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Abstract

This thesis is about the problem of compositionality in distributional seman-
tics. Distributional semantics presupposes that the meanings of words are a
function of their occurrences in textual contexts. It models words as distribu-
tions over these contexts and represents them as vectors in high dimensional
spaces. The problem of compositionality for such models concerns itself with
how to produce distributional representations for larger units of text (such as
a verb and its arguments) by composing the distributional representations of
smaller units of text (such as individual words).

This thesis focuses on a particular approach to this compositionality problem,
namely using the categorical framework developed by Coecke, Sadrzadeh, and
Clark, which combines syntactic analysis formalisms with distributional se-
mantic representations of meaning to produce syntactically motivated compo-
sition operations. This thesis shows how this approach can be theoretically
extended and practically implemented to produce concrete compositional dis-
tributional models of natural language semantics. It furthermore demonstrates
that such models can perform on par with, or better than, other competing ap-
proaches in the field of natural language processing.

There are three principal contributions to computational linguistics in this the-
sis. The first is to extend the DisCoCat framework on the syntactic front and
semantic front, incorporating a number of syntactic analysis formalisms and
providing learning procedures allowing for the generation of concrete compo-
sitional distributional models. The second contribution is to evaluate the mod-
els developed from the procedures presented here, showing that they outper-
form other compositional distributional models present in the literature. The
third contribution is to show how using category theory to solve linguistic prob-
lems forms a sound basis for research, illustrated by examples of work on this
topic, that also suggest directions for future research.
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Chapter 1

Introduction

For a large class of cases—though not for all—in which we employ the word
“meaning” it can be explained thus: the meaning of a word is its use in the
language.

—Ludwig Wittgenstein

Language is fundamentally messy. Since the early days of philosophical thought,
thinkers have sought to tease structure out of it, from the Aristotlean syllogisms to the
development of mathematical logic in the work of Peano and Frege, inter alia, at the dawn
of the twentieth century. Others, such as the later Wittgensteinian school of thought, held
that language was perfectly ‘in order’ as it was, and that it is by measuring the correctness
of our speech acts against the linguistic community we live in that we learn how to prop-
erly use language, rather than by appealing to some objective standard dictating the correct
structure of meaning.

As the world evolved into the present age of information, language became not only the
purview of linguists, philosophers and logicians, but also of engineers and scientists. The
rapid increase of machine readable and publicly available text through the development of
the world wide web prompted a need for new technological tools to systematically classify,
search, translate, summarise, and analyse text. As this need grew, new mathematical and
computational methods were developed to extract structure from unstructured data.

While some thinkers of the modern age sought to adapt the tools and methods of logi-
cians, leading to the development of mathematical accounts of natural language meaning
such as formal semantics, others wished to accept the messiness of language. They instead
turned to the large amount of data available in order to model meaning through statistical
and distributional means. Thus while formal semanticists treated natural language as a pro-
gramming language, with grammar as its syntax and logic as its semantics, distributional
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and statistical semanticists interpreted the meaning of our words as being a function of their
contexts, as observed in text from various sources.

Both in the case of philosophers of language and computational linguists, there is an
apparent mutual inconsistency between the formal and distributional/empirical approaches.
They seem orthogonal, in that the former portrays language meaning as well-organised,
tidy, and well structured; while the latter aims to learn the underlying meaning of words
without appeal to any underlying structure beyond the superficial relations words hold to
one another through grammatical relations, or through simply occurring within the same
sentence or document. However, it could be argued that such a distinction between these
two views of semantics forms a false dichotomy, and that there is some middle ground
on which we could both think of language as being a matter of structured relations and
functions on the one hand, and empirically learnable meaning on the other.

This thesis deals with this middle ground. In the past decade, computational linguists
have sought to combine the structured approach of formal semantics and the empirical
methods of distributional semantics to produce a new class of models of natural language
semantics, dubbed compositional distributional semantic models, capable of exploiting the
structured aspects of language while learning meaning empirically.

I begin, in Chapter 2, by giving an overview of these two seemingly different ways of
modelling natural language semantics. I discuss formal semantics, which creates an asso-
ciation between grammatical elements and parts of logical expressions, in which syntactic
analysis yields the production of logical statements based on how grammatical elements
combine to form sentences.

Syntactic Analysis Semantic Interpretation

S⇒ NP VP [[VP]]([[NP]])
NP⇒ cats, milk, etc. [[cats]], [[milk]], . . .
VP⇒ Vt NP [[Vt]]([[NP]])
Vt⇒ like, hug, etc. λyx.[[like]](x, y), . . .

⇒

[[chase]]([[dogs]], [[cats]])

[[dogs]] λx.[[chase]](x, [[cats]])

λyx.[[chase]](x, y) [[cats]]

A simple formal semantic model.

I then introduce distributional semantic models, which model the meaning of words as
vectors in high dimensional spaces, constructed from the other words they co-occur with.
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furry

stroke

pet

cat

dog

snake

Graphical representation of a simple distributional semantic model.

Furthermore, I discuss past attempts to reconcile both approaches with mathematical oper-
ations that compose word vectors to form semantic vectors for larger units of text such as
phrases or sentences, surveying the different approaches to this problem in the literature.

In Chapter 3, I give an overview of an existing framework—DisCoCat—developed by
[19], which provides a general account of how grammatical formalisms and distributional
semantics can be combined to generate compositional distributional models of semantics.
The DisCoCat framework borrows a powerful mathematical tool frequently used in quan-
tum information theory, namely category theory, which allows information to be communi-
cated between different mathematical formalisms, provided that they share some underly-
ing structure. I survey the background knowledge required to understand this framework by
introducing pregroup grammars, a syntactic formalism with a convenient algebraic struc-
ture, and which is easily represented as a category.

John
n nr

loves
s nl

Mary
n

Pregroup parse of “John loves Mary”.

I also introduce the basics of category theory, and the diagrammatic calculus which allows
us to reason about compositional operations within a category.

v T w
=

T

v w

Graphical representation of subject-verb-object composition in DisCoCat.
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Finally, I discuss how distributional semantics fits into the categorical discourse within Dis-
CoCat, and how giving categorical representations to both pregroup grammars and vector
spaces allows us to produce syntactically motivated composition operations.

In Chapter 4, I develop new syntactic extensions to the DisCoCat framework. I begin
by presenting the notion of a functorial passage, and discuss how functors can be used to
extend the framework to incorporate syntactic formalisms other than pregroup grammars.
I then illustrate this by showing how Context Free Grammars can be incorporated into the
extended framework by translating them into pregroup grammars. I also show how Lambek
Grammars can be integrated into the framework by interpreting them as a specific kind of
category called a bi-closed monoidal category. I show how an existing graphical calculus
for such categories can be applied to develop a functorial passage from these categories to
the categories representing our semantic models.

Men kill

n sn

s

Men kill dogs

n( s n n

n( s

n

sn

s

Example of the diagrammatic calculus for categorical representation of Lambek Grammar.

In Chapter 5, I present a new learning procedure for generating concrete compositional
distributional semantic models from the DisCoCat framework. This procedure learns the
semantic representations for relations by summing over the information that the relations’
arguments hold in a corpus. I present a reduced representation for such relations which
allows us to efficiently compute the semantic representations for relations which would
otherwise require large amounts of data to model. I define composition operations for
these reduced representations. Furthermore, I demonstrate that, under certain assumptions,
the reduced representations are equivalent to the full representations of the relation they
model and are embedded within these full representations.

4



f v

s o =
f v

s o

Diagrammatic example of embedded reduced representations.

I furthermore provide a simplified alternative learning procedure for these reduced rep-
resentations, which ignores some aspects of the relations it provides a model for, but is
significantly quicker to learn and more efficient to store, while outperforming the model it
supplants in certain experiments.

f R

a1 an. . .

. . .

= f R̄ f R̄

a1 an

. . .

Diagrammatic form of generalised Kronecker composition model.

In Chapter 6, I evaluate the new models described in the previous chapter in a series
of sentence similarity detection experiments, comparing these models with other composi-
tional distributional models of semantics. These experiments test how well compositional
models can produce sentence representations for sentences containing ambiguous words,
and disambiguate the constituent words through the compositional process.

Sentence 1 Sentence 2

butler bow butler submit

head bow head stoop

company bow company submit

government bow government stoop

Sample sentence pairs from a phrase similarity detection experiment.

These experiments show that the models generated by the DisCoCat framework and the
learning procedures developed in this thesis outperform other approaches to distributional
compositionality.
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Finally, in Chapter 7, I discuss additional work that I have done on this topic with vari-
ous collaborators, and outline future work to continue to develop this growing field. Three
further developments are described. The first addresses the issue of incorporating logi-
cal operations into compositional distributional models. I discuss how a simple predicate
calculus might be simulated using tensors, and how this simulation fits into the DisCoCat
framework, before considering some of the difficulties that arise when trying to model gen-
uine logical calculi using distributional methods. Second, I discuss how machine learning
methods such as linear regression may be adapted to the DisCoCat framework, as an alter-
native to the learning procedures I initially presented. Third, I provide the foundations for
integrating a complex grammatical formalism, Combinatory Categorial Grammars, into the
DisCoCat framework, and discuss issues faced when trying to accommodate the many vari-
ants this formalism possesses. I conclude by suggesting general directions future research
might take based on these three points.

