the form (λx : τ1. e).
2. If γ �0 v(0) : ∀α :: κ. τ , then v(0) is of the form (Λα :: κ. e).
3. If γ �0 v(0) : ∃α :: κ. τ , then v(0) is of the form pack (τ1, e) as τ2.
4. If γ �0 v(0) : {l1 : τ1, . . . , lm : τm}, then v(0) is of the form {l1 = v

(0)
1 , . . . , lm =

v
(0)
m }.

5. If γ �0 v(0) : τ , then v(0) is of the form v
(1)
1 .

6. If γ �0 v(0) : ∀σ. τ , then v(0) is of the form (Λσ. e).

Proof. Almost the same as Lemma 30.1.15 of [22]; by contradiction about the
form of v(0) using Lemmata 1 and 10.

Theorem 2 (Progress). If �≥1 γ, γ �n e : τ , and γ does not contain stage
variables, then e is a value at stage n, or there exists e′ such that e

n−→ e′.

Proof. By induction on the derivation of γ �n e : τ .

– Case
� γ γ(x) = τn

γ �n x : τ
TT-Var: By the assumption �≥1 γ, we have n ≥ 1.

Thus, x is a value at stage n ≥ 1.

– Case
γ, x : τn

1 �n e2 : τ2

γ �n (λx : τ1. e2) : τ1 → τ2
TT-Abs:

• Case n = 0: λx : τ1. e2 is a value at stage 0.
• Case n ≥ 1: Since �≥1 γ, x : τn

1 holds, we have either of the following by
IH:

* Case where e2 is a value v
(n)
2 : λx : τ1. v

(n)
2 is a value at stage n.

* Case where e2
n−→ e′

2 for some e′
2: We can derive:

e2
n−→ e′

2

λx : τ1. e2
n−→ λx : τ1. e′

2

TE-Abs.

– Case
γ �n e1 : τ2 → τ γ �n e2 : τ2

γ �n e1 e2 : τ
TT-App:

• Case where e1
n−→ e′

1 for some e′
1: We can derive

e1
n−→ e′

1

e1 e2
n−→ e′

1 e2
TE-App1.
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• Case where e1 is a value v
(n)
1 and e2

n−→ e′
2 for some e′

2: We can derive
e2

n−→ e′
2

v
(n)
1 e2

n−→ v
(n)
1 e′

2

TE-App2.

• Case where both e1 and e2 are values v
(n)
1 and v

(n)
2 , respectively:

* Case n ≥ 1: (v(n)
1 v

(n)
2 ) is a value at stage n ≥ 1.

* Case n = 0: By Lemma 13, v
(0)
1 is of the form (λx : τ11. e12). Thus,

we can derive
(λx : τ11. e12) v

(0)
2

0−→ [v(0)
2 /x]e12

TE-Beta.

–
γ �n−1 e1 : τ

γ �n
∼e1 : τ

TT-Esc: We have n ≥ 1. By IH, one of the following holds:

• Case where e1
n−1−→ e′

1 for some e′
1: We can derive

e1
n−1−→ e′

1

∼e1
n−→ ∼e′

1

TE-Esc1.

• Case where e1 is a value v
(n−1)
1 :

* Case n ≥ 2: ∼v
(n−1)
1 is a value at stage n.

* Case n = 1: By Lemma 13, v
(0)
1 is of the form v(1) . Therefore, we

can derive
∼ v(1) 1−→ v(1)

TE-Esc2.

The other cases are similar.

D Proofs for Soundness of Elaboration

Assumption 5. 1. If Γ � τ � τ ′ � e, then fsv(τ) = fsv(τ ′) = ∅ (i.e., neither
τ nor τ ′ contains free stage variables), fv(e) = ∅ (i.e., e is a closed term),
�Γ � τ :: ∗, �Γ � τ ′ :: ∗, and, for any stage s, we have �Γ �s e : τ → τ ′.

2. The constructs for source types T other than T → T , (T T ), P , or T do not
violate the property that Γ � T ::κ � τ implies �Γ � τ :: κ.

3. The constructs for source expressions E other than x, (λx : T. E), (E E),
P , E , or ∼E do not violate the property that Γ �s E : τ � e implies
�Γ �s e : τ and fsv(τ) = ∅.

Theorem 3 (Soundness of Signature Subtyping).

1. If Γ � Σ � ∃b. Σ ′ ↑ (τi)m
i=1 � e and �Γ, b � �Σ ′ :: ∗, then �Γ �0 e :

�Σ → �[τi/αi ]mi=1Σ
′, fsv(Σ ) = fsv(Σ ′) = ∅, and �Γ � τi :: κi for each i,

where b = (αi ::κi)m
i=1.

2. Γ � Σ � Σ ′ � e implies �Γ � �Σ :: ∗, �Γ � �Σ ′ :: ∗, fsv(Σ ) = fsv(Σ ′) =
∅, and �Γ �0 e : �Σ → �Σ ′.

3. Γ � ξ � ξ′ � e implies �Γ � �ξ :: ∗, �Γ � �ξ′ :: ∗, fsv(ξ) = fsv(ξ′) = ∅,
and �Γ �0 e : �ξ → �ξ′.

Proof. By mutual induction on the derivation. We only show the cases of U-

Val, U-PersAsPers, and U-PersAsNonPers for 2; the others are almost
the same as the corresponding proofs for F-ing Modules [24].
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– Case
Γ 	 τ � τ ′ � e′

Γ 	 �τ�n � �τ ′�n � λx : {val : τ} ×n. {val = e′ ((∼×nx)#val)} ×n
U-Val:

By Γ � τ � τ ′ � e′ and Assumption 5, we have �Γ �n e′ : τ → τ ′,
�Γ � τ :: ∗, �Γ � τ ′ :: ∗, fsv(τ) = fsv(τ ′) = ∅, and fv(e′) = ∅. Since
γ �n e′ : τ → τ ′ holds by the evident weakening, we can derive the following,
where γ := �Γ, x : ��τ�n0:

γ 	n e′ : τ → τ ′

γ 	0 x : {val : τ} ×n

...
γ 	n

∼

×nx : {val : τ}
γ 	n (∼×nx)#val : τ

γ 	n e′ ((∼×nx)#val) : τ ′

γ 	n {val = e′ ((∼×nx)#val)} : {val : τ ′}
...

γ 	0 {val = e′ ((∼×nx)#val)} ×n
: ��τ ′�n�

�Γ� 	0 λx : {val : τ} ×n
. {val = e′ ((∼×nx)#val)} ×n

: ��τ�n� → ��τ ′�n�.

We also have �Γ � ��τ�n :: ∗, �Γ � ��τ ′�n :: ∗, and fsv(�τ�n) =
fsv(�τ ′�n) = ∅.

– Case Γ � τ � τ ′ � e′ n ≤ n′ e′′ = ∼

×n′
∼

σ′
(x ↑ ((n′ − n) � σ′))

Γ � �τ�≥n � �τ ′�≥n′ � λx : 	�τ�≥n
. Λσ′. {val = e′ (e′′#val)} ×n′ σ′ U-PersAsPers:

Let γ := (�Γ, x : ��τ�≥n0, σ′). Similarly to the previous case, we have
γ �n′�σ′

e′ : τ → τ ′, fsv(τ) = fsv(τ ′) = ∅, and fv(e′) = ∅. Since
[(n′ − n) � σ′/σ]τ = τ , we can derive:

γ �n′�σ′
e′ : τ → τ ′

γ �0 x : ∀σ. {val : τ} ×n σ

γ �0 x ↑ ((n′ − n) � σ′) : {val : τ} ×n′ σ′

γ �0�σ′
∼

σ′
(x ↑ ((n′ − n) � σ′)) : {val : τ} ×n′

...
γ �n′�σ′

e′′ : {val : τ}
γ �n′�σ′

e′′#val : τ

γ �n′�σ′
e′ (e′′#val) : τ ′

γ �n′�σ′ {val = e′ (e′′#val)} : {val : τ ′}
...

γ �0�σ′ {val = e′ (e′′#val)} ×n′
: {val : τ ′} ×n′

γ �0 {val = e′ (e′′#val)} ×n′ σ′
: {val : τ ′} ×n′ σ′

�Γ�, x : ��τ�≥n�0 �0 Λσ′. {val = e′ (e′′#val)} ×n′ σ′
: ��τ ′�≥n′�

�Γ� �0 λx : ��τ�≥n�. Λσ′. {val = e′ (e′′#val)} ×n′ σ′
: ��τ�≥n� → ��τ ′�≥n′�.

– Case Γ � τ � τ ′ � e′ n ≤ n′ e′′ = ∼

×n′
(x ↑ (n′ − n))

Γ � �τ�≥n � �τ ′�n′ � λx : 	�τ�≥n
. {val = e′ (e′′#val)} ×n′ U-PersAsNonPers: We

can derive the following in a manner similar to the previous case, where
γ := �Γ, x : ��τ�≥n0:
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γ �n′
e′ : τ → τ ′

γ �0 x : ∀σ. {val : τ} ×n σ

γ �0 x ↑ (n′ − n) : {val : τ} ×n′

...
γ �n′

e′′ : {val : τ}
γ �n′

e′′#val : τ

γ �n′
e′ (e′′#val) : τ ′

γ �n′ {val = e′ (e′′#val)} : {val : τ ′}
...

γ �0 {val = e (e′#val)} ×n′
: ��τ ′�n′

�Γ �0 λx : ��τ�≥n. {val = e (e′#val)} ×n′
: ��τ�≥n → ��τ ′�n′.

Theorem 4 (Soundness of Elaboration).

1. Γ � T ::κ � τ implies �Γ � τ :: κ and fsv(τ) = ∅.
2. Γ �s E : τ � e implies �Γ �s e : τ and fsv(τ) = ∅.
3. Γ � P : Σ � e implies �Γ �0 e : �Σ and fsv(Σ ) = ∅.
4. Γ � D � ∃b. R (resp. Γ � D � ∃b. R) implies �Γ � �∃b. {|R|} :: ∗ and

fsv(∃b. {|R|}) = ∅.
5. Γ � B : ∃b. R � e (resp. Γ � B : ∃b. R � e) implies �Γ �0 e : �∃b. {|R|}

and fsv(∃b. {|R|}) = ∅.
6. Γ � S � ξ implies �Γ � �ξ :: ∗ and fsv(ξ) = ∅.
7. Γ � M : ξ � e implies �Γ �0 e : �ξ and fsv(ξ) = ∅.

Proof. By mutual induction on the derivation. We only show the proofs about
E-Path, E-PersInPers, E-PersInNonPers, B-Val, and B-ValPers for 2
and 5; the rest of the proofs are quite straightforward or essentially the same as
the corresponding ones for F-ing Modules [24].

2. – Case
Γ � P : �τ�n � e′

Γ �n P : τ � (∼×ne′)#val
E-Path: We have �Γ �0 e′ : {val :

τ} ×n and fsv(�τ�n) = ∅ by IH. Thus, we can derive:
�Γ �0 e′ : {val : τ} ×n

...
�Γ �n

∼

×ne′ : {val : τ}
�Γ �n (∼×ne′)#val : τ.

We also have fsv(τ) = ∅ by fsv(�τ�n) = ∅.

– Case
σ ∈ Γ Γ � P : �τ�≥n′ � e′ n ≥ n′

Γ �n�σ P : τ � (∼×n
∼

σ(e′ ↑ ((n − n′) � σ)))#val
E-PersInPers: By IH, we

have �Γ �0 e′ : ∀σ′. {val : τ} ×n′ σ′
and fsv(�τ�≥n′

) = ∅. Then, we
have fsv(τ) = ∅ and thereby [(n − n′) � σ/σ′]τ = τ . This enables us to
derive:
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�Γ �0 e′ : ∀σ′. {val : τ} ×n′ σ′
σ ∈ �Γ

�Γ � (n − n′) � σ

�Γ �0 e′ ↑ ((n − n′) � σ) : {val : τ} ×n σ

�Γ �0�σ
∼

σ(e′ ↑ ((n − n′) � σ)) : {val : τ} ×n

...
�Γ �n�σ

∼

×n
∼

σ(e′ ↑ ((n − n′) � σ)) : {val : τ}
�Γ �n�σ (∼×n

∼

σ(e′ ↑ ((n − n′) � σ)))#val : τ.

– Case
Γ � P : �τ�≥n′ � e′ n ≥ n′

Γ �n P : τ � (∼×n(e′ ↑ (n − n′)))#val
E-PersInNonPers: Similarly

to the previous case, we have fsv(τ) = ∅ and can thereby derive:
�Γ �0 e′ : ∀σ′. {val : τ} ×n′ σ′ �Γ � n − n′

�Γ �0 e′ ↑ (n − n′) : {val : τ} ×n

...
�Γ �n

∼

×n(e′ ↑ (n − n′)) : {val : τ}
�Γ �n (∼×n(e′ ↑ (n − n′)))#val : τ.

5. – Case
Γ �n E : τ � e′

Γ � valn X = E : ∃ε. {lX �→ �τ�n} � {lX = {val = e′} ×n}
B-Val: By IH,

we have �Γ �n e′ : τ and fsv(τ) = ∅. Thus, we can derive:
�Γ �n e′ : τ

�Γ �n {val = e′} : {val : τ}
...

�Γ �0 {val = e′} ×n : {val : τ} ×n

�Γ �0 {lX = {val = e′} ×n} : {lX : ��τ�n}
and have fsv(�∃ε. {|R|}) = fsv(τ) = ∅.

– Case σ �∈ Γ Γ , σ �n�σ E : τ � e′

Γ � val≥n X = E : ∃ε. {lX �→ �τ�≥n} � {lX = Λσ. {val = e′} ×n σ}
B-ValPers:

By IH, we have �Γ , σ �n�σ e′ : τ and fsv(τ) = ∅. Therefore, we can
derive:

�Γ, σ �n�σ e′ : τ

�Γ, σ �n�σ {val = e′} : {val : τ}
...

�Γ, σ �0�σ {val = e′} ×n : {val : τ} ×n

�Γ, σ �0 {val = e′} ×n σ : {val : τ} ×n σ

�Γ �0 Λσ. {val = e′} ×n σ : ∀σ. {val : τ} ×n σ

�Γ �0 {lX = Λσ. {val = e′} ×n σ} : {lX : ��τ�≥n}
and have fsv(�∃ε. {|R|}) = fsv(τ) = ∅.
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Abstract. We present Rhyme, a declarative multi-paradigm query lan-
guage designed for querying and transforming nested structures such as
JSON, tensors, and beyond. Rhyme is designed to be multi-paradigm
from ground-up allowing it to seamlessly accommodate typical data pro-
cessing operations–ranging from aggregations and group-bys to joins–
while also having the versatility to express diverse computations like
tensor expressions (à la einops) and declaratively express visualizations
(e.g., visualizing query outputs with tables, charts, and so on). Rhyme
generates optimized JavaScript code for queries by constructing an inter-
mediate representation that implicitly captures the program structure
via dependencies. This paper presents a system description of Rhyme
implementation while highlighting key design decisions and various use
cases covered by Rhyme.

