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A magic particle machine

I Imagine this setup...

Magic Particle MachineAlice Bob

I Alice and Bob receive particles, and they have two different properties
they can measure when the particles get there, call them X and Y. Either
measurement returns a 0 or a 1.

I Suppose they both measure X, and they compare later, and notice that
they always get the same outcome.

I ...and the same happens when they both measure Y.
I ...but when they measure different things their outcomes are totally

uncorrelated.
I Seems to be some kind of non-local behaviour here. Spooky action at a

distance?
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Not so magic after all...

I Not really. Maybe the “magic” particle machine is just trying to trick us.

I It could send randomly-selected pairs of particles that already “know”
what outcome they will give for Alice and Bob’s measurement choices:

Magic Particle MachineAlice Bob

X 7→ 0, Y 7→ 1 X 7→ 0, Y 7→ 1

I If it only chooses from pairs of particles that agree on the hidden variables
X and Y, the outcomes will appear correlated.
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LHV Models and Quantum Theory

I What we mistook for non-local behaviour was actually classical
correlations between local properties of the particles being measured.

I Systems like this are called local hidden variable (LHV) models.

I Usually, we can show this by given a probabilistic argument:
correlations are too high to be explained classically (Bell inequality
violations)

I In 1990, Mermin described a situation where LHV models could be
ruled out possibilistically.
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Categorical Mermin Argument

I Categorical Quantum Mechanics: Abramsky and Coecke, 2004

I In the past years, CQM has been all about developing a toolkit for
probing the structure of quantum phenomena. We apply nearly all of
these tools here to shed some light on Mermin.

I A crucial part of Mermin’s argument is the use of parity of outcomes. In
the two-outcome case, this is just group sums in Z2.

I At the core of our derivation is the use of strongly complementary
observables. These have a nice classification theorem:

strongly complementary pairs↔ finite Abelian groups
I S.C. observables used in the Mermin argument (Pauli-Z and Pauli-X) are

represented by Z2. This is applied to derive a contradiction.
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Graphical notation for compact closed categories

I Objects are wires, morphisms are boxes

I Horizontal and vertical composition:

A

C

C

AB

B

B

f
g ◦ f =

g B B′ B′

AA′ A′A

B

f ⊗ g = f g

I Crossings (symmetry maps):

I Compact closure:

==
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Pure quantum mechanics

I Quantum state: vectors |ψ〉 ∈ H
Dirac notation: Column vectors are written as “kets” |ψ〉 ∈ H, and row
vectors are written as “bras”: |ψ〉† = 〈ψ| ∈ H∗. Composing, they form

“bra-kets”, which is just the inner product: 〈ψ|φ〉.

I Evolution: U |ψ〉, where U−1 = U†

I Observables: Z, where Z = Z†. The only really important thing are Z’s
eigenvectors {|zi〉}, which we think of as measurement outcomes.

I Measurement is the Born rule: The probability of getting the i-th
outcome depends on “how close” |ψ〉 is to |zi〉:

Prob(i, |ψ〉) = |〈zi|ψ〉|2 = 〈zi|ψ〉〈ψ|zi〉
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Mixed quantum mechanics

I Manipulating individual particles is noisy business. Often more
convenient to work probabilistically. One way to do this to work with
sets of pure states:

E := {(|ψi〉 , pi)}, ∑ pi = 1

I Then, the Born rule is just a weighted sum:

Prob(i, E) = ∑ pj〈zi|ψj〉〈ψj|zi〉 = 〈zi|
(
∑ pj

∣∣∣ψj

〉〈
ψj

∣∣∣) |zi〉

I Actually, all the info we need about E is the sum: ρ = ∑ pj

∣∣∣ψj

〉〈
ψj

∣∣∣, the
density operator associated with E

I Pure states are a special case: ρ = |ψ〉〈ψ|
I Evolution: certain kind of (higher order) linear operator

Φ : L(H)→ L(H′)
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From quantum mechanics to categorical quantum mechanics

We will now apply two slogans from categorical quantum mechanics:

1. Topology of diagrams can be exploited to make life easier.

2. The must important thing about classical data is what you can do with it.



Slogan 1: Topology of diagrams

I When we’re in a compact closed category, it suffices to consider only
first-order maps, since higher-order stuff can be reached by “bending
wires”.

I MapsH⊗H are the same thing as elements ofH∗ ⊗H:

ρ
↔ ρ

I So, higher-order operations Φ : L(H)→ L(H′) can be represented as
first-order maps:

ρ
7→

ρ

Θ



Slogan 1: Topology of diagrams

I When we’re in a compact closed category, it suffices to consider only
first-order maps, since higher-order stuff can be reached by “bending
wires”.