The aim of this thesis is to not only provide an exploration of the ways in which the
DisCoCat framework can be extended, but to also give a proof-of-concept, showing that
this abstract framework can be instantiated, that concrete models can be developed based
on it, and that these models offer an interesting new direction in the search for sophisticated
models of natural language semantics.
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Background
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Chapter 2

Literature Review

Chapter Abstract

This chapter presents the background literature concerning compositionality
in distributional semantics. The reader will find an overview of another well-
known compositional formalism, formal semantics, as well as a brief reminder
of the basic concepts behind distributional semantic models. Then follows a
survey of various approaches to the mathematics of vector composition from
the last few decades, and the discussing and contrasting of various matrix-
vector based approaches to distributional compositionality.

Compositional formal semantic models represent words as parts of logical expressions,
composed according to grammatical structure. These models embody classical ideas in
logic and philosophy of language, mainly Frege’s principle that the meaning of a sentence
is a function of the meaning of its parts [31]. Well studied and robust, logical formalisms
offer a scalable theory of meaning which can be used to reason about language using logical
tools of proof and inference. In contrast, distributional models are a more recent approach
to semantic modelling, representing the meaning of words not as logical formula but as
vectors whose values have been empirically learned from corpora. Distributional models
have found their way into real world applications such as thesaurus extraction [41, 21] or
automated essay marking [55], and have strong connections to semantically motivated in-
formation retrieval [59]. This new dichotomy in defining properties of meaning: ‘logical
form’ versus ‘contextual use’, has left the question of the foundational structure of mean-
ing, initially of sole concern to linguists and to philosophers of language, even more of a
challenge.

In this chapter, I present an overview of the background to the work developed in this
thesis by briefly describing formal and distributional approaches to natural language seman-
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tics, and providing a non-exhaustive list of some approaches to compositional distributional
semantics. For a more complete review of the topic, I encourage the reader to consult one
of the many excellent surveys of the field [80, 21, 12].

2.1 Formal Semantics

The approach commonly known as Formal Semantics, principally due to the work of
Richard Montague in the area of inductive logic, provides methods for translating sen-
tences of natural language into logical formulae, which can then be fed to computer-based
reasoning tools [2].

To compute the meaning of a sentence consisting of n words, the individual meanings of
each words must interact. In formal semantics, this interaction is represented as a function
derived from the grammatical structure of the sentence. Formal models consist of a pairing
of syntactic analysis rules (in the form of a grammar) with semantic interpretation rules, as
exemplified by the simple model presented on the left hand side of Figure 2.1.

Syntactic Analysis Semantic Interpretation
S⇒ NP VP [[VP]]([[NP]])
NP⇒ cats, milk, etc. [[cats]], [[milk]], . . .
VP⇒ Vt NP [[Vt]]([[NP]])
Vt⇒ like, hug, etc. λyx.[[like]](x, y), . . .

⇒

[[like]]([[cats]], [[milk]])

[[cats]] λx.[[like]](x, [[milk]])

λyx.[[like]](x, y) [[milk]]

Figure 2.1: A simple model of formal semantics.

The semantic representations of words here are expressions of a higher-order logic
formed by lambda expressions over parts of first-order logical formulae, which can be com-
bined with one another to form well-formed expressions of first-order logic. The function
[[−]] : L → M maps elements of the lexicon L to their interpretation in the logical model
M used. Proper nouns are typically just logical atoms, while nouns, adjectives, verbs, and
other relational words are interpreted as predicates and relations. The parse of a sentence
such as “cats like milk”, represented here as a binarised parse tree, is used to produce its
semantic interpretation by substituting semantic representations for their grammatical con-
stituents and applying β-reduction where needed. Such a derivation is shown on the right
hand side of Figure 2.1.

What makes this class of models attractive is that it reduces language meaning to logical
expressions, a subject well-known to philosophers of language, logicians, and linguists.
The properties of first-order and higher-order logics are well studied, and it is possible
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to evaluate the meaning of a sentence if given a logical model and domain (the model-
theoretic approach to logic), as well as to verify whether or not one sentence entails another
according to the rules of logical consequence and deduction, based on syntactic rules (the
syntactic approach to logic).

However, such logical analysis says nothing about the closeness in meaning or topic of
expressions beyond their truth-conditions and which models satisfy these truth conditions.
Therefore, formal semantic approaches to modelling language meaning do not perform well
on language tasks where the notion of similarity is not strictly based on truth conditions,
such as document retrieval, topic classification, etc. Furthermore, an underlying domain
of objects and a valuation function must be provided, as with any logic, leaving open the
question of how we might learn the meaning of language using such a model, rather than
just use it.

2.2 Distributional Semantics

The distributional semantics approach to lexical semantics represents the meaning of words
as distributions in a high-dimensional vector space. This approach is based on the distri-

butional hypothesis of Harris [44], who postulated that the meaning of a word was dictated
by the context of its use. The more famous dictum stating this hypothesis is Firth’s state-
ment [28] that “You shall know a word by the company it keeps”. This view of semantics
has furthermore been associated [33, 80] with earlier work in philosophy of language by
Wittgenstein, presented in [88], who stated that language meaning was equivalent to its real
world use.

Practically speaking, in this approach, the meaning of a word can be learned from a
corpus by looking at what other words occur with it within a certain context. The resulting
distribution can be represented as a vector in a semantic vector space. This vectorial rep-
resentation is convenient because vectors are a familiar structure with a rich set of ways of
computing vector distance, allowing us to experiment with different word similarity met-
rics. The geometric nature of this representation entails that we can not only compare
individual words’ meaning with various levels of granularity (e.g. we might, for example,
be able to show that cats are closer to kittens than to dogs, but that all three are mutu-
ally closer than cats and steam engines), but also apply methods frequently called upon
in information retrieval tasks such as those described by [59], to group concepts by topic,
sentiment, or other semantic classes.

The distribution underlying word meaning here is a vector in a vector space, the basis
vectors of which are dictated by the context. In simple models, the basis vectors will be
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annotated with words from the lexicon. Traditionally, the vector spaces used in such models
are Hilbert spaces, i.e. vector spaces with orthogonal bases, such that the inner product of
any one basis vector with another (other than itself) is zero. The semantic vector for any
word can be represented as the weighted superposition (i.e. the vector sum) of the basis
vectors:

−−−−−−−−−→
some word =

∑
i

ci
−→ni

where some set of orthogonal unit vectors {−→ni}i is the basis of the vector space which the
meaning of the word lives in, and ci ∈ R is the weight associated with basis vector −→ni .

A common source of confusion when encountering these models for the first time is to
think of these annotated basis vectors as representations of the words which annotate them.
In fact, they are simply representations of those words as context tokens. For example, the
word ‘furry’ may be used to annotate one of the basis elements of a vector space in its role
as a context. However, when we wish to reason about the meaning of ‘furry’, we will use
the semantic vector associated with it in the vector space, which is distinct from the basis
vector annotated with ‘furry’. This distinction may help explain why the orthogonality of
the basis vectors is acceptable despite the fact that some of the words which annotate them
may have similar meaning: we assume their context-theoretic properties to be independent,
even if the semantic vectors we will eventually construct for these words may be closer in
the space.

The construction of the vector for a word is done by counting, for each lexicon word ni

associated with basis vector −→ni , how many times ni occurs in the context of each occurrence
of the word for which we are constructing the vector. This count is then typically adjusted
according to a weighting scheme (e.g. term frequency inverse document frequency). The
“context” of a word can be something as simple as the other words occurring in the same
sentence as the word or within k words of it, or something more complex, such as using
dependency relations or other syntactic features.

To give an example, suppose that we wish to construct the semantic vectors for the
meaning of ‘dog’, ‘cat’ and ‘snake’. Let us fix the set of possible context words to be
{‘furry’, ‘pet’, ‘stroke’}. Let us consider ‘context’ to mean “words occurring in the same
sentence as the target word”. We begin by looking at the instances of ‘dog’ in some training
corpus of real text usage and see that it occurs twice with ‘furry’, twice with ‘pet’ and once
with ‘stroke’. We therefore learn from the training corpus the vector:

−−→
dog = [2 2 1]>
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We then observe that ‘cat’ occurs thrice in the same sentence as ‘furry’, once as ‘pet’ and
does not occur in the same sentence as stroke. Likewise, we note that ‘snake’ does not
occur in the context of ‘furry’, but twice in the context of ‘pet’ and ‘stroke’. We therefore
build the vectors:

−→cat = [3 1 0]>
−−−−→
snake = [0 2 2]>

Figure 2.2 shows a graphical representation of the semantic space in which we built these
vectors. We can visually observe that ‘cat’ and ‘dog’ seem closer in this space than ‘cat’
and ‘snake’ or ‘dog’ and ‘snake’. We can also see that ‘dog’ appears closer to ‘snake’ in this
space than the vector for ‘cat’ is close to ‘snake’. The geometric notion of a semantic space
therefore yields this non-binary aspect of similarity: concepts are not classified as similar
or dissimilar, but are instead part of a continuum of similarity defined by the similarity
metric used to compare vectors.

furry

stroke

pet

cat

dog

snake

Figure 2.2: A simple model of distributional semantics.