Keywords: Declarative query languages · Logic programming ·
Tensor expressions · Multi-paradigm languages · Rhyme

1 Introduction

This paper introduces the design of Rhyme, a new declarative multi-paradigm
query language tailored for querying and transforming nested structures, encom-
passing formats such as JSON, tensors, and more. Rhyme draws inspiration from
an array of existing approaches, including query languages such as GraphQL [18],
JQ [3], XQuery [4], logic programming languages like Datalog [10], and recent
functional logic programming languages like Verse [12]. Rhyme is implemented
in JavaScript and currently available as an open source Node.js package1. Below
are the main defining characteristics of Rhyme:

– Data-centric query language: Focused explicitly on extracting informa-
tion and transforming data, not general-purpose programming.

1 Available at https://rhyme-lang.github.io/.
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JSON API

Pipe API

Display API

Rhyme AST
Rhyme IR

(loop-free, branch-free)
Optimized Code
(JavaScript)

(Section 2) (Section 3) (Section 4)

Fig. 1. The end-to-end workflow of Rhyme. Rhyme provides multiple APIs for different
types of workloads that targets the common Rhyme AST which serves as an entry point.
The AST gets transformed to an IR that implicitly captures program structure (i.e.,
no loops or branches). Optimized JavaScript code is then generated from this IR.

– Multi-paradigm: Still, flexible enough to support a wide range of typical
data processing operations (e.g., SQL/DataFrames), tensor expressions, visu-
alization, etc., in a single language.

– Functional: Not based on relations as the core abstraction but on functions,
including representing data as materialized functions (i.e., objects mapping
keys to values).

– Logic: Using logic variables and unification to express joins, aggregations,
and other forms of iteration.

– Metaprogramming: Relying on an expressive host language to compose
query fragments and run queries (using functional/Object-Oriented APIs, as
well as quasiquotation syntax).

Rhyme is designed to be multi-paradigm from the ground up, seam-
lessly accommodating standard data processing operations like aggregations,
group-bys, joins, and others, along with paradigms beyond conventional data-
processing operations. These include the expression of various types of com-
putations, such as tensor operations (akin to einops [24]), and the ability to
declaratively express visualizations (e.g., a table summarizing query outputs).

This facilitates the expression of diverse workloads; for example, a complex
data processing pipeline mixing tasks such as group-based aggregations inter-
twined with tensor computations (e.g., incorporating a pre-trained model), fol-
lowed by the creation of visualizations, such as dashboards-all achieved through
a unified query language. This bears significance on two fronts. Firstly, in terms
of programmer productivity, end-users can leverage a single, unified query lan-
guage to express the entirety of their workload logic, eliminating the need for
multiple domain-specific languages. Secondly, concerning performance, the uni-
fied system seamlessly manages all workload paradigms, mitigating the perfor-
mance overhead typically incurred at system boundaries when employing various
domain-specific systems-a pressing problem in practical scenarios [9,23].

Figure 1 illustrates the end-to-end workflow of Rhyme. Queries can be
expressed through different frontend APIs (as detailed in Sect. 2), where all
these APIs target a common AST representation, serving as the entry point
to the system. Subsequently, this AST representation serves as the basis for
deriving an intermediate representation (IR) that encapsulates the query logic.
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A key characteristic of this IR is that it does not explicitly capture the program
structure corresponding to the query. Instead, the program structure is implic-
itly captured through dependencies, making it easier to perform optimizations
(as detailed in Sect. 3). Then, the IR is transformed into optimized JavaScript
code, incorporating various optimizations

The remainder of the paper is structured into sections that delve into each
component of Rhyme, as depicted in Fig. 1. Section 2 outlines the various fron-
tends provided by Rhyme, catering to the expression of diverse workload types.
We offer several alternative APIs designed to express Rhyme queries, each tai-
lored for specific use cases. Moving forward, Sect. 3 delves into the design of
Rhyme AST, Rhyme IR, and the process of constructing the IR from the AST,
how an optimized program structure is derived from this loop-free, branch-free
representation and elucidate the generation of optimized JavaScript code for a
given query.

The foundational concepts of Rhyme were initially introduced in [8]. This
paper takes a more in-depth exploration to the design and implementation of
Rhyme frontend, providing comprehensive discussions on recent advancements
in some of the APIs, including surface syntax (e.g., quasiquotations, etc.), and
offering extensive insights into the graphics API.

2 Rhyme Front End

As illustrated in Fig. 1, Rhyme offers users various frontends to express their
queries. In this section, we will explore each of these APIs, demonstrating their
utility across diverse use cases.

2.1 JSON API

Given the thorough discussion of this API in previous work [8], we refrain from
offering an exhaustive discussion here. Nonetheless, we add a summary of key
components for the sake of completeness.

Table 1 provides a summary of the primary operators in the JSON API.
Most operators are self-explanatory and intuitive in nature. It is worth noting
that Rhyme also supports user-defined functions (UDFs), joins, and various typ-
ical data processing operations, other than the ones mentioned in the table. One
noteworthy aspect of Rhyme lies in its approach to expressing group-bys and the
contextual evaluation semantics of expressions like sum(data.*A.value). Specifi-
cally, when nested within a { data.*A.key : ... , the sum(data.*A.value) cor-
responds to a per-group sum; otherwise, it represents a total sum (note the use
of the same *A).

The following code snippet illustrates the utilization of the Rhyme JSON
API to query the DBLP REST API and compute various details about past
FLOPS conference publications. This snippet is a fully executable JavaScript
program, assuming the Rhyme library is appropriately set up and imported2.
2 As detailed in https://github.com/rhyme-lang/rhyme?tab=readme-ov-file#using-

in-the-browserfrontend.

https://github.com/rhyme-lang/rhyme?tab=readme-ov-file#using-in-the-browserfrontend
https://github.com/rhyme-lang/rhyme?tab=readme-ov-file#using-in-the-browserfrontend
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Table 1. Basic query operators of Rhyme JSON API. Full API documentation is
available at https://rhyme-lang.github.io/docs/frontends/json/.

Operation Query Result

Sample Dataset [ {key: A, value: 10}, {key: B, value: 20},
{key: B, value: 15}, {key: A, value: 30} ]

-

Simple Indexing
// directly indexing into a sequence of data
data.0.value
data.2.key

10
B

Creating structures
// creating structures from queries
// (can compose arbitrarily)
{ first : data.0.key }

{ first : 10}

Iterating (using *)
// iterating data and collecting into an array
[data.*.value]
// iterators are logic variables (named *A, *B, ...)
[data.*A.key]

[10,20,15,30]

[A,B,B,A]

Aggregations
// computing aggregates
sum(data.*.value)
// creating a new object from a query
{ total : sum(data.*.value) }

75

{ total: 75 }

Group-bys, Joins

// group-by: expressed by having *, *A, ... as key
// compute per-key sum of values
{ data.*.key : sum(data.*.value) }
// compute per-key relative sum
// sum(data.*A.value):
// nested within data.*A.key -> per-group sum
// sum(data.*B.value):
// not nested within another *B key -> total sum
{

data.*A.key :
sum(data.*A.value) / sum(data.*B.value)

}

{ A: 40, B: 35 }

{
A: 0.53,
B: 0.47

}

let url =
"https://dblp.org/search/publ/api?q=stream:streams/conf/flops:&h=1000&format=json"

// fetch the data from the REST endpoint and query
fetch(url).then(p => p.json()).then(data => {

// Query1: produces all papers by year
let query1 = {

"data.result.hits.hit.*.info.year": ["data.result.hits.hit.*.info.title"]
}
let res = api.query(query1)
display(res({data}))
// result: {1998: [...FLOPS papers of 1998 ...], 1999: [ ... ], ...}

// Query2: compute number of papers per year
let query2 = {

"data.result.hits.hit.*.info.year": api.count("data.result.hits.hit.*.info.title")
}
res = api.query(query2)
display(res({data}))
// result: {1998: 16, 1999: 24, 2001: 25, ...}

// Query3: For all authors, list years they published
let query3 = {

// need to build union of single-author and
// multi-author papers

https://rhyme-lang.github.io/docs/frontends/json/
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"data.result.hits.hit.*.info.authors.*A.*B.text": ["data.result.hits.hit.*.info.year"],
"data.result.hits.hit.*.info.authors.*A.text": ["data.result.hits.hit.*.info.year"],

}
res = api.query(query3)
display(res({data}))
// result: {"author A": [2022, 2012, 2010, ...], "author B": [2016, 2012, ...], ...}

})

As depicted in Fig. 1, similar to the other APIs, the JSON API follows the
process of constructing the Rhyme AST, which is subsequently transformed into
Rhyme IR. Moreover, since all of these APIs are implemented in the same host
language, JavaScript, they can be seamlessly mixed and matched as the users
see fit. This IR is then further processed to generate optimized JavaScript code,
as detailed in Sect. 3.

2.2 Pipe API

The JSON API enables expressing queries in a format resembling the expected
output structure, akin to approaches like GraphQL. However, there are scenarios
where it is more intuitive to formulate computations as a sequence of transfor-
mation steps on the input(s). Rhyme offers the Pipe API to accommodate such
workloads.

Rhyme offers a textual API based on JavaScript’s template literals for this
purpose. Template literals enable string interpolation with embedded expressions
and allow the addition of custom desugaring logic. Rhyme utilizes the rh‘...’
template to express queries through this API. To explain how this API functions,
let us take a simple example that computes the sum of values expressed using
the JSON API: api.sum("data.*.value"). This same query can be written using
our surface syntax in the following ways:
rh`sum(data.*.value)`
rh`sum data.*.value`
rh`data | sum(.*.value)`
rh`data | .* | sum(.value)`
rh`data | .* | .value | sum`

All of the above queries are equivalent and are parsed into the same AST
as the original query. This approach offers a more intuitive and straightforward
means of expressing the query as a series of transformation steps applied to the
inputs. Under the hood, each transformation step (i.e., operators appear sequen-
tially after pipes) gets desugared to operators with holes. For a call expression
like f(a) (e.g., sum(.value) above) or a|f (e.g., .value|sum above), we explicitly
desugar ‘f’ with the expectation that it is a function. This process is akin to
bidirectional typing [16], i.e., potentially transforming code to conform to an
expected type.

In this process, we examine whether any expressions contain holes-e.g.,
‘.value’ is incomplete, conceptually featuring a hole on the left, and is desug-
ared to �.value. Similarly, sum(.value) is parsed as sum(�.value). Moreover,
if any intermediate operations in the sequence do not contain holes, such as
when UDFs are applied as part of the transformation (e.g., splitPipe in the
example query later in this section), the expression is treated as a reference to
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a function and is eta-expanded by inserting a hole on the right for application
(e.g., splitPipe(�)). In our implementation, we treat these terms with holes as
anonymous functions; for instance, sum(�.value) becomes x => sum(x.value).

There may be situations where a single operator involves multiple holes. In
such cases, we have a choice: whether to consider all of them as references to
the same argument (x => ...) or treat them as arguments to a multi-argument
function ((x, y)=> ...). Presently, Rhyme exclusively handles single-argument
functions (which is the situation with pipes like a | f), but it does support
currying, allowing for repeated applications (as in b | f(a)).

Moreover, this surface language provides a way of using quasi-quotations
via ${...} , for example to define and directly call user-defined functions. For
instance, consider a case where we want to compute the average using a UDF.
The average UDF can be expressed using sum and count.
let avg = x => rh`sum(${x}) / count(${x})`
// computing average of data.*.value (both queries compute the avg)
rh`${avg}(data.*.value)`
rh`data.*.value | ${avg}`

To demonstrate the effectiveness of this API, we take an example query from
a previous work [8], which is originally taken from Advent of Code 2022 [1]. The
input is a sequence of numbers separated by pipes into chunks where each chunk
contains multiple comma-separated numbers. The task is to compute the sum
of each chunk and find the maximum sum across all chunks.
let input = '100,200,300|400|500,600|700,800,900|1000' // sample input
// some UDFs for parsing the data
let udf = {
'splitPipe' : x => x.split('|'),
'splitComma': x => x.split(','),
'toNum' : x => Number(x)

}

As shown in [8], this query can be expressed using Rhyme’s JSON API, as
depicted on the left. Alternatively, the same query can be expressed in a nice,
intuitive manner using the pipe-based surface language, as illustrated on the
right.
// JSON API
let query = max(get({
'*chunk': sum(

apply('udf.toNum',
get(apply('udf.splitComma',

get(apply('udf.splitPipe', '.input'),
'*chunk')),

'*line')))
},'*'))

// Pipe API
// Produce output by applying a sequence of
// transformations to input
let query =

rh`.input | udf.splitChunk | .*chunk
| udf.splitComma | .*line | udf.toNum
| sum | group *chunk | .* | max`

While both queries generate the same AST and yield the same expected
result, the query on the right is better suited for these types of tasks. It offers
a cleaner and more intuitive approach to expressing the query as a sequence of
transformations on the input. This stands in contrast to the JSON API, which
requires the query to be written in a way that mirrors the output structure.
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2.3 Visualization API

Many data processing workloads demand some form of visualization as the final
output. Traditionally, the implementation of these visualizations is separate from
the data processing logic. However, Rhyme allows users to integrate the logic
for visualization directly within the same language. Since Rhyme and all its
existing APIs are implemented in JavaScript, end users can effortlessly import
the corresponding JavaScript file into their browser/HTML and easily create
visualizations.

Rhyme introduces the "$display" keyword for specifying visualizations. One
type of visualization Rhyme supports is the declarative specification of SVG
drawings. To create SVG drawings, users can employ "$display": "dom" and
"type": "svg:<svg_shape>", where <svg_shape> represents any available SVG
shape, such as ellipse, polyline, rect, polygon, etc. The properties associated
with each shape can be passed using the props key. For example, the query
below draws a rectangle, incorporating features like colors, rounded edges, and
additional attributes by passing the corresponding properties to props (visual-
ization is shown on the right).

It is important to highlight that this graphical drawing capability seamlessly
integrates with Rhyme’s other APIs. To illustrate its utility, let us consider a
scenario where we aim to visualize some sample data. While we currently use
synthetic data for illustration purposes, it is crucial to note that this data could
be sourced from another Rhyme query that processes and analyzes real-world
data. Shown below is some sample data.
let data = [{x:20,y:70},{x:40,y:30},{x:60,y:50},{x:80,y:60},{x:100,y:40}]

Suppose we aim to represent this data through three distinct types of charts:
line, bar, and points. Below, we show the queries for generating these three
drawings, accompanied by their respective outputs.
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Multiple SVG graphics can be overlapped by using "type": "svg:svg" and
providing the corresponding queries as an array to the "children" key. Shown
below is a query that draws a data-dependent graphic by overlapping multiple
"svg:elipse" drawings.

