
Quantum Software
Assignment 6, Michaelmas 2024

Solutions are shown after each question. Note some solutions are marked Sketch. These are intended to be
instructions on how to work out the solution yourself, rather than an example of how you should answer this
question on an exam.
Exercise 1: We say two n-qubit quantum states |ψ1⟩ and |ψ2⟩ are equivalent under local operations when
U |ψ1⟩ = |ψ2⟩ for a local quantum circuit U = U1 ⊗ U2 ⊗ · · · ⊗ Un consisting of just single-qubit gates. Show
that the following two graph states are equivalent under local operations.

Hint: Use the fact that a local complementation can be done using just local unitaries.

Solution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This can be accomplished with two local complementations:
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Alternatively, it is possible to show this be using H-cancellation and deforming the diagram:

= = =

End Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 2: A graph state has no internal spiders, but a general graph-like diagram does. Show that any
graph-like diagram with no inputs (i.e. a state) can be written as a graph-state where each internal spider
becomes a post-selection by adapting the arguments from Section 3.4.1 of Picturing Quantum Software.

Solution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A graph-like ZX-diagram is allowed to have multiple outputs connected to a single spider and also have interior
spiders. We can solve the first problem by introducing extra interior spiders, using either the (hh) rule or the
(id) rule, depending on whether the output is an H-edge or a normal edge, e.g.

α = α......

Using this trick ensures that all output spiders have a phase of 0 and only one output wire. For interior spiders,
we can unfuse the (possibly zero) phase and treat it as an output that has been post-selected:
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Now, we have a graph state to the left of the dashed line and some single-qubit effects (i.e. post-selected
measurement outcomes) to the right.
End Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3: Simplify the following circuit to a diagram that has no internal spiders with a ± π
2 phase or pairs

of internal spiders with a 0 or π phase.
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Solution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
It is possible to simplify this diagram by applying the Clifford-simplification procedure, i.e. fuse, convert all
red spiders to green spiders, and apply local complementation and pivoting. However, since we’re doing this by
hand, its faster to first compute the parity normal form of the 7 CNOT gates in the middle of the circuit:
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Replacing with the PNF first, then computing a graph-like diagram we get:
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Finally, applying local complementations lets us finish up:
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A computer solution (e.g. in PyZX or ZX Live) is also acceptable, as long as it shows some understanding
of how the procedure works.
End Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4: Show that the phase polynomial representation also works for circuits made of CNOT, Z-phase,
and X gates, using the fact that an X gate updates wire labels as follows:

π x⊕1x

More specifically, give an example circuit, compute its parity map and phase polynomial by wire-labelling, and
re-synthesise a smaller circuit.

Finally, show that further simplifications are possible: namely expressions of the form α · y + β · (y ⊕ 1),
where y is some XOR of input variables, can be simplified in the phase polynomial, up to global phases.

Solution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Here’s an example CNOT + X + phase circuit, with the wires labelled:
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It’s unitary is:
U :: |a, b, c⟩ 7→ ei[α·(c⊕1)+(β+γ)·(a⊕c)]|a⊕ 1, a⊕ c, b⊕ c⊕ 1⟩

Here’s a simpler circuit that does the same thing, up to a global phase:
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For this we have actually already used the second part of the question. Note that for bits, (c ⊕ 1) = (1 − c).
Hence,

eiα(c⊕1) = eiα(1−c) = ei(α−c·α) = eiαe−ic·α

This implies that replacing a term α · (c⊕ 1) in a phase polynomial with −c · α only introduces a global phase.
Hence, we can do the reduction:

α · y + β · (y ⊕ 1) 7→ (α− β) · y



in the phase polynomial and only introduce a global phase.
End Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 5: We computed the phase gadget form by appealing to the simplification strategy for CNOT circuits
from Chapter 3. However, there is a more direct way we can translate CNOT+phase circuits into circuits of
phase gadgets, by studying the way that phase gadgets commute with CNOT gates. There are a few cases to
think about here. First, is the trivial case where a phase gadget and CNOT gate share no qubits. Obviously
these commute. Only slightly harder to see is if a phase gadget appears on the control qubit (i.e. the Z spider)
of a CNOT gate. Then, commutation follows from spider fusion:
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If the phase gadget overlaps with the target qubit (i.e. the X spider) of a CNOT gate, we can still push a phase
gadget through, but it picks up an extra leg:
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Just by reading the equation above in reverse, we can also see what happens when a phase gadget overlaps with
both qubits of the CNOT gate. It loses a leg:
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Prove equations (2) and (3). Use the three “phase-gadget walking” equations (1), (2), and (3), as well as the
fact that Z-phase gates are equivalent to 1-legged phase gadgets, to show that an n-legged phase gadget has the
following decomposition:
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Solution: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sketch: The “walking” rules follow from strong complementarity. To prove the phase gadget decomposition
rule, one just needs to “walk” the phase from the middle of the circuit to the left or the right side, producing a
4-legged phase gadget. The CNOTs in the original circuit will then all cancel out.
End Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