Commonly, the similarity of two semantic vectors is computed by taking their cosine
measure, which is the sum of the product of the basis weights of the vectors:

cosine(−→a ,
−→
b ) =

∑
i ca

i cb
i√∑

i (ca
i )2 ∑

i (cb
i )2

where ca
i and cb

i are the basis weights for −→a and
−→
b , respectively. However, other op-

tions may be a better fit for certain implementations, typically dependent on the weighting
scheme. Some of these are surveyed by [21]. Throughout this thesis, I will use the co-
sine measure as the principal similarity metric for vector comparison because it is the most
commonly used metric for the models I will consider and compare my work to.

To continue with our example, we wish to compute the relative similarity of ‘dog’ and
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‘cat’ versus that of ‘dog’ and ‘snake’, to verify that dogs and cats are more similar in our
model than dogs and snakes. We first compute:

〈
−−→
dog | −→cat

〉
= [2 2 1]


3
1
0

 = 2 · 3 + 2 · 1 + 1 · 0 = 8

To obtain the cosine measure, we must normalise the inner product by the product of vector
lengths ∥∥∥∥−−→dog

∥∥∥∥ · ∥∥∥∥−→cat
∥∥∥∥ =
√

22 + 22 + 12 ·
√

32 + 12 + 02 = 3
√

10

to obtain the cosine measure

cosine(
−−→
dog,−→cat) =

8

3
√

10
≈ 0.84

We apply the same procedure for ‘dog’ and ‘snake’, first calculating the inner product
of the semantic vectors

〈
−−→
dog |

−−−−→
snake

〉
= [2 2 1]


0
2
2

 = 2 · 0 + 2 · 2 + 1 · 2 = 6

and then the normalisation coefficient∥∥∥∥−−→dog
∥∥∥∥ · ∥∥∥∥−−−−→snake

∥∥∥∥ =
√

22 + 22 + 12 ·
√

02 + 22 + 22 = 3
√

8

to obtain the cosine measure

cosine(
−−→
dog,
−−−−→
snake) =

6

3
√

8
≈ 0.71

Interpreting the cosine measure as a percentage or degree of conceptual similarity, we see
that ‘dog’ is more than 10% closer in meaning to ‘cat’ than it is to ‘snake’.

Readers interested in learning more about these aspects of distributional lexical seman-
tics are invited to consult [21], which contains an extensive overview of implementation
options for distributional models of word meaning.
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2.3 Compositionality and Vector Space Models

In the above overview of distributional models of lexical semantics, we have seen that dis-
tributional semantic models (DSMs) are a rich and innovative way of learning word mean-
ing from a corpus, and obtaining a measure of semantic similarity for words. However, it
should be fairly obvious that the same method cannot be applied to sentences, whereby the
meaning of a sentence would be given by the distribution of other sentences with which it
occurs.

First and foremost, a sentence typically occurs only once in a corpus, and hence sub-
stantial and informative distributions cannot be created in this manner. More importantly,
human ability to understand new sentences is a compositional mechanism: we understand
sentences we have never seen before because we can generate sentence meaning from the
words used, and how they are put into relation. To go from word vectors to sentence vec-
tors, we must provide a composition operation allowing us to construct a sentence vector
from a collection of word vectors. In this section, I will discuss several approaches to
solving this problem, their advantages, and their limitations.

2.3.1 Additive Models

The simplest composition operation that comes to mind is straightforward vector addition,
such that:

−→
ab = −→a +

−→
b

Conceptually speaking, if we view word vectors as semantic information distributed across
a set of properties associated with basis vectors, using vector addition as a semantic com-
position operation states that the semantic information of a set of lemmas in a sentence is
simply the sum of the semantic information of the individual lemmas. While crude, this ap-
proach is computationally cheap, and appears sufficient for certain NLP tasks: [55] shows
it to be sufficient for automated essay marking tasks, and [33] shows it to perform better
than a collection of other simple similarity metrics for summarisation, sentence paraphrase,
and document paraphrase detection tasks.

However there are two principal objections to additive models of composition: first,
vector addition is commutative, therefore

−−−−−−−−−−−−−−→
John drank wine =

−−−→
John +

−−−−→
drank +

−−−→
wine =

−−−−−−−−−−−−−−−→
Wine drank John, and thus vector addition ignores syntactic structure completely; and sec-
ond, vector addition sums the information contained in the vectors, effectively jumbling the
meaning of words together as sentence length grows.

The first objection is problematic, as the syntactic insensitivity of additive models leads
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them to equate the representations of sentences with patently different meanings. [63]
propose to add some degree of syntactic sensitivity—namely accounting for word order—
by weighting word vectors according to their order of appearance in a sentence as follows:

−→
ab = α−→a + β

−→
b

where α, β ∈ R. Consequently
−−−−−−−−−−−−−−→
John drank wine = α ·

−−−→
John + β ·

−−−−→
drank + γ ·

−−−→
wine would not

have the same representation as
−−−−−−−−−−−−−−−→
Wine drank John = α ·

−−−→
wine + β ·

−−−−→
drank + γ ·

−−−→
John.

The question of how to obtain weights and whether they are only used to reflect word
order or can be extended to cover more subtle syntactic information is open, but it is not
immediately clear how such weights may be obtained empirically and whether this mode
of composition scales well with sentence length and increase in syntactic complexity. [42]
suggests using machine-learning methods such as partial least squares regression to de-
termine the weights empirically, but states that this approach enjoys little success beyond
minor composition such as adjective-noun or noun-verb composition, and that there is a
dearth of metrics by which to evaluate such machine learning-based systems, stunting their
growth and development at the time of writing.

The second objection states that vector addition leads to increase in ambiguity as we
construct sentences, rather than decrease in ambiguity as we would expect from giving
words a context. For this reason, [63] suggest replacing additive models with multiplicative
models as discussed in the next section, or combining them with multiplicative models to
form mixture models as discussed in §2.3.3.

2.3.2 Multiplicative Models

The multiplicative model of [63] is an attempt to solve the ambiguity problem, discussed in
the previous section, and provide implicit disambiguation during composition. The compo-
sition operation proposed is the component-wise multiplication (�) of two vectors. Vectors
are expressed as the weighted superposition of their basis vectors, and the weights of the
basis vectors of the composed vector is the product of the weights of the original vectors;
for −→a =

∑
i ci
−→ni , and

−→
b =

∑
i c′i
−→ni , we have

−→
ab = −→a �

−→
b =

∑
i

cic′i
−→ni

Such multiplicative models are shown by [63] to perform better at verb disambiguation
tasks than additive models for noun-verb composition, against a baseline set by the original
verb vectors. The experiment that they use to demonstrate this improvement will also serve
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to evaluate our own models, and form the basis for further experiments, as discussed below
in Chapter 6.

This approach to compositionality still suffers from two conceptual problems: first,
component-wise multiplication remains commutative and hence word order is not accounted
for; second, rather than ‘diluting’ information during large compositions and creating ambi-
guity, it may remove too much information through the ‘filtering’ effect of component-wise
multiplication.

The first problem is more difficult to deal with for multiplicative models than for addi-
tive models, since both scalar multiplication and component-wise multiplication are com-
mutative linear operations and hence α−→a � β

−→
b = α

−→
b � β−→a and thus word order cannot be

taken into account using scalar weights.
To illustrate how the second problem entails that multiplicative models do not scale

well with sentence length, let us look at the structure of component-wise multiplication
again: −→a �

−→
b =

∑
i cic′i

−→ni . For any i, if ci = 0 or c′i = 0, then cic′i = 0, and therefore for any
composition, the number of non-zero basis weights of the produced vector is less than or
equal to the number of non-zero basis weights of the original vectors: at each composition
step information is filtered out (or preserved, but never increased). Hence as the number of
vectors to be composed grows, the number of non-zero basis weights of the product vector
stays the same or—more realistically—decreases. Therefore for any composition of the
form −−−−−−−−−−−→a1 . . . ai . . . an = −→a1 � . . . �

−→ai � . . . �
−→an, if there exist two subsets of the set of vectors

involved such that the component-wise multiplication of the vectors in one subset forms a
vector orthogonal to that formed from the component-wise multiplication of the vectors in
the other, then −−−−−−−−−−−→a1 . . . ai . . . an =

−→
0 . It follows that purely multiplicative models alone are

not apt as a single mode of composition beyond binary composition operations.
One solution to this second problem not discussed by [63] would be to introduce some

smoothing factor s ∈ R+ for point-wise multiplication such that−→a�
−→
b =

∑
i (ci + s)(c′i + s)−→ni ,

ensuring that information is never completely filtered out. Seeing how the problem of syn-
tactic insensitivity still stands in the way of full-blown compositionality for multiplicative
models, I leave it to those interested in salvaging purely multiplicative models to determine
whether some suitable value of s can be determined.

2.3.3 Mixture Models

The problems faced by multiplicative models presented in §2.3.2 are acknowledged in pass-
ing by [63], who propose mixing additive and multiplicative models in the hope of lever-
aging the advantage of each while doing away with their pitfalls. This is simply expressed
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as the weighted sum of additive and multiplicative models:

−→
ab = α−→a + β

−→
b + γ(−→a �

−→
b )

where α, β and γ are pre-determined scalar weights.
The problems for these models are threefold. First, the question of how scalar weights

are to be obtained still needs to be addressed. Mitchell and Lapata [63] concede that one
advantage of purely multiplicative models over weighted additive or mixture models is that
the lack of scalar weights removes the need to optimise the scalar weights for particular
tasks (at the cost of not accounting for syntactic structure), and avoids the methodological
concerns accompanying this requirement.

