Quantum Processes and Computation Assignment 1, Monday 21 Oct 2024

Deadline: Class in week 3 (Ask your teacher for weekly marking deadline.)

Goals: After completing these exercises successfully you should be able to perform simple diagrammatic and concrete computations in the process theories of **functions** and **linear maps**.

Note: Some of these exercises also appear in *Picturing Quantum Processes*, but sometimes they have been slightly modified for the problem sheet and/or to fit the notations used in the lectures. The corresponding exercise number from the book is shown in brackets.

Exercise 1 (3.12): Give the diagrammatic equations of a process * taking two inputs and one output that express the algebraic properties of being

- 1. associative: x * (y * z) = (x * y) * z
- 2. commutative: x * y = y * x
- 3. having a unit: there exists a process e (with no inputs) such that x * e = e * x = x

Note: x, y and z should not appear in your final diagrams. They are however useful in trying to figure out what the diagrammatic equation should be.

Exercise 2 (3.15): Using the copy operation:

write down the diagram representing distributivity: (x + y) * z = (x * z) + (y * z). Here, + and * are processes that take two inputs and and one output.

Exercise 3 (3.30): First compute the values of the following functions, then show that they can both be expressed by simpler diagrams:

Exercise 4 (5.54): Let

where:

$$\frac{\downarrow}{\psi} = \begin{pmatrix} \psi^0 \\ \psi^1 \end{pmatrix} \quad \text{and} \quad \stackrel{\land}{\downarrow} = \begin{pmatrix} \phi_0 & \phi_1 \end{pmatrix}$$

be respectively a 2-dimensional state, and 2-dimensional effect in the process theory of **linear** maps. Let λ be a number. Compute the matrices for the following processes

(i)
$$\langle \psi \rangle = \langle iii \rangle = \langle iii \rangle = \langle iii \rangle = \langle iii \rangle = \langle iv \rangle = \langle i$$

Exercise 5 (5.58): The matrices for cups and caps in 2 dimensions are:

Verify the yanking equation

directly using the matrices of the 2-dimensional cup and cup by using the rules for sequential and parallel composition of matrices, i.e. show that $(\cap \otimes 1_{\mathbb{C}^2}) \circ (1_{\mathbb{C}^2} \otimes \cup) = 1_{\mathbb{C}^2}$ (where $1_{\mathbb{C}^2}$ is the 2×2 identity matrix).

Exercise 6 (4.12): Prove that

follows from the following 4 equations:

Exercise 7 (4.14 in online version of PQP): Show that, in fact, we only need two equations for caps and cups. Namely, the following are equivalent:

(i) a state and an effect satisfying:

(ii) a state and an effect satisfying:

So in particular, if either eqs. (i) or eqs. (ii) hold, then all equations hold.

Hint: Most people find this (deceptively) difficult. If you are stuck proving (i) \implies (ii), start by thinking about what you can do with this picture:

