Quantum Processes and Computation
Lecture 1
Aleks Kissinger | Oxford MT 2024
Chapter 1: Introduction
Karma police, arrest this man. He talks in maths.
- Radiohead, "Karma Police", Oxford, 1997.
Quantum theory: the standard line
1 e.g.
This produced (basically) two answers
|
|
|
Make even weirder ontology
|
|
"Shut up and calculate!"
|
|
|
|
(e.g. Bohmian mechanics, many worlds, ...) |
|
(Mermin, describing the Copenhagen interpretation) |
Another, more interesting question
From QT to teleportation
|
$\Rightarrow$ |
|
1932 - quantum theory |
|
1992 - quantum teleportation |
We'll see that teleportation is miraculous...but it's also totally obvious when formulated the right way.
From QT to teleportation
Q: Why did it take so long?
A: It took 60 years to ask the right question.
Q2: Why is this so hard?
A2: QT needs a better language.
Low-level vs. high-level languages
Low-level vs. high-level languages
$\frac{1}{4}
\left(
\begin{array}{rrrrrrrr}
\!-\!1\!+\!i & 1\!+\!i & 1\!+\!i & \!-\!1\!+\!i & 1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i \\
1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i & \!-\!1\!+\!i & 1\!+\!i & 1\!+\!i & \!-\!1\!+\!i \\
1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i & 1\!-\!i & \!-\!1\!-\!i & \!-\!1\!-\!i & 1\!-\!i \\
1\!-\!i & \!-\!1\!-\!i & \!-\!1\!-\!i & 1\!-\!i & 1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i \\
1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i & 1\!-\!i & \!-\!1\!-\!i & \!-\!1\!-\!i & 1\!-\!i \\
1\!-\!i & \!-\!1\!-\!i & \!-\!1\!-\!i & 1\!-\!i & 1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i \\
\!-\!1\!+\!i & 1\!+\!i & 1\!+\!i & \!-\!1\!+\!i & 1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i \\
1\!+\!i & 1\!-\!i & 1\!-\!i & 1\!+\!i & \!-\!1\!+\!i & 1\!+\!i & 1\!+\!i & \!-\!1\!+\!i \end{array}
\right)$
vs.
Quantum picturalism
Quantum picturalism $:=$ the use of diagrams to represent, reason about, and capture essential features and logic of interacting quantum processes.
The Plan
- Introduce process theories, collections of processes that make sense to compose together as diagrams,
- Understand the behaviour of quantum theory as a process theory,
- Apply graphical techniques, namely the ZX-calculus, to solve practical problems in quantum computing.
Warmup: Quantum circuits
:= the "assembly language of quantum computation"
INIT 5
CNOT 1 0
H 2
Z 3
H 0
H 1
CNOT 4 2
...
|
↔ |
|
Optimising circuits the old-fashioned way
...
A better idea: the ZX calculus