Second, the question of how well this process scales from noun-verb composition to
more syntactically rich expressions must be addressed. Using scalar weights to account for
word order seems ad-hoc and superficial, as there is more to syntactic structure than the
mere ordering of words. Therefore an account of how to build sentences vectors for sen-
tences such as “The dog bit the man” and “The man was bitten by the dog” in order to give
both sentences the same (or a similar) representation would need to give a richer role to
scalar weights than just token order. Perhaps specific weights could be given to particular
syntactic classes (such as nouns) to introduce a more complex syntactic element into vector
composition; but it is clear that this alone is not a solution, as the weight for nouns “dog”
and “man” would be the same, allowing for the same commutative degeneracy observed in
non-weighted additive models, in which

−−−−−−−−−−−−−−−−−→
the dog bit the man =

−−−−−−−−−−−−−−−−−→
the man bit the dog. Intro-

ducing a mixture of weighting systems accounting for both word order and syntactic roles
may be a solution; however, it is not only ad-hoc but also arguably only partially reflects
the syntactic structure of the sentence.

The third problem is that [63] show that in practice, while mixture models perform bet-
ter at verb disambiguation tasks than additive models and weighted additive models, they
perform equivalently to purely multiplicative models with the added burden of requiring
parametric optimisation of the scalar weights.

Therefore while mixture models aim to take the best of additive and multiplicative
models while avoiding their problems, they are only partly successful in achieving the
latter goal, and demonstrably not much better in achieving the former.

2.3.4 Tensor-Based Models

From §§2.3.1–2.3.3 we observe that the need for incorporating syntactic information into
DSMs to achieve true compositionality is pressing, if only to develop a non-commutative
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composition operation that can take into account word order without the need for ad-hoc
weighting schemes, and hopefully to integrate richer syntactic information as well.

An early proposal by Smolensky [74, 75] to use linear algebraic tensors as a compo-
sition operation solves the problem of finding non-commutative vector composition oper-
ators. The composition of two vectors is their tensor product, sometimes called the Kro-
necker product when applied to vectors rather than vector spaces: for −→a ∈ V =

∑
i ci
−→ni , and

−→
b ∈ W =

∑
j c′j
−→
n′j, we have:

−→
ab = −→a ⊗

−→
b =

∑
i j

cic′j
−→ni ⊗
−→
n′j

To illustrate with an example consider the following two vectors:

−→a = [a1 a2]>
−→
b = [b1 b2]>

Their Kronecker product is as follows:

−→a ⊗
−→
b =

 a1b1 a1b2

a2b1 a2b2


The composition operation takes the original vectors and maps them to a vector in a

larger vector space V ⊗ W which is the tensor space of the original vectors’ spaces. Here
the second instance of ⊗ is not a recursive application of the Kronecker product, but rather
the pairing of basis elements of V and W to form a basis element of V ⊗ W. The shared
notation and occasional conflation of Kronecker and tensor products may seem confusing,
but is fairly standard in multi-linear algebra.

The advantage of this approach is twofold. First, vectors for different words need not
live in the same spaces but can be composed nonetheless. This allows us to represent
vectors for different word classes (e.g. topics, syntactic roles, etc.) in different spaces with
different bases, which was not possible under additive or multiplicative models. Second,
because the product vector lives in a larger space, we obtain the intuitive notion that the
information of the whole is richer and more complex than the mere sum or product of the
information of the parts.

2.3.4.1 Dimensionality Problems

However this increase in dimensionality brings two rather large problems for tensor based
models. The first is computational: the size of the product vector space is the product
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of the size of the original vector spaces. If we assume that all words live in the same
space N of dimensionality dim(N) then the dimensionality of an n-word sentence vector
is dim(N)n. If we have as many basis vectors for our word semantic space as there are
lexemes in our vocabulary—e.g. approximately 170k in English1—then the size of our
sentence vectors quickly reaches magnitudes for which vector comparison (or even storage)
are computationally intractable2. Even if, as most DSM implementations do, we restrict the
basis vectors of word semantic spaces to the k (e.g. k = 2000) most frequent words in a
corpus, the sentence vector size still grows exponentially with sentence length, and the
implementation problems remain.

The second problem is mathematical: sentences of different length live in different vec-
tor spaces, and if we assign different vector spaces to different word types (e.g. syntactic
classes), then sentences of different syntactic structure live in different vector spaces. As a
result, they cannot be compared directly using inner product or cosine measure, leaving us
with no obvious mode of semantic comparison for sentence vectors. If any model wishes
to use tensor products in composition operations, it must find some way of reducing the di-
mensionality of product vectors to some common vector space so that they may be directly
compared.

One notable method by which these dimensionality problems can be solved in general
are the holographic reduced representations proposed by [67]. The product vector of two
vectors is projected into a space of smaller dimensionality by circular convolution to pro-
duce a trace vector. The circular correlation of the trace and one of the original vectors
produces a noisy version of the other original vector. The noisy vector can be used to re-
cover the clean original vector by comparing it with a pre-defined set of candidates (for
example the set of word vectors if our original vectors are word meanings). Traces can be
summed to form new traces effectively containing several vector pairs from which original
vectors can be recovered. Using this encoding/decoding mechanism, the tensor product of
sets of vectors can be encoded in a space of smaller dimensionality, and then recovered
for computation without ever having to fully represent or store the full tensor product, as
discussed by [87].

There are problems with this approach that make it unsuitable for our purposes. First,
there is a limit to the information that can be stored in traces, which is independent of the
size of the vectors stored, but is a logarithmic function of their number. As we wish to be
able to store information for sentences of variable word length without having to directly

1Source: http://www.oxforddictionaries.com/page/howmanywords
2At four bytes per integer, and one integer per basis vector weight, the vector for “John loves Mary” would

require roughly (170000 · 4)3 ≈ 280 petabytes of storage, which is over ten times the data Google processes
on a daily basis according to [23].
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represent the tensored sentence vector, setting an upper bound to the number of vectors
that can be composed in this manner limits the length of the sentences we can represent
compositionally using this method.

Second, and perhaps more importantly, there are restrictions on the nature of the vectors
that can be encoded in such a way: the vectors must be independently distributed such that
the mean euclidean length of each vector is equal to one. Such conditions are unlikely
to be met in word semantic vectors obtained from a corpus, and as the failure to do so
affects the system’s ability to recover clean vectors, holographic reduced representations
are not prima facie useable for compositional DSMs. However, it is important to note
that [87] considers possible linguistic application areas where they may be of use, although
once again these mostly involve noun-verb and adjective-noun compositionality rather than
full-blown sentence vector construction. We retain from [67] the importance of finding
methods by which to project the tensored sentence vectors into a common space for direct
comparison, as will be discussed further in Chapter 3.

2.3.4.2 Syntactic Expressivity

An additional problem of a more conceptual nature is that using the tensor product as a
composition operation simply preserves word order. As I discussed in §2.3.3, this is not
enough on its own to model sentence meaning. We need to have some means by which to
incorporate syntactic analysis into composition operations.

Early work on including syntactic sensitivity into DSMs by [40] suggests using syntac-
tic dependency relations to determine the frame in which the distributions for word vectors
are collected from the corpus, thereby embedding syntactic information into the word vec-
tors. This idea is built upon by [14] who suggest incorporating dependency relations into
tensor-based composition operations as vectors themselves. For example in the sentence
“Simon loves red wine”, “Simon” is the subject of “loves”, “wine” is its object, and “red” is
an adjective describing “wine”. Hence from the dependency tree with “loves” as root node,
its subject and object as children, and their adjectival descriptors (if any) as their children,
we read the following structure:

−−−−→
loves⊗

−−−→
sub j⊗

−−−−−→
Simon⊗

−−→
ob j⊗

−−−→
wine⊗

−−→
ad j⊗

−−→
red. Using the

equality relation for inner products of tensor products:

〈
−→a ⊗
−→
b | −→c ⊗

−→
d 〉 = 〈−→a | −→c 〉 × 〈

−→
b |
−→
d 〉

we can therefore express inner-products of sentence vectors efficiently without ever having
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to actually represent the tensored sentence vector:

〈
−−−−−−−−−−−−−−−−−−−→
Simon loves red wine |

−−−−−−−−−−−−−−−−−−−−−−−→
Mary likes delicious rosé〉

= 〈
−−−−→
loves ⊗

−−−→
sub j ⊗

−−−−−→
Simon ⊗

−−→
ob j ⊗

−−−→
wine ⊗

−−→
ad j ⊗

−−→
red |

−−−→
likes ⊗

−−−→
sub j ⊗

−−−−→
Mary ⊗

−−→
ob j ⊗

−−−→
rosé ⊗

−−→
ad j ⊗

−−−−−−−→
delicious〉

= 〈
−−−−→
loves |

−−−→
likes〉 × 〈

−−−→
sub j |

−−−→
sub j〉 × 〈

−−−−−→
Simon |

−−−−→
Mary〉 × 〈

−−→
ob j |

−−→
ob j〉 × 〈

−−−→
wine |

−−−→
rosé〉 × 〈

−−→
ad j |

−−→
ad j〉 × 〈

−−→
red |

−−−−−−−→
delicious〉

= 〈
−−−−→
loves |

−−−→
likes〉 × 〈

−−−−−→
Simon |

−−−−→
Mary〉 × 〈

−−−→
wine |

−−−→
rosé〉 × 〈

−−→
red |

−−−−−−−→
delicious〉

This example shows that this formalism allows for the comparison of sentences with iden-
tical dependency trees to be broken down to term-to-term comparison without the need for
the tensor products to ever be computed or stored, reducing computation to inner product
calculations.