Another "$display" option available for Rhyme is "select". This option
adds a set of buttons at the top to toggle between different sets of visualizations.
For instance, suppose we want to visualize the above three graphics in both
an overlapped and a side-by-side arrangement. This can be achieved using the
select option. The corresponding query is shown below. The images on the right
illustrate both scenarios, each activated by clicking the corresponding button.
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Rhyme offers additional display options beyond the ones discussed earlier.
Two particularly useful options are "table" and "bar", designed for creating
tables and bar charts from data, respectively. While the complete query is not
included here, the following (excerpt) visualization shows a table mixed with
bar charts. This visualization was generated by computing summary statistics
from a sample warehouse dataset using a Rhyme query and specifying all the
visualization-related logic entirely within Rhyme.

3 Rhyme Backend

This section explores the end-to-end process of transforming queries into opti-
mized JavaScript code. This translation happens in three steps. As we saw in
Fig. 1, all the frontend API directly targets Rhyme AST, which serves as the
entry point to the system. This AST representation is further transformed into
Rhyme IR, which implicitly captures the program structure. Finally, this Rhyme
IR is transformed into optimized JavaScript code. To enhance comprehension,
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we will employ the following query as a running example throughout this section.
As we saw in Table 1 (second example query for group-by), this query computes
per-key relative sum for all the keys.
{

data.*A.key: sum(data.*A.value) / sum(data.*B.value)
}

3.1 AST

The Rhyme AST is represented using JSON objects and closely resembles the
JSON API. The keys corresponding to implicit group-by clauses (for example
{ data.*.key: ...}) remain unchanged in the AST representation. Other parts
corresponding to query operators are transformed into nested JSON objects.
For instance, reduction operators like sum, max, min, etc., are transformed into
objects containing the aggregate name and the parameters passed to the aggre-
gate. For example, sum(data..value) will be transformed into { agg: 'sum',

param: 'data..value'}. Similarly, for other operators that are not reductions
(i.e., stateless ones), an object with the operator type (referred to as path) and
parameters is created. The AST representation for the running example query
is illustrated below.
{

"data.*.key": {
path: 'div',
param: [

{agg: 'sum', param: 'data.*A.val'},
{agg: 'sum', param: 'data.*B.val'}

]
}

}

The translation from different frontends to the AST representation is rela-
tively straightforward and, therefore, not extensively discussed. For example, in
the JSON API, we define functions for each stateless and stateful operator, such
as sum, max, min, plus, and so on, to generate the corresponding AST fragment.
Below, we provide the logic for sum and plus:

api["sum"] = (e) => ({
agg: "sum",
param: e

})

api["plus"] = (e1, e2) => ({
path: "plus",
param: [e1, e2]

})

The same set of AST fragment building functions is utilized by the rest of
the frontends. For example, in the template literals-based frontend discussed in
Sect. 2.2, the corresponding operators are desugared by invoking the relevant api

functions.

3.2 Structure of the Rhyme IR

The Rhyme IR is comprised of two types of operators: generators and assign-
ments. As the name implies, generators are instructions responsible for iterating
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values from data sources, such as an array of JSON objects. In contrast, assign-
ments correspond to instructions that execute computations and assign (par-
tial) results to intermediate state variables. This approach, employing multiple
intermediate state variables to compute the final result, draws inspiration from
previous work on generating triggers for incremental execution [7,20].

In our ongoing example query, Rhyme generates three temporaries-tmp[0],
tmp[1], and tmp[2]-which correspond to the final result object, per-key aggregate
object, and total aggregate, respectively. The presence of *A and *B in the query
signifies two generators. The IR for this query is presented below, where the
assignment instructions on temporaries are self-explanatory.

tmp[2] += data[*B]["val"]

tmp[2]  ??= 0

tmp1[data[*A]["key"]] ??= 0

tmp1[data[*A]["key"]] += data[*]["key"]

tmp0[data[*A]["key"]]
+= tmp[1][data[a]["key"] / tmp[2]

tmp[1]  ??= {}

*B

*A

tmp[0]  ??= {}

A defining feature of the Rhyme IR lies in its avoidance of explicitly storing
the program structure (inspired by prior work [13,14]). Taking the ongoing query
as an example, the query indicates that the *B generator should be nested within
*A, forming a nested loop structure. However, rather than strictly enforcing this
structure within the IR, Rhyme stores dependencies that implicitly capture the
query’s structure.

Specifically, the use of a generator within an assignment instruction gives
rise to a generator-assignment dependency, while other assignment-assignment
dependencies typically represent data dependencies. As we delve into Sect. 3.3,
we will explore how this dependency-based representation facilitates certain opti-
mizations, making tasks such as loop hoisting more straightforward.

In the current Rhyme implementation, dependencies are tracked at the level
of temporaries, such as tmp[0], tmp[1], and so on. To achieve this, each assign-
ment is assigned a write rank, ensuring a specific order during code genera-
tion. While this systematic approach guarantees a sequential order of writes, it
may introduce imprecise dependencies in certain scenarios, potentially result-
ing in suboptimal code. This is because automatically enforcing a serial order
for writes might not accurately capture their true dependencies. An alternative
approach involves treating each write rank more like a static-single assignment
(SSA)-style variable, allowing for a finer-grained tracking of dependencies. This
approach provides a more nuanced representation of dependencies, potentially
improving the precision of the generated code.
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3.3 Code Generation

Following the construction of the IR, the next step involves generating the final
optimized JavaScript code for the query based on this IR. Given that our IR does
not store explicit program structure, reconstructing the program’s architecture
requires an analysis of dependencies. To accomplish this, we perform multiple
analysis passes over the IR.

The initial analysis focuses on determining the placement of intermedi-
ate temporaries with respect to loops and other temporaries. Specifically, this
pass computes tmpInsideLoop and tmpAfterTmp, which track which tempo-
raries should be scheduled inside particular loops and which temporaries should
be scheduled after certain other temporaries, respectively. The following code
excerpt illustrates this process, where e.writeSym denotes the left-hand side
temporary of assignments. On the right, a visual representation is provided
for our example query, showing the computed tmpInsideLoop (solid lines) and
tmpAfterTmp (dotted lines).

In the above code, we iterate through all the assignment statements and
examine all their dependencies. If a statement depends on a loop, it means
the corresponding temporary variable must be scheduled inside the loop, thus
updating the tmpInsideLoop variable. Furthermore, if an assignment depends on
another temporary value, it means the corresponding temporary variable must
be scheduled after that, consequently updating the tmpAfterTmp variable.

The next step involves determining which temporaries should be scheduled
after a given loop has been fully scheduled. This analysis leverages the informa-
tion obtained from the earlier computations of tmpInsideLoop and tmpAfterTmp.
The outcomes of this analysis are then stored in the tmpAfterLoop. The following
is an excerpt from the corresponding analysis code in Rhyme.
// compute tmpAfterLoop
for (let t2 in tmpAfterTmp) {

// gather loop 'prior' tmps are in
for (let t1 in tmpAfterTmp[t2]) {
for (let l in tmpInsideLoop[t1])
tmpAfterLoop[t2][l] = true

}
// remove own loops
for (let l in tmpInsideLoop[t2])
delete tmpAfterLoop[t2][l]

}

In essence, if our analysis indicates that a temporary variable t2 should
be scheduled after another temporary t1 (i.e., tmpAfterTmp[t2][t1]), and t1 is
known to be inside a loop l (provided that t2 itself is not part of loop l), it
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implies that t2 should be scheduled after the completion of loop l. For example,
in our sample query tmp[0] is determined to be scheduled after *A.

The final step of the analysis involves figuring out the relationships between
loops. Our objective is twofold: first, to discern which loops should be sched-
uled strictly after others (captured in loopAfterLoop), and second, to iden-
tify which loops should be scheduled within the same loop nest (recorded in
loopInsideLoop). These essentially help identify how the loops should be sched-
uled. Specifically, if our previous analysis revealed that a given temporary vari-
able t should be scheduled within both loops l1 and l2, it implies that l1 and
l2 should form part of the same loop nest. Conversely, if we determine that for
a specific temporary variable t, it should be scheduled inside a loop l2, and we
also know that t should be scheduled after another loop l1, it implies that loop
l2 should be scheduled after l1-provided they are not part of the same loop nest.
The corresponding code illustrating these analyses is presented below.
// compute loopInsideLoop
for (let t in tmpInsideLoop) {

for (let l2 in tmpInsideLoop[t]) {
for (let l1 in tmpInsideLoop[t]) {

loopInsideLoop[l2][l1] = true
loopInsideLoop[l1] ??= {}
loopInsideLoop[l1][l2] = true

}
}

}

// compute loopAfterLoop
for (let t in tmpAfterLoop) {

for (let l2 in tmpInsideLoop[t]) {
for (!loopInsideLoop[l2] ||

!loopInsideLoop[l2][l1]) {
if (!loopInsideLoop[l2][l1])

loopAfterLoop[l2][l1] = true
}

}
}

After completing the analysis steps, we move on to the code generation
process. The core driver of the code emitting logic is encapsulated within the
emitConvergence function. This function relies on two additional helper func-
tions: emitGenerators and emitAssignments. The former is responsible for emit-
ting loop structures, while the latter deals with the generation of assignment
instructions. These functions are invoked repeatedly until all generators and
assignments are fully emitted. We present an excerpt from emitGenerators

below:
function emitGenerators() {

let (available, remaining) = getAvailable(generators) // identify current scope loops
generators = remaining // remaining generators that are not available yet
for (let g of available) {

emitLoopHeader(g)
emitConvergence() // emit loop body (nested generators and assignments)
emitLoopFooter()

}
}

Here, generators is a global variable that keeps track of the remaining gen-
erators that is yet to be scheduled. The emitGenerators function is responsible
for orchestrating the generation of loops corresponding to these generators. It
commences by identifying generators that become available in the current scope,
leveraging information such as loopAfterLoop, tmpAfterTmp, and others we saw
before. The getAvailable function checks the dependencies of pending genera-
tors and picks the ones where all dependencies are satisfied. Consequently, this
function schedules loops that are available at the present scope and invokes
emitConvergence recursively to schedule any inner loops and assignments that
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must be scheduled inside these loops. emitAssignments function follows a similar
structure to that of the emitGenerators. It schedules assignment instructions as
soon as they become available in the current context.

As program control structures were not enforced from the front end, our
code scheduling mechanism freely moves assignments and generators during the
code generation phase. For example, generators without dependencies on the
‘other query’ are hoisted and scheduled as separate queries. This approach pre-
vents redundant computations within nested loops, enhancing efficiency. For
instance, for our example query, the computation of the total aggregate (i.e.
sum(data.*B.value)) is hoisted out of the *A loop into a completely independent
loop, preventing the recomputation of the aggregate for each different key.

4 Related Work

This section provides a summary of the closely related works to Rhyme, as
presented in [8].

Various efforts have aimed to address the challenge of efficiently handling
multi-paradigm workloads by constructing common IR, as seen in prior work like
Weld [23], Delite [25], and Flern [9]. In this landscape, Rhyme takes a different
approach by introducing a query language-as opposed to a common low-level
IR-that possesses the capability to express diverse multi-paradigm workloads at
a higher level.

Numerous query languages have been crafted for working with semi-
structured data like JSON, each exhibiting its unique focus and strengths.
Notable among them is JSONiq [5,17], a query language explicitly tailored for
JSON data and borrowing syntax from XQuery [4], featuring constructs such as
FLWOR expressions. Engines like Zorba [6] and RumbleDB [21] support JSONiq,
with RumbleDB utilizing Spark [26] as a backend to leverage its scalability for
execution. In the realm of semi-structured data, AsterixDB adopts AQL [2] and
SQL++ [22] as its query languages.

Rhyme draws inspiration from functional logic programming languages such
as Verse [12], Curry [19], miniKanren [15], and Scalogno [11], adapting these
ideas into a novel data-centric declarative language.

5 Conclusion

This system description outlined the design and implementation of Rhyme, a
data-centric and multi-paradigm declarative query language rooted in functional
logic and metaprogramming. Rhyme offers diverse front-end APIs tailored to
various workloads, extending beyond conventional data processing to encompass
applications like tensor expressions (not discussed in this paper but elaborated
in [8]) and expressive visualizations. The system achieves performance efficiency
by constructing a loop-free and branch-free IR, facilitating optimization before
transforming it into optimized JavaScript code for the given query. Currently,
Rhyme is accessible as an open-source Node.js package, adaptable for integration
into other Node.js projects or as a script importable into HTML pages.
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Abstract. Language designers often strive to prove that their program-
ming languages satisfy the properties that were intended at the time of
design. Lang-n-Prove is a DSL for expressing language-parametrized
proofs, that is, proofs that apply to classes of languages rather than
a single language. Prior work has used Lang-n-Prove to express the
language-parametrized proofs of type soundness (excluding the substitu-
tion lemmas) for a certain class of functional languages. In this paper,
we address this class of languages when subtyping is added to them.
We provide the language-parametrized proofs of their type soundness
(excluding the substitution lemmas) and of the equivalence between algo-
rithmic and declarative subtyping. To express these proofs naturally,
we have extended Lang-n-Prove with new operations. Our extension
of Lang-n-Prove generates Abella proofs that machine-check the type
soundness of a nontrivial class of functional languages with declarative
and algorithmic subtyping, when just a few simple lemmas are admitted.

Keywords: Type safety · Subtyping · Functional languages

1 Introduction

Language verification is an important aspect in the cycle of programming lan-
guage development. After creating a programming language, it is often the case
that language designers strive to determine whether the properties that were
intended at the time of design actually hold for the language. It is especially
desirable when these properties are established with mathematical proofs.

Proofs of language properties are often very involved and follow reasoning
lines that are unique to the language at hand. Other times, these proofs follow
a reasoning line that applies to many languages. To make an example, let us
consider the canonical form lemmas for booleans (with if-then-else) and for the
function type. The canonical form lemma of a type constructor establishes the
syntactic forms of the values of that type.