I MapsH⊗H are the same thing as elements ofH∗ ⊗H:

ρ
↔ ρ

I So, higher-order operations Φ : L(H)→ L(H′) can be represented as
first-order maps:

ρ
7→

ρ

Θ



Slogan 1: Topology of diagrams

I When we’re in a compact closed category, it suffices to consider only
first-order maps, since higher-order stuff can be reached by “bending
wires”.

I MapsH⊗H are the same thing as elements ofH∗ ⊗H:

ρ
↔ ρ

I So, higher-order operations Φ : L(H)→ L(H′) can be represented as
first-order maps:

ρ
7→

ρ

Θ



Slogan 2: Classical data

I Classical data can be:

(iv) prepared:

(ii) deleted:

(iii) compared:

(i) copied:

...or any combination of (i-iv):
...

...

I We call the general thing a “spider”. Spiders are commutative, and
adjacent spiders merge:

=

...

...

...

=
...

...

...

...
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Spiders and Observables

I Fix some orthonormal basis {|zi〉}, then we can define a spider with m
in-edges and n out-edges is defined as a linear map:

spm,n :: |zi〉 ⊗ . . .⊗ |zi〉︸ ︷︷ ︸
m

7→ |zi〉 ⊗ . . .⊗ |zi〉︸ ︷︷ ︸
n

I In fact, all families of spiders in FHilb arise this way for a unique ONB.
We can recover this basis by restricting to vectors that behave as classical
points:

= = 1i i i
i

= = 1i i i
i

i

i
=

i
=

i

I So we have three equivalent pictures of classical data:

quantum observables↔ ONBs↔ families of spiders
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The Born Rule and Born Vectors

I For an observable X defined by in FHilb, the Born rule says the
probability of getting the i-th outcome when measuring X is:

Prob(i, ρ) = 〈i| ρ |i〉 =

i

ρ

i

I We can encode the probability distribution over measurement outcomes
as a vector written in the X basis:

i
i i

ρ = =∑
i

∑
ii i

i
ρρ

I We call any map |Γ) : I→ A obtained as above as a Born vector, with
respect to X.
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Measurements

m :=

I Any measurement can be represented by first performing a unitary, then
m :

UU†

I We focus on two measurements in particular for the concrete case. For

corresponding to the Pauli-Z and the (strongly complementary)
Pauli-X observables:

Pauli-X: Pauli-Y: π
2- π

2
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Complementary Observables

I X and Z are called complementary if maximal knowledge of one implies
minimal knowledge of the other. In other words, if we measure Z in the
X basis (or vice versa), all outcomes occur with equal probability.

∀i, j . |〈xi|zj〉|2 = 1/D

I E.g. position and momentum, or (more relevant in quantum info)
orthogonal spin-directions of a particle.



Complementary Observables, Diagrammatically

I The unbiasedness condition is equivalent to a simple graphical identity

on the induced observable structures and of X and Z:

S =
(A)

for S :=

I Proof (A)⇒ unbiased:

i

i i i i
i j

= = ==
j i

j j j j

j

S

i

j
j

i

= = 1

...so tr(1̂)〈xj|zi〉〈zi|xj〉 = D · |〈xj|zi〉|2 = 1.
I ⇐ is also true, assuming “enough classical points”.
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Strong Complementarity

I Two observables are called strongly complementary if ( , , , )

forms a scaled Hopf algebra.

=

=

=

=

(M)

(C1)

(C2)

(U)S =
(A)

I Under the assumption of “enough classical points”, (B), (C1), and (C2)
imply (A).



Classification of Strongly Complementary Observables

I While classification of complementary observables in all dimensions is
still an open problem, the classification of strongly complementary
observables is particularly simple:

Theorem

Pairs of strongly complementary observables in a Hilbert space of dimension D are in
1-to-1 correspondence with the Abelian groups of order D.



Mermin Setup

P
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I Perform four separate experiments, with the following measurement
settings: 

1. X X X
2. X Y Y
3. Y X Y
4. Y Y X

I Assume (for contradiction): This setup admits a local hidden variable
model.
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Global Hidden States

I We hypothesise that P is producing “global” hidden states. That is, states
which encode an outcome for each of the global measurement settings.

I In the Mermin setup, there are four global settings (XXX, XYY, YXY,
and YYX) and eight global outcomes (corresponding to whether or not
each of the three lights came on).

I A global hidden state therefore looks like this:

|λ) = | +−−︸ ︷︷ ︸
XXX

+++︸ ︷︷ ︸
XYY

−−+︸ ︷︷ ︸
YXY

−+−︸ ︷︷ ︸
YYX

)

I A probability distribution over such hidden states looks like a Born
vector |Λ) with 12 wires:

Λ
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Local Hidden States

I We now turn to imposing the restriction of locality on a global hidden
state. A local hidden state encodes outcomes at the level of local
measurement settings.