However while matching up terms with identical syntactic roles in the sentence works
well in the above example, this model suffers from the same problems as the original
tensor-based compositionality of [74] in that, by the authors’ own admission, sentences
of different syntactic structure live in spaces of different dimensionality and thus cannot be
directly compared. Hence we cannot use this to measure the similarity between even small
variations in sentence structure, such as the pair “Simon likes red wine” and “Simon likes
wine”, which are sentences of different length and grammatical structure, and therefore live
in different vector spaces under this approach.

2.3.5 SVS Models

The idea of including syntactic relations to other lemmas in word representations discussed
in §2.3.4, above, is applied differently in the structured vector space model presented by
[26]. They propose to represent word meanings not as simple vectors, but as triplets:

w = (v,R,R−1)

where v is the word vector, constructed as in any other DSM, R and R−1 are selectional
preferences, and take the form of R → D maps where R is the set of dependency relations
and D is the set of word vectors. Selectional preferences are used to encode the lemmas
that w is typically the parent of in the dependency trees of the corpus in the case of R, and
typically the child of in the case of R−1.

Composition takes the form of vector updates according to the following protocol. Let
a = (va,Ra,R−1

a ) and b = (vb,Rb,R−1
b ) be two words being composed, and let r be the
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dependency relation linking a to b. The vector update procedure is as follows:

a′ = (va � R−1
b (r),Ra − {r},R−1

a )

b′ = (vb � Ra(r),Rb,R−1
b − {r})

where a′, b′ are the updated word meanings, and � is whichever vector composition (ad-
dition, component-wise multiplication) we wish to use. The word vectors in the triplets
are effectively filtered by combination with the lemma which the word they are being com-
posed with expects to bear relation r to, and this relation between the composed words
a and b is considered to be used and hence removed from the domain of the selectional
preference functions used in composition.

This mechanism is therefore a more sophisticated version of the compositional disam-
biguation mechanism discussed by [63] in that the combination of words filters the meaning
of the original vectors which may be ambiguous (e.g. if we have one vector for all senses
of the word “bank”); however, contrary to [63] the information of the original vectors
is modified but essentially preserved, allowing for further combination with other terms,
rather than directly producing a joint vector for the composed words. The added fact that R

and R−1 are partial functions associated with specific lemmas forces grammaticality during
composition, since if a holds a dependency relation r to b which it never expects to hold
(for example a verb having as subject another verb, rather than the reverse) then Ra and
R−1

b are undefined for r and the update fails. However, there are some problems with this
approach if our goal is true compositionality.

First, this model does not allow some of the ‘repeated compositionality’ we need be-
cause of the update of R and R−1. For example, we expect that an adjective composed with
a noun produces something like a noun in order to be further composed with a verb or even
another adjective. However here, because the relation adj would be removed from R−1

b for
some noun b composed with an adjective a, this new representation b′ would not have the
properties of a noun in that it would no longer expect composition with an adjective, ren-
dering representations of simple expressions like “the new red car” impossible. Of course,
we could remove the update of the selectional preference functions from the compositional
mechanism, but then we would lose this attractive feature of grammaticality enforcement
through the partial functionality of R and R−1.

Second, this model does little more than represent the implicit disambiguation which
is expected during composition, rather than actually provide a full blown compositional
model. The inability of this system to provide a novel mechanism by which to obtain
a joint vector for two composed lemmas—thereby building towards sentence vectors—
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entails that this system provides no means by which to obtain semantic representations of
larger syntactic structures which can be compared by inner product or cosine measure as is
done with any other DSM. Of course, this model could be combined with the compositional
models presented in §§2.3.1–2.3.3 to produce sentence vectors, but while some syntactic
sensitivity would have been obtained, the word ordering and other problems of the afore-
mentioned models would still remain, and little progress would have been made towards
true compositionality.

Finally, [26] state that the selectional preferences for each word must be pre-defined,
but provide no procedure by which we would learn these from a corpus. This is an open
problem for this model rather than a conceptual objection, but it remains to be seen if such
preferences can be empirically determined without affecting the performance or tractability
of such a model.

We retain from this attempt to introduce compositionality in DSMs that including in-
formation obtained from syntactic dependency relations is important for proper disam-
biguation. We also note that having some mechanism by which the grammaticality of the
expression being composed is a pre-condition for its composition is a desirable feature for
any compositional mechanism.

2.4 Matrix-Based Compositionality

The final class of approaches to vector composition I wish to discuss are three matrix based
models.

2.4.1 Generic Additive Model

The first is the Generic Additive Model of [90]. This is a generalisation of the weighted
additive model presented in §2.3.1. In this model, lexical vectors are not just multiplied by
fixed parameters α and β before adding them to form the representation of their combina-
tion. Instead, they are the arguments of matrix multiplication by square matrices A and B

as follows:
−→
ab = A−→a + B

−→
b

Here A and B represent the added information provided by putting two words into relation.
The numerical content of A and B is learned by linear regression over triplets (−→a ,

−→
b ,−→c )

where −→a and
−→
b are lexical semantic vectors, and −→c is the expected output of the combina-

tion of −→a and
−→
b . This learning system thereby requires the provision of labelled data for
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linear regression to be performed. Zanzotto et al. suggest several sources for this labelled
data, such as dictionary definitions and word etymologies.

This approach is richer than the weighted additive models, since the matrices act as
linear maps on the vectors they take as ‘arguments’, and thus can encode more subtle
syntactic or semantic relations. However, this model treats all word combinations as the
same operation, e.g. treating the combination of an adjective with its argument and a verb
with its subject as the same sort of composition. This may not be fundamentally wrong, but
it would be worthwhile evaluating how well this system works in the context of experiments
such as those presented in Chapter 6. But because of the diverse ways there are of training
such supervised models, we leave it to those who wish to further develop this specific line
of research to perform such evaluations.

2.4.2 Adjective Matrices

The second approach is the matrix-composition model of [5], which they develop only for
the case of adjective-noun composition, although their approach can seamlessly be used
for any other predicate-argument composition. Contrary to most of the approaches above,
which aim to combine two lexical vectors to form a lexical vector for their combination,
Baroni and Zamparelli suggest giving different semantic representations to different types,
or more specifically to adjectives and nouns.

In this model, nouns are lexical vectors, as with other models. However, embracing a
view of adjectives that is more in line with formal semantics than with distributional se-
mantics, they model adjectives as linear maps taking lexical vectors as input and producing
lexical vectors as output. Such linear maps can be encoded as square matrices, and applied
to their arguments by matrix multiplication. Concretely, let Mad jective be the matrix encod-
ing the adjective’s linear map, and −−−→noun be the lexical semantic vector for a noun; their
combination is simply

−−−−−−−−−−−−−→
ad jective noun = Mad jective ×

−−−→noun

Similarly to the Generic Additive Model described above, the matrix for each adjective
is learned by linear regression over a set of pairs (−−−→noun,−→c ) where the vectors −−−→noun are
the lexical semantic vectors for the arguments of the adjective in a corpus, and −→c is the
semantic vector corresponding to the expected output of the composition of the adjective
with that noun.

This may, at first blush, also appear to be a supervised training method for learning
adjective matrices from ‘labelled data’, seeing how the expected output vectors are needed.
However, Baroni and Zamparelli work around this constraint by automatically producing
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the labelled data from the corpus by treating the adjective-noun compound as a single token,
and learning its vector using the same distributional learning methods they used to learn the
vectors for nouns.

This same approach can be extended to other unary relations without change. It bears
some similarity to some of the work presented in this document, and a direct comparison
of our frameworks would be interesting. However, this requires a method of extending this
approach to binary predicates for full comparison to be made. Furthermore, this approach
has a larger set of free parameters, such as the method of dimensionality reduction used,
the linear regression learning algorithm and its parameters, and so on. While this entails
that this class of models can certainly be tweaked to improve results, the difficult task of
finding optimal parameters for such a framework is outside of the scope of this thesis, and
we will not attempt in our evaluations of Chapter 6 an unfair direct comparison by using
substandard parameters.

2.4.3 Recursive Matrix-Vector Model

The third approach is the recently-developed Recursive Matrix-Vector Model (MV-RNN)
of [76]3, which claims the two matrix-based models described above as special cases. In
MV-RNN, words are represented as a pairing of a lexical semantic vector −→a with an oper-
ation matrix A. Within this model, given the parse of a sentence in the form of a binarised
tree, the semantic representation (−→c ,C) of each branch node in the tree is produced by
performing the following two operations on its children (−→a , A) and (

−→
b , B).

First, the vector component −→c is produced by applying the operation matrix of one child
to the vector of the other, and vice versa, and then projecting the concatenation of both of
the products back into the same vector space as the child vectors using a projection matrix
W, which must also be learned:

−→c = g

W ×
 B × −→a

A ×
−→
b




Here, g is a component-wise activation function to be determined by the model imple-
mentation (e.g. a sigmoid function), used to introduce an element of non-linearity to the
compositional process.