Theorem canonical-form-bool :
∀e. � e : Bool ⇒ e is a value ⇒ (e = true ∨ e = false).

introduce the proviso of the theorem, and case analysis on � e : Bool.
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this value is in the goal, conclude this proof case. # e = true
this value is in the goal, conclude this proof case. # e = false
contradiction with hypothesis “e is a value”. # case of if
contradiction with hypothesis “e is a value”. # case of app

Theorem canonical-form-arrow :
∀e, T1, T2. � e : T1 → T2 ⇒ e is a value ⇒ ∃e′, T. e = λx : T.e′

introduce the proviso of the theorem and case analysis on � e : T1 → T2.
this value is in the goal, conclude this proof case. # e = λx : T.e′

contradiction with hypothesis “e is a value”. # case of if
contradiction with hypothesis “e is a value”. # case of app

The two proofs follow a well-defined schema that can be defined algorithmi-
cally. For example, their statement is built with or-formulae that contain all the
productions of the grammar of values whose typing rule has output type Bool
and the function type, respectively. Case analysis is also uniform. If the expres-
sion e is a value then it has the type being sought after because the statement
specifically says � e : Bool and � e : T1 → T2, respectively. Values of other types
are not even proposed by the case analysis. So, we can conclude these proof cases
quickly. If the expression e is not a value then the case is proved by contradic-
tion. A generalized proof could simply detect whether an expression that is not
a value can be typed at the requested type (Bool or T1 → T2 above) and appeal
to a contradiction regardless of whether it is if, application, or whether it is
head, fst, snd, and so on, in other languages.

In [8], Cimini has developed Lang-n-Prove, a DSL that can express proofs
based on the components of a language given as input. These proofs are language-
parametrized proofs in that they apply to classes of languages rather than a
single language. Lang-n-Prove has been used in [8] to express type soundness
proofs (canonical form lemmas, progress theorem, and type preservation theo-
rem, except substitution lemmas). These language-parametrized proofs apply to
a class of languages that is described in [8] as pure harmonious functional lan-
guages with derived operators and error handlers. (We describe these languages
in Sect. 2.) This class includes common types and operators such as pairs, option
types, sum types, universal and recursive types, exceptions, list operations such
as map, filter, range and reverse, as well as others. Lang-n-Prove generates
machine-checked proofs in Abella [4] and [8] reports having generated the mecha-
nized proof that fully machine checks the type soundness of the above-mentioned
languages when the correct code for substitution lemmas is provided.

Our Contribution: Extension to Subtyping. In this paper, we extend the work
of Cimini to include subtyping. Our first contribution is the Lang-n-Prove
language-parametrized proofs of type soundness for the languages captured in
[8] when declarative subtyping is added to them. This endeavor entails both
extending the proofs of [8] as well as modeling new proofs, namely for the sub-
typing and typing inversion lemmas, which were not needed in [8].

Our second contribution is the language-parametrized proofs of the equiv-
alence between declarative and algorithmic subtyping for the above-mentioned
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languages. We have also extended Lang-n-Prove with new operations for nat-
urally expressing the language-parametrized proofs of this paper. To make an
example, both inversion subtyping and typing lemmas are built from the com-
ponents of inference rules. We therefore added operations to quickly retrieve
premises and parts of the conclusions of rules. Furthermore, inversion typing
lemmas simultaneously handle a typing rule and a subtyping rule, which then
need to agree on the set of variables being used. We therefore added an operation
called align to make the two rules use the same set of variables.

We have extended the implementation of Cimini [8] with the new operations
that we describe in this paper. We have also added our language-parametrized
proofs for subtyping to the tool. The repo of language definitions of [8] con-
sists of 145 languages. (This is due to a base of several operations and types
which are then combined and given in different evaluation strategies.) We have
addressed the typical subtyping relation of the form T <: T , and therefore we
have excluded from the repo languages such as System F<: and languages with
recursive types, which make use of a relation Γ � T <: T with a context for type
variables. In total, we have added subtyping to 132 languages of the repo of [8].
We did not contribute to the missing substitution lemmas of [8]. Therefore, those
lemmas must be provided manually as in [8]. We confirm that our extension of
Lang-n-Prove generates the full machine-checked proof of type soundness for
all these languages, when the substitution lemmas are manually added. We also
confirm that our extension of Lang-n-Prove generates the machine-checked
proof of equivalence of declarative and algorithmic subtyping for all these lan-
guages, when subtyping reflexivity and a trivial lemma for the top type are
admitted. (We discuss this issue in Sect. 5.)

The paper is organized as follows. Section 2 reviews operational seman-
tics and Lang-n-Prove. Section 3 provides our language-parametrized proofs
of type soundness for declarative subtyping. Section 4 provides our language-
parametrized proofs of the equivalence between declarative and algorithmic
subtyping. Section 5 discusses our evaluation and the limitations of our work.
Section 6 discusses related work and Sect. 7 concludes the paper.

2 Operational Semantics and Lang-n-Prove (Review)

We focus on languages defined with operational semantics. To review, Fig. 1
shows a λ-calculus with booleans, the try error handler, and subtyping with a
top type �. We call this language fl<:. (The reduction relation is standard and
we do not show it in Fig. 1.)

A language has a grammar which consists of a series of grammar rules. A
grammar rule defines a syntactic category, such as Type and Expression, by declar-
ing a metavariable and its grammar productions, such as �, Bool, and T → T
of the syntactic category Type.

A language also has inference rules that define relations such as a typing and
a subtyping relation. The formulae above the horizontal line are the premises
of the rule, and the formula below is the conclusion. For example, Γ � e : T1
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Type T ::= Bool | T T

Expression e ::= top | true | false | if e then e else e
| x | λx : T.e | (e e) | raise e | try e with e

Declarative Type System Γ e : T

Γ top :

Γ true : Bool

Γ false : Bool

Γ, x : T x : T
Γ, x : T1 e : T2

Γ λx : T1.e : T1 T2

(t-app)

Γ e1 : T1 T2 Γ e2 : T1

Γ (e1 e2) : T2

(t-if)

Γ e1 : Bool Γ e2 : T Γ e3 : T

Γ if e1 then e2 else e3 : T

Γ e : Bool
Γ raise e : T

(t-try)

Γ e1 : T
Γ e2 : Bool T

Γ try e1 with e2 : T

(t-sub)

Γ e : T1 T1 <: T2

Γ e : T2

Algorithmic Type System Γ e : T

all rules of except , , , and but using

(algo-t-app)

Γ e1 : T1 T2 Γ e2 : T3 T3 <a T1

Γ (e1 e2) : T2

(algo-t-if)

Γ e1 : Bool
Γ e2 : T1 Γ e3 : T2 T1 T2 = Tj

Γ if e1 then e2 else e3 : Tj

(algo-t-try)

Γ e1 : T1 Γ e2 : T3 T2
Bool <a T3 T1 T2 = Tj

Γ try e1 with e2 : Tj

Declarative Subtyping T <: T , Algorithmic Subtyping T <a T , and Join T T = T

T <: T <: T
T1 <: T2 T2 <: T3

T1 <: T3

(s-arrow)

T3 <: T1 T2 <: T4

T1 T2 <: T3 T4

<a
Bool <a

(T1 T2) <a
Bool <a Bool

T3 <a T1 T2 <a T4
T1 T2 <a T3 T4

T =

Bool T =

T1 T2 T =

Bool Bool = Bool

T1 T1 = T1 T2 T2 = T2

T1 T2

T1 T2
= T1 T2

Fig. 1. Language definition of fl<: (typing and subtyping). We use notation T <a T
for algorithmic subtyping rather than the more standard �� T <: T [21].
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and T1 <: T2 are the premises of (t-sub), and Γ � e : T2 is the conclusion of
(t-sub). Inference rules that derive �-formulae are called typing rules, whereas
those that derive <:-formulae are called subtyping rules. The latter rules in Fig. 1
equip fl<: with declarative subtyping. We refer to rules such as (s-arrow) as
the specific subtyping rule of the function type. It is well-known that declarative
subtyping does not suggest an implementation [21], and implementations employ
algorithmic subtyping. The inference rules of fl<: whose conclusion can derive
��-formulae are called algorithmic typing rules, whereas those that derive <a-
formulae are called algorithmic subtyping rules. Algorithmic typing rules do not
include (t-sub) and modify some existing typing rules to accommodate for dif-
ferent types where type equality is required instead. Those types are then related
by subtyping means (subtyping or join, as we shall describe below). In Fig. 1,
(algo-t-app) replaces (t-app), (algo-t-if) replaces (t-if), and (algo-t-
try) replaces (t-try). (algo-t-app) assigns two metavariables T1 and T3 to
the metavariable T in (t-app) and checks that T3 <: T1 because of parame-
ter passing. (Following [21], (algo-t-app) does not use premises � e1 : T and
T <a T1 → T2, and neither do other rules.) Rule (t-if) assigns T1 and T2 to T
but these two types are peers and we compute the join type of them with the
join operation ∨. The join type of T1 and T2 is the least common supertype of
T1 and T2. Since the domain of functions is contravariant, the join type of two
function types makes use of the meet type of their domains. The meet of T1 and
T2 is their greatest common subtype.

Lang-n-Prove provides a DSL for expressing proofs that apply to classes of
languages, that is, language-parametrized proofs. The following provides a subset
of the syntax of Lang-n-Prove from [8], which gives the general structure of
language-parametrized proofs (called proof schemas in the grammar below).

Proof Schema t̂h ::= for each Z in t̂, Theorem ˆname : f̂ . Proof p̂.
LNP Name ˆname ::= name | name_(t̂)
LNP Formula f̂ ::= ˆname : â | f̂ ∧ f̂ | f̂ ∨ f̂ | f̂ ⇒ f̂ | ∀X.f̂ | ∃X.f̂

| ∧
(Z in t̂) .f̂ | ∨

(Z in t̂) .f̂ | ⇒(Z in t̂).f̂

LNP AFormula â ::= (pname t̂1 . . . t̂n)
LNP Term t̂ ::= X | (opname t̂1 · · · t̂n) | ofType(t̂)

| isEliminationForm(t̂) | several others, see [8]
LNP Proof p̂ ::= intros | search | ˆname : case ˆname | noOp

| ˆname : induction on ˆname
| ˆname0 : apply ˆname1 to ˆname2, . . . , ˆnamen
| backchain ˆname
| p̂.p̂ | for each Z in t̂ : p̂ | if t̂ then p̂ else p̂

One proof has the form Theorem ˆname : f̂ . Proof p̂ where ˆname is the name
of the theorem, f̂ is its statement, and p̂ is its proof. A proof schema t̂h has
the ability to replicate one proof for each element Z of a list t̂. Names ˆname
are strings to which we can append terms. For example, canonical-form-_(bool),
where bool may come from the grammar of types, generates the lemma name
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canonical-form-bool . Examples of atomic formulae â are e −→ e and Γ � e : T .
They are accommodated in AST style (with a top-level predicate name) but we
shall write them in their familiar shape. Formulae can use conjunction, disjunc-
tion, and implication, as well as their iterative form. For example,

∧
(Z in t̂) .f̂

generates a formula for each element Z of the list t̂ and places these formu-
lae in conjunction. Terms can be the elements that may occur in grammars.
Lang-n-Prove also provides operations that are specific to operational seman-
tics. For example, ofType(true) looks at the typing rule of true and returns bool.
As another example, the test isEliminationForm(app e e) holds because func-
tion application is an elimination form while isEliminationForm(true) does not
hold. Lang-n-Prove provides several of these operations. We cannot cover them
all and we refer the reader to [8]. (We shall describe operations as we encounter
them, and we shall clearly address the new operations that we added.) The proof
tactics of Lang-n-Prove are based on Abella’s tactics [4]. The tactic intros
introduces the proviso of the theorem. The search tactic denotes that we have
everything we need to prove the goal. We can do case analysis and induction
and we can apply lemmas or hypotheses. The backchain tactic applies a lemma
or hypotheses to conclude the proof case. (backchain is a bit more general, see
[4], but that is how we use it in this paper.) Proofs can be put in sequence with
p̂.p̂ and noOp has no effect. Furthermore, a for-each construct replicates a proof
for each element Z of the list t̂, and we can use an if-then-else statement.

Lang-n-Prove has been applied to a class of languages that [8] describes as
1) pure functional, i.e., reduction relation e −→ e, 2) harmonious [11,19], i.e.,
operators can be classified in introduction forms and elimination forms and 3)
to which we can add error handlers and derived operators (such as let, though
we have not added any in fl<:). Due to lack of space, we cannot review this
class in detail, and we refer the reader to Section 2 and 9 of [8].

3 Declarative Subtyping with Lang-n-Prove

3.1 Inversion Subtyping Lemmas

The proof of type safety uses an inversion subtyping lemma for each type con-
structor. The lemma establishes what information we can derive from a formula
T1 <: T2 when T2 is built with such constructor applied to distinct metavari-
ables. These lemmas are built from the subtyping rule of that type constructor.
Figure 2 shows the inversion subtyping lemma of the function type and list type
at the bottom of the figure. We use colors to show how the components of their
subtyping rules form such lemmas. For example, for the function type, the lemma
starts with a type T3 → T4 obtained from the right argument of the subtyping
formula in the conclusion of the subtyping rule. The lemma derives the type T
that would be a subtype of that type according to the rule, which is the left
argument of the <:-conclusion. Furthermore, it also establishes the conditions
that must have held; These are the premises of the subtyping rule.
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1 for each ty in (Type ), Theorem (ty) :
2 let r = ty.rule[<:] in

3 *. Main : T <: r.right *. T = r.left (
(p in r.premises )

. p ).

4 Proof. intros. : induction onMain.

5 search. search.

6 apply IH to . apply IH to . search.

Example of statements:

T3 <: T1 T2 <: T4

T1 T2 <: T3 T4

T1 <: T2

List T1 <: List T2

premises

left

right

Theorem

T, T3, T4. T <: T3 T4 T1, T2. T = T1 T2 T3 <: T1 T2 <: T4

Theorem

T, T2. T <: List T2 T1. T = List T1 T1 <: T2

Fig. 2. Language-parametrized proof for inversion subtyping lemmas

To use this approach, we extended Lang-n-Prove with a dot-notation
t.rule[rel] to return the rule that defines the relation rel for the top-level con-
structor of the term t. This dot-notation is also used to retrieve parts of rules:
r.left retrieves the left argument of the conclusion of r, r.right retrieves the
right argument, and r.premises retrieves the premises of the rule as a list. Our
language-parametrized proof is in Fig. 2. Line 1 generates a lemma for each
type ty in the grammar Type (except �, which does not need one). The name
of each lemma contains the top-level constructor name of ty, appended with
“_(ty)” at Line 1. Then, ty.rule[<:] retrieves the subtyping rule of ty. Line 3
builds the statement of the lemma: If T is a subtype of r.right then T must
be r.left and satisfy the (subtyping) premises of r. The latter part is realized
with an and-quantification over r.premises. Notice that we have also extended
Lang-n-Prove with automatic quantification ∀*, used at Line 3. This operation
universally quantifies the variables that are not already quantified in the formula
that follows. (We have also added its existential counterpart ∃*.)