∣∣λ′) = | X︷︸︸︷
+

Y︷︸︸︷
−︸ ︷︷ ︸

system 1

X︷︸︸︷
−

Y︷︸︸︷
+︸ ︷︷ ︸

system 2

X︷︸︸︷
−

Y︷︸︸︷
+︸ ︷︷ ︸

system 3

)

I A local hidden state is then a Born vector with 6 wires:

Λ′

I Note how this is a much smaller space than distributions over global
hidden states (A⊗6 vs. A⊗12). If we can find a suitable embedding
E : A⊗6 → A⊗12, then we can define locality as being in the image of E.
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Embedding Local States

I We can use to copy the local outcomes to each of the four global
experiments:
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I We can use to copy the local outcomes to each of the four global
experiments:

Λ′

YX Y YXYX X X Y XY



GHZ States

I A GHZ state is a sum over all of the perfectly correlated triples of
eigenstates of an observable: ∑ |zi〉 ⊗ |zi〉 ⊗ |zi〉. Abstractly, it can be
constructed using a spider:

I Pure states are represented by doubling: |ψ〉 7→ |ψ〉〈ψ|. For GHZ:

7→
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Measuring GHZ States

I Let define a basis for a GHZ state, and a strongly

complementary basis. If we measure within a (white) phase of , we
can compute correlations with a few diagram rewrites.

-α1 α1 -α2 α2 -α3 α3

∑ αi-∑ αi

=

∑ αi

=

-∑ αi

I Notice how the choice of measurements has a purely global effect. In
particular, permuting our choice of measurement angles does not effect
the outcome.
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Measuring GHZ States: Examples

I Using this trick, we can simplify the distributions of measurement
outcomes on GHZ states.

=
0BXXX

=
1BYYX

=
BYXY

=
BXYY



Mermin’s Assumptions

I We shall recast the assumptions made by Mermin in our language and
derive a contradiction.

I Assumption 1: |Λ) is a distribution over local hidden states:

Λ
=

Λ′

I Assumption 2: |Λ) is (possibilistically) consistent with the
QM-predictions |BXXX)⊗ |BXYY)⊗ |BYXY)⊗ |BYYX):

Λ
�

supp BYXY BYYXBXXX BXYY



Parity Calculation

I Mermin trick: Don’t look at individual measurement outcomes (Which
lights came on?) but rather at the parity of outcomes (Did an even or
odd number of lights come on?)

I Generalised parity: if a S.C. pair is classified by a group G, the multiply
of one colour acts as a group multiplication for classical points of
another colour.

I In two dimensions, |G| = 2, so it must be Z2. This is just normal parity.
I We can compute the parity of lights in each of the four experiments by

applying white multiplications:

BYYXBXYYBXXX BYXY
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Parity is an Invariant

I The parity map on the previous slide is a comonoid homomorphism

because ( , , , ) is a bialgebra. We can see that parity is

constant as a consequence of specialness of .

11 10

=
0 11 1

I Since the parity map is constant on the predicted outcomes, we conclude
by assumption 2 that:

Λ
=

11 10
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Parity II

I Mermin derives the contradiction by computing the overall parity of the
three experiments involving a Y measurement.

=
0 1

Λ 110 1

=

I One can argue in words that the locality assumption forces this parity to
be equal to the parity of the first experiment. We can do it in diagrams.
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Mermin Locality Violation

I First apply the locality assumption and the spider rule:

= = (∗)

Λ′Λ′

I Note that all of the elements of Z2 are self-inverse, so S = 1. As a
consequence of the antipode law for Hopf algebras, parallel edges
vanish.

6=
0 1

Λ′

=(∗) =

Λ′
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Extensions and Future Work

I We define the notion of a Mermin scenario as an experiment involving:

1. An abstract |GHZN〉 state, i.e. an N-legged spider.
2. An Abelian group G such that for each round of the experiment, we choose

observables such that the group sum of the N outcomes is constant.

I Mermin scenarios extend straightforwardly to higher dimensions and
parties, in those cases, we replace Z2 with a generalised parity group G.
We replace the final step where pairs of parallel wires vanish with a step
where sets of k = exp(G) = max{|g| : g ∈ G} parallel wires vanish.

I Since we only use the †-compact structure of the category, along with the
classical and phase groups, Mermin scenarios make sense in other
generalised categories of processes.

1. Rel - sets and relations, “possibilistic” QT
2. Spek - Spekken’s epistemic toy theory
3. abstract †-CCC’s with extra structure (e.g. purification)
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Thanks!

:)

ξ Φ

I Questions?