Second, the matrix C is calculated by projecting the pairing of matrices A and B back

3Other similar related deep-learning approaches are also worth investigating, such as that of [46].
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into the same space, using a projection matrix WM, which must also be learned:

C = WM ×

 A

B


The pairing (−→c ,C) obtained through these operations forms the semantic representation of
the phrase falling under the scope of the segment of the parse tree below that node.

This approach to compositionality yields good results in the experiments described in
[76]. It furthermore has appealing characteristics such as treating relational words dif-
ferently through their operation matrices, and allowing for recursive composition, as the
output of each composition operation is of the same type of object as its inputs. How-
ever, the learning procedure for the projection matrices and the operation matrices for each
word, described in [76], is non-trivial. It relies on a supervised learning algorithm, and
thus is open to the same problems of data availability and sparsity as any other supervised
learning system. This also makes it difficult to produce a version of the model to run the ex-
periments described in Chapter 6, although working towards joint evaluation of the models
described in this section with the MV-RNN approach will certainly need to be the object of
further work.

The other significant difference with the compositional framework presented in this
thesis is that composition in MV-RNN is always a binary operation, e.g. to compose a
transitive verb with its subject and object one would first need to compose it with its object,
and then compose the output of that operation with the subject. The framework discussed
in this thesis allows for the construction of representations for relations of larger arities,
permitting the simultaneous composition of a verb with its subject and object. Whether or
not this theoretical difference leads to significant differences in composition quality requires
joint evaluation which, once again, I will leave to further work.
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Chapter 3

Foundations of DisCoCat

Chapter Abstract

This chapter describes the DisCoCat framework of [19], which forms the basis
for most of the work presented in this thesis. It introduces the concepts of
pregroup grammars, categories, diagrammatic calculi for categories, and of
how information may be shared between mathematical formalisms through the
medium of categories.

In Chapter 2, I discussed distributional semantic models (DSMs) and attempts to pro-
vide a vector composition operation over word meanings to form distributional sentence
representations. In this chapter, I will present an existing formalism aiming to solve this
compositionality problem, as well as the mathematical background required to understand
it and further extensions, building on the features and failures of previously discussed at-
tempts at syntactically-sensitive compositionality.

[13, 19] propose to adapt a category theoretic model initially used to describe infor-
mation flow in quantum information theory to the task of composing of semantic vectors.
Syntactic analysis in the form of pregroup grammars—a type of categorial grammar—is
given categorical semantics in order to be represented as a compact closed category P (a
concept explained below), the objects of which are syntactic types and the morphisms of
which are the reductions forming the basis of syntactic analysis. Vectors for words reside in
vector spaces containing semantic vectors for lemmas of a particular syntactic type, and the
set of vector spaces is represented as a compact closed category FVect with vector spaces
as objects and linear maps as morphisms.

The key feature of category theory exploited here is the ability to express different math-
ematical formalisms as structures which can be related, even if the original formalisms be-
long in different branches of mathematics. Hence the product category P×FVect allows us
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to relate syntactic types to vector spaces and syntactic reductions to linear maps so that we
obtain a mechanism by which syntactic analysis guides semantic composition operations.

This pairing of syntactic analysis and semantic composition ensures both that gram-
maticality restrictions are in place as in the model of [26], and that syntactically-driven
semantic composition in the form of inner-products provides the implicit disambiguation
features as in the compositional models of [26] and [63]. The composition mechanism also
involves projection of tensored vectors into a common semantic space without the need for
computing the full representation of the tensored vectors (in a manner similar to [67]), but
without the added restriction as to the nature of the vector spaces it can be applied to. This
avoids the complexity and comparison problems faced by other tensor-based composition
mechanisms such as those of [74] and [14].

The word vectors can be specified model-theoretically and the sentence space can be
defined over boolean values to obtain grammatically-driven truth-theoretic semantics in the
style of [65], as proposed by [13]. Some logical operators can be emulated in this setting,
such as using swap matrices for negation as shown by [19]. Alternatively, corpus-based
variations on this formalism have been proposed by [39] to obtain a non-truth theoretic
semantic model of sentence meaning for which logical operations have yet to be defined.

Before explaining how this formalism works, in §3.3, I will introduce pregroup gram-
mars in §3.1, and the required basics of category theory in §3.2.

3.1 Pregroup Grammars

Presented by Lambek in [52, 53] as a successor to his non-commutative type-logical calcu-
lus presented in [51], pregroup grammars are a class of categorial grammars with pregroup
semantics. They comprise atomic grammatical types which can combine to form com-
pound types. A series of application rules allow for type-reductions, forming the basis of
syntactic analysis. The pregroup semantics of this syntactic formalism are what interest
us, as will be discussed in §3.3. However, our first step will be to show how this syntactic
analysis formalism works, which will in turn require an introduction to pregroups.

3.1.1 Pregroups

A pregroup is an algebraic structure of the form (P,≤, ·, 1, (−)l, (−)r). Let us explain these
elements individually:

• P is simply a set of objects {a, b, c, . . .}.
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• ≤ is a partial ordering relation on P.

• · is an associative, non-commutative monoid multiplication operator, and can be con-
ceived of as a function −·− : P×P→ P such that if a, b ∈ P then a ·b ∈ P. Therefore
P is closed under this operation.

• 1 ∈ P is the unit, satisfying a · 1 = a = 1 · a for all a ∈ P.

• (−)l and (−)r are the left and right adjoints, and can be conceived of as functions
(−)l : P → P and (−)r : P → P such that for any a ∈ P, al, ar ∈ P. Adjoints are
further described by the following axioms:

– Reversal: if a ≤ b then bl ≤ al (as for ar, br).

– Ordering: a · ar ≤ 1 ≤ ar · a and al · a ≤ 1 ≤ a · al.

– Cancellation: alr = a = arl.

– Equality of identity: 1r = 1 = 1l.

– Self-adjoint multiplication: (a · b)r = br · ar.

I say that a pregroup is freely generated by some basic set of types {a, b, c, . . . , z} to
mean that all elements of the pregroup, such as the adjoints {al, brr, . . .} and complex types
{a · b, c · d · e, cr · a · bl} are formed by applying the adjoint operations (−)r and (−)l and
the multiplication operation · to elements of the basic set or those thus-generated from
it. Notationally, this means that the only alphabet used in complex types is that used to
enumerate objects of the basic set.

As a notational simplification I write ab for a · b, and if abcd ≤ cd I write abcd → cd

and call this a reduction, omitting the identity wherever it might appear. Monoid multipli-
cation is associative, so parentheses may be added or removed for notational clarity without
changing the meaning of the expression as long as they are not directly under the scope of
an adjoint operator.

An example reduction in pregroup might be:

aarbclc→ bclc→ b

I note here that the reduction order is not always unique, as I could have reduced the ex-
pression as follows: aarbclc → aarb → b. As a further notational simplification, if there
exists a chain of reductions a → . . . → b we may simply write a → b (in virtue of the
transitivity of partial ordering relations). Hence in our above example, we can express both
reduction paths as aarbclc→ b.
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3.1.2 Pregroups and Syntactic Analysis

Pregroups can be used for grammatical analysis by freely generating the set P of a pregroup
from the combination of basic syntactic types n, s, . . . and defining one type (s) to be the
sentence type. As in any categorial grammar, words of the lexicon are assigned one or more
possible types (corresponding to different syntactic roles) in a pre-defined type dictionary,
and the grammaticality of an expression is verified by demonstrating the existence of a
reduction from the type of the expression to the sentence type s.

For example, let us assign to nouns the type n, and to transitive verbs the compound type
nr snl. We can read from the type of a transitive verb that it is something which ‘expects’ a
noun on its left, and one on its right, in order to reduce to a sentence. A sample reduction
of “John loves cake” with ‘John’ and ‘cake’ being nouns of type n and ‘loves’ being a verb
of type nr snl is as follows:

n(nr snl)n→ (snl)n→ s

And thus we see that the transitive verb has combined with the subject to become something
that requires an object, which it obtains and then becomes a sentence. The expression
reduces to s, and hence the expression is grammatical.

Intransitive verbs can be given the type nr s such that “John sleeps” would be analysed
in terms of the reduction n(nr s) → s. Adjectives can be given the type nnl such that “red
round rubber ball” would be analysed by (nnl)(nnl)(nnl)n → n. And so on and so forth for
other syntactic classes. . .

Lambek, in [53], presents the details of a slightly more complex pregroup grammar
with a richer hierarchy of types than presented here. It is hand-constructed and iteratively
extended by expanding the type hierarchy as previous versions of the grammar encounter
unparseable expressions.

3.1.3 A graphical calculus for pregroups

Pregroups can be represented using a simple graphical calculus [69] allowing us to visu-
ally exhibit the simultaneous nature of type reductions in an elegant and intuitive manner.
Cancellations of the type aar or ala are represented as ‘cups’ as shown in Figure 3.1. I
designate the non-reduction of a type by a single downward line, which can be seen as the
‘output’ of the reduction.

Figure 3.2 shows the diagrammatic reduction for the pregroup parse of “John loves
Mary”, whereby a noun (“John”) of type n combines with the leftmost adjoint of the com-
pound term for a transitive verb (“loves”) of type nr snl, and another noun (“Mary”) com-
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a ar al a

Figure 3.1: Diagrammatic examples of pregroup reductions.

bines with the rightmost adjoint of the verb to form a sentence type s.