The proof is by induction on the main premise of the theorem. There are
three cases. The first is for the specific subtyping rule of the type constructor
and the second is for reflexivity and they both trivially hold. The third case is
for transitivity, which offers premises T1 <: T2 and T2 <: T3 → T4. We apply
the inductive hypothesis on the second premise to derive that T2 is a function
type, which makes the inductive hypothesis applicable to the first premise, as
well. Afterwards, the goal trivially holds.

Line 4–6 generates the proof. We have extended Lang-n-Prove with families
of hypotheses (NameOfHyp n1 n2 . . . nk) for numbers n1, n2, . . . nk, which
simply creates the hypothesis name NameOfHyp−n1−n2−. . .−nk. (The benefits
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for each ty in Type, Theorem (ty) : . . . see

Proof. : induction onMain.

. . .

apply . backchain

Fig. 3. Language-parametrized proof for canonical form lemmas

Theorem progress : e, T. Main : e : T e progresses.

Proof. Typ : induction onMain.

. . . see

backchain .

for each e in Expression, Theorem progress (e) : . . . see

Proof. intros. Typ : induction onMain.

. . . see

backchain .

Fig. 4. Language-parametrized proofs for the progress theorem

of this feature are best seen in Sect. 4.3). Line 4 declares family (PremiseAt _).
The inductive hypothesis is applied to the second premise (PremiseAt 1) first
and then to the first (PremiseAt 0) before concluding the proof.

3.2 Canonical Form Lemmas

Figure 3 highlights the modifications that we made to the proof of canonical
form lemmas of [8]. The proof in [8] performs a case analysis on typing formulae,
but our proof needs to handle the extra case for the subsumption rule (t-sub),
which is inductive. Therefore, the proof is by induction rather than case analysis.
Rule (t-sub) offers Γ � e : T3 and T3 <: T1 → T2 for some T3. We apply the
inversion subtyping lemma to discover that T3 = T ′

1 → T ′
2 for some T ′

1 and T ′
2,

which derives Γ � e : T ′
1 → T ′

2. The inductive hypothesis concludes the proof.
Appendix B shows an example of this proof for the function type.

3.3 Progress Theorem

The progress theorem is divided into two parts in [8]. The first part is the main
theorem, which calls the operator-specific progress theorem of each expression
constructor. An example of such theorem is progress-app for function application:
∀T, e1, e2. Γ � (e1 e2) : T ⇒ e1 progresses ⇒ e2 progresses ⇒ (e1 e2) progresses,
where “e progresses” holds whenever e is a value, e is an error, or e −→ e′. We
refer the reader to [8] for their proofs. Figure 4 highlights the modifications that
we made to them. They both need to handle the extra case of (t-sub) with the
inductive hypothesis. The operator-specific theorems use case analysis in [8] but
they need induction here for the same reasons as in the canonical form lemmas.
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1 for each v in Value, Theorem (v) :
2 let srule = ofType(v).rule[<:] in

3 let trule = align v.rule[ ] to srule where outputType = left in

4 *. Main : Γ trule.exp : srule.right

5 *. (
(p in trule.premises )

. p ) (
(p in srule.premises )

. p ).

6 Proof. : induction onMain.

7 search.

8 apply (ofType(v)) to .

9 apply IH to . search.

Example for λ-abstraction:

Γ, x : T e : T

Γ λx : T .e : T T

Γ, x : T1 e : T2

Γ λx : T1.e : T1 T2

premises

exp

outputType

T3 <: T1 T2 <: T4

T1 T2 <: T3 T4

premises

left, must align with outputType

right

Theorem

e, T1, T3, T4.

Γ λx : T1.e : T3 T4 T2. Γ, x : T1 e : T2 T3 <: T1 T2 <: T4

Fig. 5. Language-parametrized proof for inversion typing lemmas

3.4 Inversion Typing Lemmas

The proof of type safety uses an inversion typing lemma for each value. For a
value v, this lemma establishes what information we can derive from Γ � v : T
when T is built with a type constructor applied to distinct metavariables. As the
value may have been typed using the subsumption rule, the information we derive
is not from the premises of the typing rule alone but also from the premises of
the subtyping rule of the type of the value. To combine both premises, however,
they need to align w.r.t. the names of their metavariables.

Figure 5 shows an example lemma (and others can be found in Appendix A)
and our language-parametrized proof. Line 1 generates a lemma for each value,
and 2–5 generate one statement. Line 2 retrieves the type of the value with
ofType(v) and binds its subtyping rule to srule. Line 3 also retrieves the typing
rule of the value with v.rule[�]. We have added labels exp and outputType to
our dot-notation to retrieve e and T of Γ � e : T . We also added the operation
align r1 to r2 where �1 = �2. This operation returns a rule that is α-equivalent
to rule r1 and is such that the argument in its conclusion that is denoted by the
label �1 matches the argument in the conclusion of r2 that is denoted by �2. Line
3 uses align to obtain a version of the typing rule where its output type makes
use of the same variables as the left argument of the conclusion of srule. Lines
4–5 creates the lemma statement as described above.
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1 Theorem e, e , T. Main : e : T Step : e e e : T

2 Proof : induction onMain.

3 for each e in Expression :
4 : case Step.
5 for each tg in stepsWithoutPM(e) : if containsSubst(tg) then else search.

6 if isEliminationForm(e)

7 for each v in valuesOf(getArgType(e, 0)) :

8 if containsSubst(targetOfElimForm(e, v)) then

9 else apply (v) to . search.

10 else if isErrorHandler(e)

11 for each err in Error :

12 if containsSubst(targetOfErrorHandler(e, err)) then

13 else apply (err) to . search.

14 else noOp

15 for each i in contextualArgs(e) : apply IH to . search

16 for each i in contextualArgs(e) : if isErrorHandler(e) and i = 0

17 then noOp else backchain

18 apply IH to . search

Fig. 6. Language-parametrized proof for the type preservation theorem

The proof is by induction on Γ � v : T . There are two cases: 1) The typing
rule of the value, which trivially holds (Line 7), and 2) rule (t-sub), which is
proved in the same way as for the canonical form lemmas (Lines 8–9).

Inversion lemmas for errors are simpler and can be found in Appendix C.

3.5 Type Preservation Theorem

Type preservation establishes that for each expression e such that � e : T , for
some T , if e −→ e′, then � e′ : T . The proof is by induction on � e : T and then
by case analysis on the steps of e. Our proof differs from [8] only for elimination
forms and error handlers, and for handling (t-sub).

Consider the reduction rule head (cons v1 v2) −→ v1. In the corresponding
proof case, the proof offers the premise of the typing rule of head: � cons v1 v2 :
List T , for some T . With (t-sub) absent, the proof of [8] retrieves the types of
v1 and v2 with a case analysis on that typing formula. As we have (t-sub), we
must apply an inversion typing lemma. This means that, for a reduction rule,
we need to know which value is handled so that we can call the correct inversion
typing lemma and conclude the proof. Error handlers follow the same line.

Figure 6 shows our proof for the type preservation theorem. It is the one in [8]
except for the parts that are highlighted. Lines 6–9 handle elimination forms in
the way described above. Line 7 retrieves the type of the first argument (index 0)



Language-parameterized Proofs for Functional Languages with Subtyping 301

1 Theorem : *. Main : T1 <a T2 T1 <: T2.
2 Proof. ( ) : induction onMain.

3 search.

4 for each ty in (Type ) :
5 for each p in ty.rule[<a].premises[<a] : apply to ( p).
6 search. search.

7 Theorem : *. Main : e : T e : T.
8 Proof. ( ) : induction onMain.

9 for each e in Expression :
10 for each p in e.rule[ ].premises[ ] : apply to .

11 for each p in e.rule[ ].premises[<a] : apply

12 for each p in e.rule[ ].premises[ ] : apply

13 search.

Fig. 7. Language-parametrized proofs for subtyping and typing soundness

of e with getArgType(e, 0). (Values are handled at argument 0 by convention.)
We retrieve all the values of that type with valuesOf and, for each, we retrieve
the target of the reduction rule of the elimination form (e) that handles that value
(v). We do so with a new operation targetOfElimForm(e, v) that we have added
to Lang-n-Prove. If substitution is not used, we apply the inversion typing
lemma and conclude the proof. If tg uses substitution (containsSubst(tg)), [8]
leaves a hole � in the proof because [8] does not provide substitution lemmas and
we do not either. Lines 10–14 handle error handlers similarly. Line 18 handles
the subsumption rule with the induction hypothesis.

4 Algorithmic Subtyping

4.1 Subtyping and Typing Soundness

Figure 7 shows the proofs for the soundness of algorithmic subtyping and typing.
The former establishes that algorithmic subtyping implies declarative subtyping.
Its proof is by induction on how to derive algorithmic subtyping formulae. The
first case is for � < a �, which holds trivially (Line 3). For all other type
constructors, we have two cases: 1) their specific subtyping rule and 2) the rule
that declares them as a subtype of � (e.g., T1 → T2 <a �). For the former, we
call the inductive hypothesis on the premises to turn them into <:-formulae and
conclude the case. The latter case holds trivially (second search of Line 6).

Typing soundness establishes that if an expression has some algorithmic type
T then it also has type T according to declarative subtyping. Its proof (bottom
of Fig. 7) is similar to subtyping-soundness. This time around, algorithmic typing
rules have three kinds of premises: 1) Algorithmic typing premises, to which we
apply the inductive hypothesis to turn them into declarative typing formulae,
2) <a-premises, to which we apply soundness to turn them into <:-formulae,
and 3) join premises, to which we apply the join-implies-subtyping lemma that
derives that T1 ∨ T2 = T3 implies T1 <: T3 and T2 <: T3.
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1 Theorem : *. Main : T1 <: T2 T1 <a T2.

2 Proof. ( ) : induction onMain.

3 backchain

4 for each ty in (Type ) :
5 for each p in ty.rule[<a].premises[<a] : apply to ( ).
6 search.

7 backchain

8 apply to apply to

9 backchain

Fig. 8. Language-parametrized proofs for subtyping completeness

4.2 Subtyping Completeness

Figure 8 shows the language-parametrized proof for the completeness of algo-
rithmic subtyping, that is, declarative subtyping implies algorithmic subtyping.
The proof is by induction and there are four cases. The first case is for the
rule T <: �, which is proved with lemma subtype-algo-top: ∀T.T <a � (Line
3). The second case is for all algorithmic subtyping rules of constructors other
than �. We apply the inductive hypothesis to their premises to turn them into
<a-formulae and conclude (Lines 4–6). The third case is reflexivity, which is
proved with lemma subtype-algo-reflexivity (Line 7). The fourth case is transi-
tivity. We turn the two premises into <a-formulae and we conclude with lemma
subtype-algo-transitivity : ∀T1, T2, T3.T1 <a T2 ⇒ T2 <a T3 ⇒ T1 <a T3 (Lines
8–9).

4.3 Typing Completeness

Typing completeness establishes that if an expression has some type T1 according
to declarative typing, then it has algorithmic type T2, for some type T2 <: T1 (We
follow TAPL [21].) The proof is by induction on the typability of expressions.
For each declarative typing rule, we seek its corresponding algorithmic rule. The
proof is based on the premises in the algorithmic typing rule, as they must be
satisfied: typing premises, subtyping premises, and join premises.

For typing premises, we apply the inductive hypothesis to derive its algo-
rithmic version. Notice that the theorem needs to prove algorithmic typing of
e and declarative subtyping T2 <: T1. Therefore, we always derive subtyping
information in both declarative and algorithmic forms. There is another aspect
to handle. We call a type constructed if it is built with a type constructor. If the
output type of the premise is constructed, then the inductive hypothesis may
derive a formula such as, say, T <: T1 → (T2 → T3). We then must use the
inversion subtyping lemma to derive that T is T ′

1 → T2′ with T1 <: T ′
1 and

T ′
2 <: (T2 → T3). As we can see, we would also need to apply the inversion sub-

typing lemma for T ′
2 and, in general, for all the subterms that are constructed

and appear in covariant position, as T2 → T3 in T1 → (T2 → T3), because they
end up at the right of a <:-formula with a metavariable on the left.
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1 Theorem : *. Main : e : T1 *. e : T2 T2 <: T1.
2 Proof. ( ) : induction onMain.

3 for each e in Expression :
4 for each p in e.rule[ ].premises[ ] :
5 apply to .

6 apply to .

7 if constructed(p.out) then
8 apply (p.out) to .

9 apply (p.out) to .

10 for each i in range(arity(p.out)) :

11 if constructed(getArg(p.out, i)) and covariant(p.out, i) then

12 ( ) : apply (getArg(p.out, i)) to .

13 ( ) : apply (getArg(p.out, i)) to

14 else noOp

15 else noOp rule[ ].premises[ ]

16 for each p in e.rule[ ].premises[<a] :

17 if varIsInPremises(p.left,

18 and varIsInPremises(p.right, then

19 apply to findVar p.left

20 findVar p.right

21 else noOp

22 for each p in e.rule[ ].premises[ ] :

23 if varIsInPremises(p.left,

24 and varIsInPremises(p.right, then

25 : apply to findVar p.left

26 findVar p.right

27 apply to (Join ).

28 else noOp

29 search.

30 apply to ( ). search

Fig. 9. Language-parametrized proof for typing completeness. Above, inv-sub abbre-
viates inversion-subtyping and inv-sub-alg abbreviates inversion-subtyping-algo. The
latter derives <a-formulae rather than <:-formulae.

For subtyping premises T1 <a T2, the inductive hypothesis or an inversion
lemma of the previous step had produced one <a-formula for T1 and one for
T2. We apply transitivity to derive T1 <a T2. For join premises T1 ∨ T2 = T3,
we analogously have one <a-formula for T1 and one for T2 from induction or
inversion. The existence-of-join lemma then derives the existence of a join T3.

Figure 9 shows the proof for typing completeness. Lines 4–15 handle typing
premises as described above. We implemented the operators constructed and
covariant to test those properties on terms. Although an inversion subtyping
lemma should be applied exhaustively for the output type, out of simplicity, we
apply it only to the top-level (Lines 7–9) and its direct arguments (Lines 10–14).

We use families of hypotheses to model a coordinate system to locate formu-
lae. We store <:-formulae within the Subtyping family and <a-formulae within
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the SubtypingA family. Consider T1 → (T2 → T3) from above, and assume it
is from the third premise. We store the <a-formula of T1 in (SubtypeA 2 0)
because it is the first (0) argument of the top-level constructor from the third
(2) premise. The <a-formula of T2 is stored in (SubtypeA 2 1 0) because it is
the first argument (0) of the second argument (1) of the constructor.

Lines 16–21 handle subtyping premises as described above. The transitiv-
ity lemma requires the < a-formulae of the two metavariables to be linked.
These are stored according to the coordinate system just described. We extended
Lang-n-Prove with the operation (Hyp ⇐ findVar var premises), which
finds the position of the metavariable var in the premises premises and builds a
hypothesis based on that position. For example, for T2 above, it finds the coor-
dinate 2-1-0 and returns (Hyp 2 1 0). Line 19 uses this operation with family
SubtypeA to generate (SubtypeA 2 1 0), exactly where the previous step would
have placed the < a-formula for T2. We also implemented varIsInPremises
to check beforehand that metavariables can be found. Lines 22–28 handle join
premises and find the hypotheses for existence-of-join with findVar.

After all this information has been derived, Line 29 concludes this case with
search. Finally, Line 30 handles (t-sub) with the inductive hypothesis.

5 Evaluation and Limitations of Our Work

We have extended the implementation of Lang-n-Prove with the new opera-
tions described in this paper: dot-notation to retrieve rules and components of
rules, automatic quantifications ∀* and ∃*, and families of hypotheses (Sect. 3.1),
align (Sect. 3.4), targetOfElimForm (Sect. 3.5), and constructed, covariant,
varIsInPremises, and findVar (Sect. 4.3). Lang-n-Prove accepts a textual
representation of languages1 similar to Ott [24]. The repo of language defini-
tions of Lang-n-Prove contains 145 functional languages with common types
and operators. We do not handle subtyping à la System F<: nor recursive subtyp-
ing (see paragraph “Limitations” below). Therefore, we could extend 132 of those
languages with subtyping (and �). (AppendixD shows examples of algorithmic
typing rules that we have used.) We confirm that the language-parametrized
proofs of Sects. 3 (type soundness) generate the Abella [4] code that machine-
checks the type soundness of the languages above, except that, as in [8], substi-
tution lemmas must be manually provided.

Other proofs rely on lemmas join-implies-subtype, subtyping-algo-transitivity ,
and others. We did not show their language-parametrized proofs but they can
be found in the repo of the tool [12]. However, we admit two trivial lemmas,
subtype-algo-top : ∀T.T <a � and subtype-algo-reflexivity : ∀T.T <a T because
Abella does not allow induction over T . We could solve this with a predicate,
say isType, that establishes the structure of T . However, this changes the two
lemmas and imposes other theorems to prove isType formulae. We did not
include this reasoning in our proofs. We confirm that the language-parametrized
1 See .lan files at https://github.com/mcimini/lang-n-prove/blob/main/repo-

subDA.

https://github.com/mcimini/lang-n-prove/blob/main/repo-subDA
https://github.com/mcimini/lang-n-prove/blob/main/repo-subDA
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proof of the equivalence between declarative and algorithmic subtyping generate
the Abella proof code that machine-checks such equivalence for the 132 above-
mentioned languages, except that reflexivity and subtype-algo-top are admitted.

Limitations. We do not handle languages with a state, dependent types, types-
tate, and many other sophisticated type systems. We also address a subtyping
relation T <: T whereas some languages such as System F<: and languages with
recursive types use a context for type variables, and are therefore out of our
scope. Also, our typing completeness proof of Sect. 4.3 does not support chained
subtyping formulae as in premises T1 ∨T2 = T3 and T3 <: T4 and T4 <: T5. This
would require multiple applications of the transitivity lemma to follow such for-
mulae. This situation did not occur in the many languages that we tested. The
tool does not provide useful error messages, as it lacks a debugging system that
links errors in the generated proofs back to the source code.

6 Related Work

The work of Pfenning and Schürmann with Twelf [20] demonstrates that the the-
orems of type safety can be automatically proved for some functional languages.
Veritas [13–15] creates soundness theorems from language definitions, and these
theorems are then checked with an automated prover. With intrinsic typing [6],
the evaluator of a language is implemented using a type theory in such a way
that if it type checks then the language is type sound [1–3,5,16,22,23,26]. Cimini
et al. [10] proposes an extrinsic type system that classifies parts of a (functional)
language definition and imposes a language organization [7,10].

These approaches differ from our work in that they do not describe proofs.
Although some of these approaches can automate “prove lemma using induction
and auxiliary lemma � ”, they do not express statements and proofs based on the
grammar, inference rules, and roles of operators (intro/elimination forms).

7 Conclusion

We presented language-parametrized proofs for the type soundness of the lan-
guages addressed in [8] when subtyping (and �) is added and for establishing
the equivalence of declarative and algorithmic subtyping.

We added subtyping (and �) to 132 of the 145 languages in the repo of [8].
Our extension of Lang-n-Prove has generated the Abella proofs that machine-
check their type soundness, when the substitution lemmas are provided. Our
proofs also mechanize the equivalence of declarative and algorithmic subtyping,
though two trivial lemmas (reflexivity and subtype-algo-top) are admitted.

In the future, we plan to explore generating proofs for other theorem provers.
There is work on automatically adding subtyping to languages [17,18] and we
plan to integrate it with our tool. We would like to study the complexity of our
proofs as illustrated in [9]. We also would like to develop a language-parametrized
proof of strong normalization based on Tait’s method [25].
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A Examples of Inversion Typing Lemmas

Figure 10 provides more examples of inversion typing lemmas produced by Fig. 5.

Γ e1 : T1 Γ e2 : List T1

Γ cons e1 e2 : List T1

premises

exp

outputType

T1 <: T2

List T1 <: List T2

premises of subtyping rule

left of subtyping rule

right of subtyping rule

Theorem :
e1, e2, T2.

Γ cons e1 e2 : List T2 T1. Γ e1 : T1 Γ e2 : List T1 T1 <: T2

Γ e1 : T1 Γ e2 : T2

Γ e1, e2 : T1 × T2

premises

exp

outputType

T1 <: T3 T2 <: T4

T1 × T2 <: T3 × T4

premises of subtyping rule

left of subtyping rule

right of subtyping rule

Theorem :
e1, e2, T3, T4.

Γ e1, e2 : T3 × T4
T1, T2. Γ e1 : T1 Γ e2 : T2 T1 <: T3 T2 <: T4

Fig. 10. Some examples of inversion typing lemmas

B Examples of Generated Proofs

The following are the Abella proofs generated by our language-parametrized
proofs of the inversion subtyping lemma and canonical form lemma for the func-
tion type in the simply typed λ-calculus. Language definition at:

https://github.com/mcimini/lang-n-prove/blob/main/repo-subD/stlc_
cbv.lan

https://github.com/mcimini/lang-n-prove/blob/main/repo-subD/stlc_cbv.lan
https://github.com/mcimini/lang-n-prove/blob/main/repo-subD/stlc_cbv.lan
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Theorem Inversion -subtype -arrow:
forall typ , forall T1’, forall T2’,
{subtype typ (arrow T1’ T2’)} -> exists T1, exists T2,

(typ = (arrow T1 T2))
/\ (({ subtype T1’ T1}) /\ ({ subtype T2 T2’})).

IH0 : induction on 1. intros Main.
PremiseAt 0: case Main.
search.
search.
apply IH0 to PremiseAt 1.
apply IH0 to PremiseAt 0.
search.

Theorem Canonical -form -arrow:
forall e, forall T1, forall T2,
{typeOf (empty) e (arrow T1 T2)} -> {value e} ->

exists T1, exists R2, e = (abs T1 R2).
IH0 : induction on 1. intros Main ValHyp.
TypingPremAt 0: case Main.
search.
case ValHyp.
apply Inversion -subtype -arrow to TypingPremAt 1.
backchain IH0.

C Inversion Typing Lemmas for Errors

1 for each err in Error, Theorem inversion-typing-_(err) :
2 let r = err.rule[�] in
2 ∀*. Main : Γ � r.exp : r.outputType ⇒ ∃*. (∧(p in r.premises) . p).
5 Proof. Subtype0 : induction on Main.
6 search. backchain IH0.

D Examples of Algorithmic Typing Rules

Below, we show some examples of algorithmic typing rules (other than those of
fl<:) that we have used in our tested language definitions.

Our extension of Lang-n-Prove uses |a- to denote the algorithmic typing
relation and <a to denote the algorithmic subtyping relation.

Gamma |a- (cons E1 E2) : (list T3)
<== Gamma |a- E1 : T1

/\ Gamma |a- E2 : (list T2)
/\ join T1 T2 T3.
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Gamma |a- (append E1 E2) : (list T3)
<== Gamma |a- E1 : (list T1)

/\ Gamma |a- E2 : (list T2)
/\ join T1 T2 T3.

Gamma |a- (filter E1 E2) : (list T1)
<== Gamma |a- E1 : (list T1)

/\ Gamma |a- E2 : (arrow T2 (bool))
/\ T1 <a T2.

Gamma |a- (map E1 E2) : (list T3)
<== Gamma |a- E1 : (list T1)

/\ Gamma |a- E2 : (arrow T2 T3)
/\ T1 <a T2.

Gamma |a- (fix E) : T2 <== Gamma |a- E : (arrow T1 T2)
/\ T2 <a T1.
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Abstract. We introduce here a domain-specific language, PLEB. The
Piecewise-Local Expression Builder interpreter (plebby) is an interactive
system for defining, manipulating, and classifying regular formal lan-
guages. The interactive theorem-proving environment provides a gener-
alization of regular expressions with which one can intuitively construct
languages via constraints. These constraints retain their semantics upon
extension to larger alphabets. The system allows one to decide implica-
tions and equalities, either at the language level (with a specified alpha-
bet) or at the logical level (across all possible alphabets). Additionally,
one can decide membership in a number of predefined classes, or arbitrary
algebraic varieties. With several views of a language, including multiple
algebraic structures, the system provides ample opportunity to explore
and understand properties of languages.

Keywords: Formal language theory · Subregular analysis · Semigroup
classification · Interactive theorem proving · Mathematical library

1 Introduction

The study of formal languages is fundamental to the field of theoretical computer
science. The regular languages in particular correspond to finite-state automata,
which model stateful systems such as neural networks [21], text processing [43],
robotics [33], and much more. So fundamental are these concepts that nearly any
text on the theory of computation will include chapters on the regular languages
including constructions of finite automata and operations under which they are
closed, cf. [18,25,41]. Beyond theoretical computer science, finite-state methods
form a basis for much of computational linguistics, cf. [7,15,19].

Initially developed as a study aid over the duration of an undergraduate
course in the theory of computation, the Language Toolkit (ltk) is a Haskell
library for working with constraint-based descriptions of languages. It is freely
available under the mit open-source license.1 Of the many tools it ships with,
1 At https://github.com/vvulpes0/Language-Toolkit-2/tree/develop one finds the lat-

est unstable version of the software, and full stable releases can be found at https://
hackage.haskell.org/package/language-toolkit.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Gibbons and D. Miller (Eds.): FLOPS 2024, LNCS 14659, pp. 311–328, 2024.
https://doi.org/10.1007/978-981-97-2300-3_16
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we focus here on the domain-specific language it defines (pleb) and its associ-
ated interpreter, plebby. This provides a practical and pedagogical system for
manipulating regular languages and finite machines, essentially a Prolog for the
regular languages. The primary features of the system are the ability to decide
equivalences and implications, at the logical level or at the language level, and
the ability to decide which subregular classes contain a given language.

The space of regular languages is rich. McNaughton and Papert [27] dis-
cuss several of these classes, and for each class they provide a description of
what kind of information is relevant to its patterns. For instance, the languages
locally testable in the strict sense (often called “strictly local”) distinguish words
by their substrings up to some fixed length k. Rogers and Lambert [36] discuss a
broader collection of classes of formal languages, with a focus on those that cor-
respond to quantifier-free first-order systems. The pleb programming language
is particularly optimized for expressing these quantifier-free formulae, but it is
powerful enough to describe any regular language. The direct mapping between
these logical languages and pleb expressions allows students and researchers to
better analyze and comprehend these patterns than with basic regular expres-
sions alone. Because of this and other functionality, plebby has been used in
teaching graduate courses in computational linguistics at Stony Brook Univer-
sity, as well as in projects such as the machine-learning benchmark, MLRegTest
[31].

Like foma [20], Pyformlang [38], and OpenFST [1], the ltk provides mecha-
nisms for defining regular languages via the equivalence between regular expres-
sions and finite-state automata. The core Haskell library implements all of the
operations that one would expect. It offers constructions for products, concate-
nations, complements, and reversals, among other things. It also provides mech-
anisms to determinize automata or to minimize them. The pleb language allows
one to incrementally define arbitrary regular languages by describing the inter-
action of constraints. The semantics of constraints are maintained through all
manipulations, so they need only mention relevant symbols. The alphabet grows
as new symbols are encountered. We offer some degree of compatibility with
foma [20] and OpenFST [1] by means of the common at&t-style textual format
for interchange. Additionally we support visualizations via the at&t GraphViz
system.

Unlike these other systems, a distinguishing feature of the ltk is the inclusion
of functions for algebraic analysis. As algebraic techniques provide a simple and
uniform way to characterize classes of formal languages, they form the foundation
for many of our classification algorithms. Caron [5] implements tests for some
of the same classes in the langage package for Maple, but the algebraic lens
provides much more power and flexibility. The Semigroups package for gap [28]
provides some tooling for this kind of classification (via semigroups), but offers no
simple mechanism for constructing regular languages. And while both foma and
OpenFST are excellent packages for constructing regular languages, they do not
offer the same level of support for classification, for exploring logical implications
between systems of constraints, nor for grammatical inference [17]. We provide
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all of these things, although we will not discuss grammatical inference further in
this work.

In short, the Language Toolkit is not yet another automata library. Automata
are a core internal representation, but the primary features of the system are as
follows. First, it allows for definition of languages with an expression format built
upon logical formulae involving precedence, adjacency, and relativized adjacency.
This logic-based formalism replaces the more traditional regular-expression syn-
tax. One can then use the system to prove or disprove logical claims regarding
those languages. Next, languages can be classified with respect to several sub-
regular hierarchies, indicating which kinds of logic suffice to describe them and
which computational mechanisms suffice to recognize them or learn them. With
the algebraic techniques, classification is extended to user-defined classes with no
modification to the code. Finally, there are grammatical inference and constraint-
extraction tools. These are the features that have made the Language Toolkit
so useful during the past decade of its development. Not only does it provide
clean implementations of textbook algorithms on automata for pedagogical use,
it provides this wealth of utility for analysis of regular languages that one would
not find in any other system.

We begin in Sect. 2 by detailing our generalized regular expression format,
pleb expressions. These include containment of factors, all of the operations
which define regular expressions, the other Boolean operations, infiltration and
shuffle products, upward and downward closures with respect to subsequences,
neutral letters, and Brzozowski derivatives. Only Unicode (utf-8) input is sup-
ported, but every operation can be expressed in pure ascii if this is desired. The
complete set of operations is listed in both forms in Table 2 on page 302.