John
n nr

loves
s nl

Mary
n

Figure 3.2: Diagrammatic pregroup parse of “John loves Mary”.

This diagrammatic calculus bears some striking similarities to the diagrammatic calcu-
lus for compact closed categories, described in §3.2.3. This similarity is no coincidence
because of the relation between pregroups and compact closed categories, discussed in
§3.2.2. This diagrammatic similarity will make it easier to visually describe the process of
passing from syntactic analysis to semantic interpretation, as discussed in §3.3.

3.2 Categories

Category theory is a branch of pure mathematics which allows for the formulation of other
mathematical structures and formalisms in terms of objects, arrows, and a few axioms.
This simplicity and restricted conceptual language makes category theory both specific
and general. It is specific in that the new properties of existing theories can be deduced
from categorical axioms. It is general in that properties of these theories can be related to
properties of other theories if they bear the same categorical representations.

It is this ability category theory provides to communicate information both within and
across mathematical structures which makes it such a powerful tool. In this function, it
has been at the centre of recent work in the foundations of physics and the modelling of
quantum information flow, as presented in [1]. The connection1 between the mathematics

1I interpret this connection as one of loose analogy, at best, rather than holding the view that there is
some fundamental link between quantum mechanics and language. It just happens that in both quantum
mechanics and language, there is a notion of information being communicated, exchanged, or affected by
objects with an “uncertain” state. In the case of quantum mechanics, this uncertainty takes the form of state
superpositions, while in language it takes the form of ambiguity and polysemy. It should therefore come as
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used for this branch of physics and those potentially useful for linguistic modelling has
been noted by several sources, such as [86, 54, 83].

In this section, in order to demonstrate how these mathematical methods carry over to
semantic analysis, I will briefly examine the basics of category theory, monoidal categories,
and compact closed categories. The focus will be on defining enough basic concepts to
proceed rather than provide a full-blown tutorial on category theory and the modelling of
information flow, as several excellent sources already cover both aspects, e.g. [58, 85, 18].
A categories-in-a-nutshell crash course is also provided in [13, 19].

3.2.1 The Basics of Category Theory

Let us first consider the simplest definition of a category. A basic category C is defined in
terms of the following elements:

• A collection of objects ob(C).

• A collection of morphisms hom(C).

• A morphism composition operation ◦.

Each morphism f has a domain dom( f ) ∈ ob(C) and a codomain codom( f ) ∈ ob(C).
For dom( f ) = A and codom( f ) = B, I abbreviate these definitions as f : A → B. Despite
the notational similarity to function definitions, it is important to state that nothing else is
pre-supposed about morphisms, and we should not treat them as functions.

The following axioms hold:

• For any f : A→ B and g : B→ C there exists h : A→ C and h = g ◦ f .

• For any f : A→ B, g : B→ C and h : C → D, ◦ satisfies (h ◦ g) ◦ f = h ◦ (g ◦ f ).

• For every A ∈ ob(C) there is an identity morphism idA : A → A such that for any
f : A→ B, f ◦ idA = A = idB ◦ f .

We can express various mathematical formalisms using such basic categories, and ver-
ify that these axioms hold. For example there is a category of sets with sets as objects and
functions as morphisms, a category of posets with posets as objects and order-preserving

no surprise that the mathematics developed to deal with one of these domains might be adapted to deal with
the other, but I believe that the connection stops there. If anything, the ability to straightforwardly adapt the
mathematics of quantum information flow to linguistic information flow exemplifies the advantages provided
by the abstractness and generality of category theory.
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maps as morphisms, and a category of groups with groups as objects and group homomor-
phisms as morphisms, to name a few.

A product category C × D of two categories C and D is a category with pairs (A, B) as
objects, where A ∈ ob(C) and B ∈ ob(D). There exists a morphism ( f , g) : (A, B)→ (C,D)
in C × D if and only if there exists f : A → C ∈ hom(C) and g : B → D ∈ hom(D).
Product categories are useful in attaining this desired generality of category theory, in that
they allow us to relate objects and operations (morphisms) in one mathematical formalism
or structure to those in another. However, this method of relating structures is not ideal, as
will be discussed in Chapter 4, where a more elegant alternative will be provided (namely
functors). For the time being, though, I will use product categories for the sake homogene-
ity with the work of [19], which this present work extends.

3.2.2 Compact Closed Categories

A slightly more complex class of categories is that of monoidal categories, which allow us
to reason not just about objects and the relations between them, but also about combina-
tions of objects in terms of the objects which they comprise. Formally, a (strict) monoidal
category C is a basic category to which we add a bifunctor ⊗ (sometimes referred to as a
monoidal tensor) satisfying the following conditions:

• For all A, B ∈ ob(C) there is an object A ⊗ B ∈ ob(C).

• For all A, B,C ∈ ob(C), we have (A ⊗ B) ⊗C � A ⊗ (B ⊗C).

• There exists some I ∈ ob(C) such that for any A ∈ ob(C), we have I ⊗A � A � A⊗ I.

• For f : A→ C and g : B→ D in hom(C) there is f ⊗ g : A ⊗ B→ C ⊗ D in hom(C).

• For f1 : A → C, f2 : B → D, g1 : C → E and g2 : D → F the following equality
holds:

(g1 ⊗ g2) ◦ ( f1 ⊗ f2) = (g1 ◦ f1) ⊗ (g2 ◦ f2)

The strictness of the category entails that the isomorphisms described above are equalities.
A compact bi-closed category C is a monoidal category with the following additional

axioms:

• Each object A ∈ ob(C) has left and right ‘adjoint’ objects Al and Ar in ob(C). The
following isomorphism shows the distribution of adjoints over tensored objects:

(A ⊗ B)l � (Bl ⊗ Al) and (A ⊗ B)r � (Br ⊗ Ar)
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• There exist four structural morphisms for each object A ∈ ob(C):

– ηl
A : I → A ⊗ Al.

– ηr
A : I → Ar ⊗ A.

– ε l
A : Al ⊗ A→ I.

– εr
A : A ⊗ Ar → I.

• All such structural morphisms satisfy the following equalities:

– (1A ⊗ ε
l
A) ◦ (ηl

A ⊗ 1A) = 1A.

– (εr
A ⊗ 1A) ◦ (1A ⊗ η

r
A) = 1A.

– (1Ar ⊗ εr
A) ◦ (ηr ⊗ 1Ar ) = 1Ar .

– (ε l
A ⊗ 1Al) ◦ (1Al ⊗ ηl

A) = 1Al .

Furthermore, for product categories involving compact closed categories, if there are pair-
ings (a, A) and (b, B), then there is a pairing (a ⊗ b, A ⊗ B). One might describe compact
closed categories as monoidal categories where we not only deal with the combination of
objects, but also qualify how such combinations relate to simpler objects through ‘cancel-
lations’ (ε morphisms) and ‘productions’ (η morphisms).

It is worth noting the obvious similarity between compact closed categories and the
pregroup structures discussed in §3.1.1. I note that each object in a compact closed category
has a left and a right adjoint, as do objects in pregroups. The monoidal tensor behaves
identically to monoidal multiplication, and is also associative. There is a unit object I with
the same equality properties as 1 in a pregroup. Furthermore, we note that if morphisms in
a compact closed category are considered as ordering relations, the structural morphisms
hold the same inequality relations as the object-adjoint pairings do in a pregroup.

We can therefore consider a pregroup as a compact closed category P modelling a poset.
The elements of the pregroup’s set are the category’s objects; the ordering relations are its
morphisms, 1 as I, and monoidal multiplication is the bifunctor ⊗. Notationally, instead of
the single ordering relation symbol ≤ we instead can write ≤(a,b) to denote the morphism
expressing a ≤ b. Likewise, the unary operators (−)l and (−)r can be turned into a set
of morphisms linking types to their adjoints, where each morphism can be individually
denoted (−)l

a for the case (−)l :: a 7→ al, and similarly (−)r
a for the case (−)r :: a 7→ ar, for

any such a in P.
The procedure described above is called giving categorical semantics to the pregroup.

In §3.3, I will discuss how the little category theory we have seen here and this notion
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of giving categorical semantics to other formalisms can aid us in achieving our goal of
syntax-sensitive compositional DSMs.

3.2.3 A Graphical Calculus for Compact Closed Categories

Compact closed categories may appear to be very abstract mathematical entities to reason
with and about. Fortunately, a graphical calculus, surveyed in [73], has been developed to
provide both visual and practical support for these tasks. Proofs in this graphical calculus
take the form of applications of diagrammatic rewrite rules which are sound and complete,
and correspond to mathematical proofs about compact closed categories. This graphical
calculus has basic elements and rewrite rules (and associated categorical meanings), some
important ones of which are shown in Tables 3.1–3.3.

In Table 3.1, the basic elements are shown. I depict the flow of information as going
from the top of the diagram towards the bottom, along the paths of wires typed with objects
of the category. In some applications of this calculus, an opposite convention is used,
whereby information flows from bottom to top.