Next in Sect. 3, we detail how one might use the system to explore relation-
ships between languages or between systems of constraints. We describe how the
:cequal and :cimplies commands query logical equivalence and implication,
respectively, between systems of constraints. The :equal and :implies com-
mands operate instead at the language level, restricted to the current universe
of symbols. This separation is possible due to our use of what we call automata
with constraint semantics. In Sect. 4, we give a brief overview of the algebraic
theory of formal languages and demonstrate how one might classify languages.
This allows for some exploration of the relationships between language classes,
as one may construct a separating language and verify that it does, indeed,
separate the classes. Finally, we conclude with directions for future extension.
Throughout this work, lines prefixed by > are code that can be run in plebby.
We also include an appendix, demonstrating how one might use plebby to help
answer some questions from various textbooks.

2 Generalized Regular Expressions

In this section, we note some useful operations under which the regular languages
are closed. Using these, we introduce a generalized regular expression format that
adds no computational power yet vastly simplifies language definition.
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Kleene [21] introduced the regular expressions to describe the patterns rep-
resented by the artificial neural networks of McCulloch and Pitts [26]. Let �R�
denote the meaning of the expression R, and suppose A and B are regular
expressions. A regular expression over a finite alphabet Σ is defined inductively:

– ∅ is a regular expression where �∅� = ∅
– For each σ ∈ Σ, there is an expression σ where �σ� = {σ}.
– �(A|B)� = �A� ∪ �B� is a union.
– �(AB)� = {ab : a ∈ �A�, b ∈ �B�} is a concatenation.
– �A∗� = ε ∪ �A� ∪ �AA� ∪ �AAA� ∪ · · · is the iteration closure of A, where ε

denotes the empty string. It is the fixed point of A∗ = ε ∪ AA∗.

As union and concatenation are associative, bracketing is often omitted. As a
matter of convention, iteration binds more tightly than concatenation, which
in turn binds more tightly than union. Given a finite set S = {s1, s2 . . . , sn},
we denote by S the regular expression (s1|s2| · · · |sn). Thus Σ∗ is the set of all,
possibly empty, finite words over letters in Σ.

2.1 Factors and Symbol Sets

Following Rogers and Lambert [37], we take factors to be the fundamental unit
of expressions. If w = σ1σ2 . . . σn for σi ∈ Σ, then the expression 〈σ1 σ2 . . . σn〉,
with whitespace between each symbol, represents the set of words which contain
w as a substring. That is, it represents words of the form uwv where u and v are
elements of Σ∗. At any point between two symbols, a comma may be used to
signify an arbitrary gap. Then 〈σ1, σ2, . . . , σn〉 is the set of words which contain w
as a subsequence, words of the form u0σ1u1σ2u2 . . . σnun. Two modifiers anchor
the factor to word boundaries: � fixes the first component to the left edge while
� fixes the last to the right edge. These may be used together: ��〈σ1 σ2 . . . σn〉
represents the singleton set {w}. Empty sequences are allowed: 〈〉 denotes the
set of all words containing the empty string as a substring. In other words, 〈〉
denotes Σ∗.2

The individual components of a factor are not actually mere symbols, but sets
of symbols. Suppose a and b are symbol sets; a symbol set is defined inductively:

– For any valid name sym it holds that �/sym� = {sym}.
– Named variables are permitted. �s� is the set that had been assigned to the

variable s, if such a set exists.
– �{a, b}� = �a� ∪ �b�.
– �[a, b]� = �a� ∩ �b�.

Assignment is expressed by = name value. In order to save on typing slashes, it
is good practice to begin a file or session with a header that declares the symbols
to be used, such as:
2 In ascii, the word boundaries are %| (left) and |% (right), while angle-brackets are

represented by less-than and greater-than signs. Other equivalences are given in
Table 2 on page 302.
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Table 1. Base cases and operations for regular expressions.

Empty Symbol Union Concatenate Iterate

Reg ∅ σ (e1|e2) (e1e2) e∗
Gen ¬〈〉 ��〈σ〉 ∨{e1, e2} •{e1, e2} ∗e

> =a{/a}=b{/b}=c{/ c}
This is three assignments collapsed onto a single line, binding the symbols a, b,
and c to the variables a, b, and c, respectively. Except in close proximity to such
definitions, we shall continue to use the slash notation throughout, so that all
examples behave properly in a fresh environment.

2.2 Booleans, Concatenation, and Iteration

Any introductory text on finite automata, such as that of Hopcroft and Ullman
[18], will contain a proof that regular languages are all and only those expressible
by such machines. Using this equivalence, one easily finds that the class of regu-
lar languages is closed not only under (finitary) union but also under (finitary)
intersection and under complement. If e1, e2, . . . , en are pleb-expressions,
then

∨{e1, e2, . . . , en} denotes their union,
∧{e1, e2, . . . , en} their intersection,

and ¬e1 the complement of e1. For empty sequences, the neutral element of the
operation is chosen. An empty union is the empty set, equivalent to ¬〈〉, while
an empty intersection is the universal language that accepts every word, equiv-
alent to 〈〉. Union and intersection are variadic operations, taking a sequence of
arguments. Complement is a monadic operator, taking just one.

Concatenation, denoted •(e1, e2, . . . , en), is another variadic operator. There
is also gapped concatenation, denoted ••(e1, e2, . . . , en) and equivalent to con-
catenation interspersed with arbitrary content: •(e1, 〈〉, e2, 〈〉, . . . , 〈〉, en). The
Kleene star operator signifying the iteration closure is yet another monadic
operator, denoted ∗e1. We provide +e1 as syntactic sugar for •(e1, ∗e1). All
operators are prefixes; the monadic operators attach directly to the expression
upon which they act, while variadic operators attach to braces (or, equivalently,
parentheses) embracing a comma-separated sequence of operands. At this point,
we can represent any regular expression. A summary of equivalences is provided
in Table 1. The union and iteration operators would work identically if concate-
nation were right-to-left rather than left-to right. So regular languages are closed
under reversal as well. We offer a monadic operator, �, for this task.

2.3 Subsequences and Shuffle Ideals

In Sect. 2.1 we noted that if w = σ1σ2 . . . σn then 〈σ1, σ2, . . . , σn〉 is the set of all
words that contain w as a subsequence. This is a shuffle ideal. In general, given
an arbitrary expression e, we can define ↑e as the set of all words which contain
any word in �e� as a subsequence. That this upward closure is regular is a
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consequence of Higman’s Lemma and the resulting language is in the one-half
level of the Straubing hierarchy, cf. [30]. One constructs ↑e by adding self-loops
on each symbol to each state of the automaton represented by e. This operation
is idempotent.

We will see more on the :cequal command in the next section. Essentially, it
indicates whether two constraints are logically equivalent. With it, we can verify
the equivalence between an upward closure and a subsequence-factor:

> :cequal ↑��〈 /a /b /b /a 〉 〈 /a , / b , / b , / a 〉
True

We may also close in the other direction: the downward closure of e,
denoted ↓e, is the set of all words which are contained as a subsequence by
some word in e. That is, ↓e is the set of words obtained by beginning from some
word in e and deleting zero or more instances of zero or more symbols. One
constructs ↓e by adding edges consuming no input in parallel with all edges of
the automaton represented by e. This operation is idempotent. Languages closed
under subsequence, that is, languages L such that ↓L ≡ L, have been studied by
Haines [14] for their interesting mathematical properties as well as by Rogers et
al. [35] for their linguistic relevance.

Upward closure is a specific case of the shuffle product. The shuffle product
of two words is defined inductively as follows, where a and b are symbols in Σ
and u and v are words in Σ∗ [24].

u� ε = u = ε� u

au� bv = a(u� bv) ∪ b(au� v)

Given two languages A and B, their shuffle product is the set A�B = {a�b : a ∈
A, b ∈ B}. For a given expression e, it is the case that ↑ e is logically equivalent
to �{e, 〈〉}. The infiltration product, denoted ⇑, is defined similarly [8].

u ⇑ ε = u = ε ⇑ u

au ⇑ bv =

{
a(u ⇑ bv) ∪ b(au ⇑ v) ∪ a(u ⇑ v) if (a = b

a(u ⇑ bv) ∪ b(au ⇑ v) otherwise.

We provide monadic ↑ and ↓ operators as well as variadic ⇑ and� operators. The
variadic operators require some caution. As discussed in Sect. 3, subexpressions
have their alphabets semantically extended when used in larger expressions.
When computing shuffle products, it may be wise to fix the alphabet of each
subexpression to a desired set T by intersecting with ∗��〈{T}〉.

2.4 Tiers and Neutral Letters

Subsequences provide a simple mechanism to describe long-distance dependen-
cies, but they are not the only available mechanism. Another possibility, which
has been useful in computational linguistics [16] and in robotic control [33] hinges
on the notion of a tier of salient symbols. If symbols are not salient to the
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constraint, then they are ignored entirely. Neither inserting them nor deleting
them can influence whether a word is accepted [23]. In other words, symbols
not salient are neutral. Using this notion of salience and neutrality, one can
describe long-distance constraints as if they were local.

Given a symbol set T , we provide two monadic operators. The first, [T ]e,
restricts the alphabet of e to the symbols in T , then adds self-loops on each
other symbol to each state. This yields the inverse tier-projection from T of e,
the words which satisfy e on the T -tier. The other operator, |T |e, makes each
element of T neutral in e. Edges which consume no input are added in parallel
to each edge labeled by an element of T , and then self-loops labeled by each such
element are added to each state. |T |e is equivalent to �{∧{e, ∗��〈T 〉},¬〈T 〉}.
For convenience, if T is a union of multiple symbol sets then the outermost
braces may be omitted.

For example, the constraint [/a, /b]¬〈/a /b〉 over projected substrings is log-
ically equivalent to the constraint ¬〈/a, /b〉 over subsequences. As we will see in
the next section, one can verify this:

> :cequal [ / a , / b ]¬〈 /a /b 〉 ¬〈 /a , / b 〉
True

Both [T ] and |T | are idempotent operations. Further, ¬[T ]e is equivalent to [T ]¬e
and ¬|T |e is equivalent to |T |¬e [23].

2.5 Brzozowski Derivatives and Quotients

Given a language L and a prefix s, one might wish to know which strings t act
as valid completions where st ∈ L. This Brzozowski derivative is sometimes
denoted s−1L, so named as Brzozowski used the operation in finding the deriva-
tives of regular expressions [3]. A generalization of this is the left-quotient
A\B, the set of strings t that can be appended to a string in A to yield a string
in B.

Similarly, the right-quotient B/A is the set of strings s that can be
prepended to a string in A to yield a string in B. The expression B/A is clearly
equivalent to (AR\BR)R, where xR denotes the reversal of x.

Hopcroft and Ullman [18] provide a nonconstructive proof that if B is regular
then B/A (and, of course, A\B) is regular for any language A. For regular A,
we may use a simple construction on automata. In order to compute A\B, first
compute the concatenation C = AΣ∗. Then, compute the product (A×C)×B.
The accepting states are those whose B- and C-components are both accepting,
and the initial states are those whose A-components are accepting. This then
begins computation at any state where A could end, and accepts only strings
that would be valid continuations in B.

We provide variadic functions for both quotients. They are not associative
operations, and so they are best used only dyadically: �\\(A,B)� = �A�\�B�
and �//(B,A)� = �B�/�A�.

An example, suppose that B is the set of words that do not contain an ab
substring and that A is a set of words such that every word in A ends on a.
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Table 2. Monadic (left, ⊕e), and variadic (right, ⊕{e1, e2, . . . , en}) operators.

Syntax ASCII Meaning

¬ ! complement

∗ * iteration closure

+ + iteration (nonempty)

� - reversal

↑ ^ upward closure

↓ $ downward closure

[T ] [T] salience restriction

|T | |T| neutralizing

Syntax ASCII Empty Meaning

∨ \/ ¬〈〉 union
∧

/\ 〈〉 intersection

• @ ��〈〉 concatenation

•• @@ ��〈〉 gapped concatenation

⇑ .^. ��〈〉 infiltration product

� | | | ��〈〉 shuffle product

\\ \\ ��〈〉 left-quotient

// // ��〈〉 right-quotient

Note that A\B is the set of all words that neither begin with b nor contain the
ab substring. We shall see more on the :cimplies command in the next section,
but for now we notice that in this quotient no word begins with b.

> :cimplies \\(�〈 /a 〉 ,¬〈 /a /b 〉 ) ¬�〈 /b 〉
True

We can also use these quotients to construct the prefix closure //(e, 〈〉) or suffix
closure \\(〈〉, e) of an expression e. Then the substring closure is \\(〈〉, //(e, 〈〉)).

2.6 Summary

Table 2 lists the available operators, both in Unicode syntax and in ascii syn-
tax. They are listed in the order introduced in the text. Monadic operators
are written directly before their operand. Variadic operators take zero or more
comma-separated operands surrounded by either curly braces or parentheses
and are written before the opening delimiter. Factors also have ascii syntax:
use less-than and greater-than signs in place of the angle-brackets, and replace
the anchor symbols with %| (left) and |% (right).

Like with symbol sets, expressions may be assigned to variables using the
syntax = name value. A bare expression acts as an assignment to the special
variable it . And finally, all assignments of both symbol sets and expressions
update a special variable universe, a symbol set containing all symbols used so
far in bound variables.

With the tools discussed so far, one can easily define regular languages using
generalized regular expressions known as pleb expressions. In the next section we
discuss how to check for equalities or implications and how one might minimize
constraint-based descriptions.

We close this section with a final example. Krebs et al. [22] describe a lan-
guage U2 that has been instrumental to their work on characterizing classes of
languages definable with fragments of first-order logic restricted to two variables.
In their work, U2 is defined over the alphabet Σ = {a, b, c} as follows.

U2 = (Σ∗ − (Σ∗ac∗aΣ∗)) ∪ (Σ∗ − (Σ∗bc∗bΣ∗))ac∗aΣ∗
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Already this expression is extended to include (relative) complements. In this
language, c is a neutral letter. After ignoring c, U2 is a language in which either
no aa substring occurs, or there is an aa substring not preceded at any distance
by a bb substring. An equivalent pleb expression is as follows.

> =a{/a}=b{/b}=c{/ c}
> = U2 [ a , b ]

∨ {¬〈 a a 〉 , • (¬〈b b 〉 ,�〈 a a 〉 )}

3 Constraint Analysis

In the previous section, we briefly mentioned the :cequal and :cimplies com-
mands. This section introduces the mechanism behind them and describes a few
of the other commands available. We begin by distinguishing constraints from
the languages they yield.

A (formal) language is merely a set of words. A constraint is a logical formula
that might be satisfied by one or more words, or which might be unsatisfiable. For
example 〈/a /b〉 expresses a constraint that the ab substring appears somewhere,
and 〈/a, /b〉 expresses a constraint that the ab subsequence appears somewhere.
These are not logically equivalent, but the first does logically imply the second.
And if the alphabet is merely {a, b}, then the language they express is the same.

> = subs t r 〈 /a /b 〉
> = subseq 〈 /a , / b 〉
> :cequal subs t r subseq
False
> :cimplies subs t r subseq
True
> :cimplies subseq subs t r
False
> :equal subs t r subseq
True
> =c{/ c}
> :equal subs t r subseq
False

This example demonstrates the above observations. The presence of an ab sub-
string logically implies the presence of an ab subsequence, but the reverse does
not hold. The :cequal and :cimplies commands operate at the constraint level,
comparing logical semantics. However, the :equal and :implies commands
operate at the language level, restricting the domain to the current universe of
symbols. If the alphabet is exactly the set {a, b}, then the two expressions yield
the same language, but if instead it were {a, b, c} then they would not.

This works because factors are constructed in such a way that their semantics
are preserved. Expressions are compiled to finite-state automata using not only
the symbols they mention, but also a special symbol, ?©, which represents all
others. This acts as the @ of [19]. When combining expressions, their alphabets
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/a /b

b, ?

a

a

? b a, b, ?

/a, /b

b, ?

a

a, ?

b a, b, ?

Fig. 1. Automata with constraint semantics.

must be semantically extended by inserting edges on any new symbols in
parallel with these ?©-edges. We designate these as automata with constraint
semantics. Figure 1 depicts our example substring and subsequence constraints.
When displaying automata with the :display command, they are first dese-
mantified by stripping the wildcard symbols and normalizing the result.

One might use these tools to construct expressions that recreate a given pat-
tern. Given a language, be that one constructed from a pleb expression, one read
from an OpenFST-compatible automaton file using :readATT, or one imported
using the grammatical inference commands (not described in this work), one
can hypothesize constraints and ask if the language :implies those constraints.
Keeping any that are successfully implied, eventually one reaches a point where
the cooccurrence (intersection) of the proposed constraints is :equal to the lan-
guage. The set may be large. Removing one constraint at a time, one may ask
if the cooccurrence of the remaining constraints :implies the removed con-
straint. If this implication holds, then the constraint is redundant and need not
be included. At times, it may be useful to :display the difference between sys-
tems of constraints, in order to see what is accepted that should not be or vice
versa. Finally one is left with a minimal set of constraints that describes the
language. There may well be other such sets.

This has been a sampling of ways in which plebby can help explore formal
languages through verifying accurate factorization and minimizing systems of
constraints. The next section describes classification techniques. Different classes
of languages correspond to different kinds of constraints, so the techniques pre-
sented ahead may also be useful for such analysis.

4 Algebra and Complexity Analysis

Chomsky’s [9] hierarchy includes no classes more restrictive than the regular
languages. However, there are several well-motivated subclasses of this class.
Every language is associated with a semigroup called its syntactic semigroup,
and the regular languages are all and only those whose syntactic semigroups are
finite [32]. We offer commands to display the algebraic structure of a language
in various ways. One can view a Cayley graph using :synmon, or an egg-box
diagram in the sense of [10] using :eggbox. Additionally, a Hasse diagram of the
syntactic order in the sense of Pin [29] can be displayed with :synord.

Eilenberg’s theorem established a formal correspondence between classes of
regular languages and classes defined by collections of equations, called pseudova-
rieties, of finite semigroups [12,13]. A pseudovariety, henceforth simply called
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a variety, is a class of semigroups closed under division and finitary products,
where a semigroup S is said to divide another semigroup T if S is a quotient
of a subsemigroup of T . Varieties of (finite) semigroups are called +-varieties,
while varieties of (finite) monoids are ∗-varieties. We provide three commands:
:isVarietyM for ∗-varieties, :isVarietyS for +-varieties, and :isVarietyT for
what would be +-varieties after removing any neutral letters.

These commands take two arguments. The first is a description of the variety,
and the second is the expression to test. A variety is a semicolon-separated collec-
tion of universally-quantified weak inequalities, all wrapped in square brackets.
Inequalities are over the syntactic order of Pin [29]. All variables in these rela-
tions are a single letter, and concatenation (multiplication in the semigroup)
is denoted by adjacency. Reiterman describes another operator, denoted π(x),
which maps x to the unique idempotent element in the subsemigroup generated
by x [34]. Since then, this has more typically been denoted xω, cf. [29], although
in plebby we denote it x∗ for ease of entry. This operator allows varieties to be
defined by a single conjunction of equations rather than being ultimately defined
by a series of such conjunctions [34].

For example we might ask whether a language has a syntactic semigroup
which is both commutative (ab = ba) and idempotent (xx = x). For concreteness,
we will perform this test against two languages: the language which contains an
ab substring, and the language which contains both a and b. In both cases, the
alphabet shall be Σ = {a, b, c}.

> =a{/a}=b{/b}=c{/ c}
> :isVarietyS [ ab=ba ; xx=x ] 〈 a b 〉
False
> :isVarietyS [ ab=ba ; xx=x ]

∧ { 〈 a 〉 , 〈b 〉 }
True

This particular class is well-studied and so there is a shortcut, :isCB (for “com-
mutative band”), which performs the same operation. In many cases, the short-
cut commands employ faster algorithms than the general variety check.

Because a language and its complement share the same syntactic semigroup,
a class not closed under complement cannot be a variety. Pin uses the concept of
a syntactic order to capture some such classes as varieties of ordered semigroups
[29]. It is for this reason that our variety-testing commands also allow the use
of the weak inequalities, ≤ and ≥, under the syntactic order. As all variables
are universally-quantified, strict inequalities are meaningless. Thus < and > are
synonyms for ≤ and ≥, respectively.

4.1 Some Varieties with Shortcuts

As one might imagine, there are boundless varieties of interest. We provide short-
cut commands for many of them. In this section we list a few of them by name
alongside their equivalent commands and their language-theoretic characteriza-
tions. There are several others; for a full list, see the :help in the interpreter.
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Locally Testable. See [27] or [4]. A language is locally testable iff there is some
integer k such that the set of substrings of length k of a word is sufficient informa-
tion to determine whether the word is accepted. The commands for deciding this
class are :isLT and :isVarietyS [a*xa*ya*=a*ya*xa*;(a*xa*)*=a*xa*].

Tier-Based Locally Testable. See [23]. A language is tier-based locally
testable iff after removing its neutral letters it is locally testable. This class is
decided by :isTLT and :isVarietyT [a*xa*ya*=a*ya*xa*;(a*xa*)*=a*xa*].
In either case, the set, T , of nonneutral letters is reported.

Piecewise Testable. See [40]. The subsequence analogue of locally testable,
a language is piecewise testable iff there is some integer k such that the set
of subsequences of length k of a word is sufficient information to determine
whether the word is accepted. The commands for deciding this class are :isPT
and :isVarietyM [y(xy)*=(xy)*=(xy)*x].

Strictly Piecewise. See [14] or [35]. A restriction of the piecewise testable
languages, the strictly piecewise languages are those definable by a finite set
of forbidden subsequences. This class is decided by the :isSP or :isVarietyM
[1≤x] commands. The size, k, of forbidden subsequences is reported when using
:isSP. Equivalently, given an expression e, one can decide whether e is strictly
piecewise using :equal e ↓e. The complements of strictly piecewise languages
correspond precisely to the one-half level of the Straubing hierarchy [30].

Locally Threshold Testable. See [27] or [2]. A language is locally thresh-
old testable iff it is definable by Boolean combinations of constraints that a
particular substring occurs at least some fixed finite number n of times. These
are the languages first-order definable with successor but without general prece-
dence [42]. The commands for deciding this class are :isLTT and :isVarietyS
[e*af*be*cf*=e*cf*be*af*;xx*=x*].

Tier-Based Locally Threshold Testable. See [23]. A language is tier-
based locally testable iff after removing its neutral letters it is locally threshold
testable. The commands for deciding this class are :isTLTT or :isVarietyT
[e*af*be*cf*=e*cf*be*af*;xx*=x*]. In either case, the set, T , of nonneutral
letters is reported.

Star-Free. See [39]. A language is star-free if and only if it is definable by a reg-
ular expression generalized to allow intersection and complement but restricted
by disallowing the use of the iteration operator. These are the languages first-
order definable with general precedence [27]. The commands for deciding this
class are :isSF and :isVarietyM [xx*=x*]. Notice that this equation is one of
the equations for locally threshold testable. This is in general an easy way to
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construct sub- and supervarieties of a variety: simply add or remove equations,
add or remove constraints.

4.2 Some Other Well-Studied Classes

While a number of language classes correspond precisely to varieties of semi-
groups or monoids, this is not always the case. As noted in the previous section,
inequalities allow for the capture of classes that are not closed under comple-
ment. However, even these ordered varieties cannot capture classes not closed
under both union and intersection. This section discusses two such classes which
see wide application.

Strictly Local. See [27]. A restriction of the locally testable languages, analo-
gous to that which derives strictly piecewise from piecewise testable, a language
is strictly local if and only if it is definable by a finite set of forbidden substrings.
These are decided by :isSL using an algorithm implied by the work of Caron
[5] and by Edlefsen et al. [11]. The size, k, of forbidden substrings is reported.

Tier-Based Strictly Local. See [16] or [23]. A language is tier-based strictly
local if and only if after removing its neutral letters it is strictly local. This class
is decided by :isTSL. The size, k, of forbidden substrings is reported, as is the
set T of nonneutral letters.

4.3 Summary

This section has discussed a sampler of the classification algorithms offered by
plebby and, in general, by the Language Toolkit. A full list is available in the
interpreter’s help system (see :help classification), or arbitrary varieties
may be tested. (Note that all of these decision problems operate at the language
level, not at the constraint level.) Knowing which set of classes contain a given
language can offer insight regarding the properties of the language. This can
assist in factoring the language, as one knows what types of constraints to try
to find.

This system is also useful in exploring relationships between classes. While it
cannot at this moment automatically determine whether a subclass relationship
exists, one can manually construct a separating example language and verify
that the separation holds. If a language is in class C but not in class C ′, then C
is not a subclass of C ′.

5 Conclusion

We have introduced plebby, the interactive theorem-prover built atop and pack-
aged with the Language Toolkit, and demonstrated its use in defining, manipu-
lating, and classifying regular languages. The project is freely available under the
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mit open-source license. Functionality goes well beyond what has been discussed
here; all available commands are documented in the included manual pages or the
interpreter’s :help system. We only briefly touched on the visualization capabil-
ities, and did not even mention the file i/o or grammatical inference capabilities.
There are additionally stand-alone programs to classify, display, or automat-
ically factorize regular languages.

As these tools were created for the purposes of education and research in
mathematical and computational linguistics, performance was never the great-
est concern. However, in order to be more widely useful, one key area of future
work will be to improve performance to scale to industrial operations, where the
automata under consideration might have large alphabets and several thousand
states. Part of this work will involve changing the underlying representation of
some of the core data structures; this work has already begun through splitting
off some of the algebraic procedures into a separate finite-semigroups pack-
age.3 The tradeoff is that the representation in this package strips much of the
information that is pedagogically useful, such as which elements correspond to
which strings. Thus care must be taken to avoid diminishing pedagogical utility
when constructing representations for speed. For the classification task alone, we
have also created amalgam4 in the C programming language, which similarly
discards information for better performance.

Other directions for future work are numerous. Some of our classification pro-
cedures return a description of the class parameters in addition to the Boolean
response. We would like to provide such parameterizations for more classes in the
future. For nonmembership, in some cases it might be nice to generate parame-
terized words as evidence. For some classes, this would be easy and would add to
the utility as a theorem-prover. We would also like to be able to automatically
generate semigroups satisfying given conditions, which may help in disproving
a subset relationship between two varieties. Extending our current system, or
perhaps creating a companion system, for similar analysis of finite-state trans-
ducers is a more involved goal. Using symbolic predicate-based symbols like the
Microsoft Automata toolkit would increase utility in computational linguistics,
especially with Carpenter-style feature systems [6]. Finally, we would like to add
the capacity to translate foma scripts into pleb expressions, or otherwise import
automata with constraint semantics from such files.

We hope that this system will continue to enlighten all who study formal
languages and their connections to algebra and logic.
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Appendix

This appendix contains selected worked exercises from various textbooks.

Exercise 2.1 from McNaughton and Papert [27]

“Decide whether each of the Figures 2.2–2.8 represents a locally testable event.
Decide further whether it is locally testable in the strict sense.” We cover only
figures 2.4, 2.7 and 2.8. These figures are represented by the following at&t
files, named mp-2-1-4.att, mp-2-1-7.att and mp-2-1-8.att, respectively.

mp-2-1-4.att
1 4 a
1 2 b
1
2 6 a
2 3 b
3 1 a
3 6 b
4 5 a
4 6 b
5 6 a
5 1 b
6 6 a
6 6 b

mp-2-1-7.att
1 2 a
1 1 b
1
2 3 a
2 1 b
2
3 3 a
3 4 b
4 3 a
4 5 b
5 6 a
5 7 b
6 3 a
6 7 b
7 6 a
7 1 b

mp-2-1-8.att
1 2 a
1 5 b
2 2 a
2 3 b
3 2 a
3 4 b
4 2 a
4 4 b
4
5 6 a
5 5 b
6 7 a
6 5 b
7 7 a
7 5 b
7

> :readATT mp−2−1−4. a t t
> :isLT i t
True
> : isSL i t
True: k=5
> :readATT mp−2−1−7. a t t
> :isLT i t
False
> : isSL i t
False
> :readATT mp−2−1−8. a t t
> :isLT i t
True
> : isSL i t
False

Here, the tool directly answers the exercises, even providing additional informa-
tion regarding the factor size k for the language locally testable in the strict
sense.
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5.1 Exercises from Sipser [41]

In the third edition of “Introduction to the Theory of Computation”, Sipser
[41] asks students to construct state diagrams for various regular languages.
Exercise 1.4 focuses on intersections, 1.5 on complements, and 1.6 has assorted
other languages. We select a small sample to cover here, all over the alphabet
Σ = {a, b}:

1.4e {w|w starts with an a and has at most one b}

1.5c {w|w contains neither the substrings ab nor ba}

1.6n All strings except the empty string

As an aside, exercise 1.6 uses Σ = {0, 1} in the original.

> =a{/a}=b{/b}
> :display

∧ {�〈 a 〉 ,¬〈b , b 〉 } # 1.4 e
> :display ¬∨ { 〈 a b 〉 , 〈b a 〉 } # 1.5 c
> :display ¬��〈 〉 # 1.6n

1.4e

a
a

b

a

1.5c

a

b

a

b 1.6n

a,b

a,b

Fig. 2. State diagrams for Sipser, with node labels omitted.

Figure 2 depicts the results. Rejecting sink states are omitted from the display
and must be filled in by hand.
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