Identity is seen as a naked wire. Morphisms are a box which transforms an input wire
into an output wire of (possibly) different type. Morphism composition is two boxes on
the same wire, while tensored morphisms are two wires side by side (with morphism boxes
on them). A function over tensors is a box that take two wires in and outputs one or more
wires. States (morphisms from the unit I to other elements of the category) are triangles
with one or more output wires. Their co-state (morphisms from objects of the category to
I) are represented as upside-down triangles with one or more input wires, where the star (∗)
usually stands for an adjoint, as shown in the ‘swing’ and ‘float’ rewrite rules, discussed
below.

In Table 3.2, the diagrammatic forms for the structural morphisms of a compact closed
category are shown. The “special” structural morphisms of a compact closed category
have a specific representation in this diagrammatic calculus, instead of boxes. I represent
the ε morphisms as ‘cups’ similar to those found in the diagrammatic pregroup calculus
presented in §3.1.3, and the η morphisms as ‘caps’. Naturally, in similar diagrammatic
calculi where the flow of information is from bottom to top, cups and caps stand for η and
ε morphisms, respectively.

Finally, in Table 3.3, some of the key graphical re-write rules are shown, with names
which are (for the most part) not “official”, but principally there to make it easier to talk
about them. First the two “yank” rewrites show how the combination of a cup and a cap
‘cancel’ each other to produce an identity morphism, following the definitions of the struc-
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Name Diagram Meaning

Identity A 1A : A→ A

Morphism f
A

B
f : A→ B

Composition
f

g

A

B

C

g ◦ f : A→ C

Tensored functions f
A

B

g
C

D
f ⊗ g : A ⊗ B→ C ⊗ D

Morphisms over tensors f
A B

C
h : A ⊗ B→ C

State ψ

A
ψ : I → A

Co-state ψ∗
A

ψ∗ : A∗ → I

Table 3.1: Basic elements of the graphical calculus for compact closed categories.

tural morphisms. The second shows how morphisms can “slide” up and down straight wires
without changing the categorical meaning of the diagram. Both of these rewrite rules can
be combined to show that morphisms can slide along non-straight wires (i.e. those includ-
ing cups and caps) without changing the meaning of the diagram. This is exemplified in
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Name Diagram Meaning

εr map A Ar
εr

A : A ⊗ Ar → I

ε l map Al A ε l
A : Al ⊗ A→ I

ηr map Ar A ηr
A : I → Ar ⊗ A

ηl map A Al ηl
A : I → A ⊗ Al

Table 3.2: Structural morphisms in the graphical calculus for compact closed categories.

Figure 3.3, which shows how a morphism can slide across such a non-straight wire. From
left to right: I first use the yank equality, then the slide equality, then yank again to obtain
the rightmost diagram from the leftmost. For those interested, this property is one of the
central elements behind the diagrammatic proof of quantum teleportation [1, 16], the di-
agrammatic representation of which closely resembles that shown in Figure 3.3, with the
inclusion of additional morphisms.

f
A

B
B

= =

f
A

B
=

f

A

B
f

A

B

A

Figure 3.3: Examples of yank-slide equalities in the graphical calculus for compact closed
categories.

Finally, the swing and float rules show that the yank operations can be separated out
into separate steps, allowing us to ‘move’ states along cups and caps.

3.3 A Categorical Passage from Grammar to Semantics

In §3.2.2 I discussed how any pregroup grammar could be represented as a compact closed
category P. In §3.2.1 I described how product categories allowed us to relate the objects
and morphisms of one category to those of another. In this section, I will present how
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Name Diagram Meaning

Yank
A

A
= A (1A ⊗ ε

l
A) ◦ (ηl

A ⊗ 1A) = 1A

Yank
A

A = A (εr
A ⊗ 1A) ◦ (1A ⊗ η

r
A) = 1A

Slide

f
A

B
=

f

A

B

1B ◦ f = f ◦ 1A

Swing
ψ

A Ar

=
ψr

Ar εr
A ◦ (ψ ⊗ 1Ar ) = ψl ◦ 1Ar

Swing
ψ

AAl
=

ψl

Al ε l
A ◦ (1Ar ⊗ ψ) = ψr ◦ 1Al

Float

ψ
A

Al
=

ψl

Al

(φ ⊗ 1Al) ◦ ηl
A = 1Al ◦ ψl

Float

ψ
AAr

=
ψr

Ar
(1Ar ⊗ φ) ◦ ηr

A = 1Ar ◦ ψr

Table 3.3: Rewrite rules in the graphical calculus for compact closed categories.

[13, 19] suggest building on this by using categories to relate semantic composition to
syntactic analysis in order to achieve syntax-sensitive composition in DSMs.
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3.3.1 FVect

Let FVect be the symmetric monoidal compact closed category of finite-dimensional Hilbert
spaces over R, i.e. vector spaces over R with orthogonal bases of finite dimension, and an
inner product operation 〈− | −〉 : A×A→ R for every vector space A. The objects of FVect
are the vector spaces, and the morphisms are linear maps between vector spaces. The unit
object is R and the monoidal tensor is the linear algebraic tensor product of vector spaces.
The symmetric aspect of this category means that for any two objects A ⊗ B and B ⊗ A in
the category, there exists an isomorphism A ⊗ B � B ⊗ A, corresponding here to the fact
that any tensor is isomorphic to its permutations.

As a result of its symmetric nature, the category is degenerate in its adjoints, in that for
any vector space A, we have the isomorphisms Al � Ar � A. This is because the adjoint
of a vector space A is its co-vector space Ar = Al = A∗, the elements of which are the
conjugate transposes of the vectors from that vector space. Since the conjugate transpose
of a real-valued vector is just the transpose of that vector, each vector in some space A can
be isomorphically mapped to a covector (its transpose) in A∗, hence A � A∗. As such, we
can effectively do away with adjoints in this category, and ‘collapse’ ε l, εr, ηl, and ηr maps
into ‘adjoint-free’ ε and η maps. The structural morphisms of the category are the inner
product operations ε,

εA : A ⊗ A→ R :: −→v ⊗ −→w 7→ 〈−→a |
−→
b 〉

and the η maps from real numbers to tensored vector spaces

ηA : R→ A ⊗ A :: 1 7→
−−−→
1A⊗A

where
−−−→
1A⊗A is the superposition of all the basis vectors {−→ai ⊗

−→a j}i j of A ⊗ A

−−−→
1A⊗A =

∑
i j

−→ai ⊗
−→a j

On the diagrammatic front, I treat a vector −→v ∈ A as a state −→v : R → A and a co-
vector as its co-state. This means that the application of ε maps to model the composition
of vectors with a tensor corresponds to the application of the swing operation described
above, showing how the vectors are brought into relation with the tensor through inner
products, as shown in Figure 3.4.
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v T w
=

T

v w

Figure 3.4: Sample diagrammatic representation of distributional composition.

3.3.2 Syntax Guides Semantics

If we consider the product category P × FVect, we observe that is has as objects pairs
(a, A) where a is a pregroup type and A is a vector space, and as morphisms pairs (≤, f )
where ≤ is a pregroup ordering relation and f is a linear map. By the definition of product
categories, for any two vector space-type pairs (a, A) and (b, B), there exists a morphism
(a, A) → (b, B) only if there exists both an ordering a ≤ b and a linear map A → B. If
we view these pairings as the association of syntactic types with vector spaces containing
semantic vectors for words of that type, this restriction effectively states that a linear map
from A to B is only “permitted” in the product category if a ≤ b.

Both P and FVect being compact closed, it is simple to show that P×FVect is as well, by
considering the pairs of unit objects and structural morphisms from the separate categories:
I is now (1,R), and the structural morphisms are (ε l

a, εA), (εr
a, εA), (ηl

a, ηA), (ηr
a, ηA). We are

particularly interested in the ε maps, which are defined as follows (from the definition of
product categories):

(ε l
A, εA) : (ala, A ⊗ A)→ (1,R) (εr

A, εA) : (aar, A ⊗ A)→ (1,R)

This states that whenever there is a reduction step in the grammatical analysis of a sentence,
there is a composition operation in the form of an inner product on the semantic front.
Hence if nouns of type n live in some noun space N and transitive verbs of type nlsnr live
in some space N ⊗ S ⊗ N, then there must be some structural morphism of the form:

(εr
n1sε

l
n, εN ⊗ 1S ⊗ εN) : (n(nr snl)n,N ⊗ (N ⊗ S ⊗ N) ⊗ N)→ (s, S )

We can read from this morphism the functions required to compose a sentence with a
subject noun, a transitive verb, and an object noun, in order to obtain a vector living in
some sentence space S , namely (εN ⊗ 1S ⊗ εN). Diagrammatically, this composition is
represented as in Figure 3.4, where −→v ∈ N is the vector for the subject, −→w ∈ N is the vector
for the object, and T ∈ N ⊗ S ⊗ N is the tensor representing the noun.

The form of a syntactic type is therefore what dictates the structure of the semantic
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space associated with it. The structural morphisms of the product category guarantee that
for every syntactic reduction there is a semantic composition morphism provided by the
product category: syntactic analysis guides semantic composition.

3.3.3 Example

To give an example, we can give syntactic type n to nouns, and nr s to intransitive verbs.
The parse for “kittens sleep”, namely nnr s → s, corresponds to the morphism εr

n ⊗ 1s in
P. The syntactic types dictate that the noun

−−−−−→
kittens lives in some vector space N, and the

intransitive verb
−−−→
sleep in N ⊗ S . The reduction morphism (εr

n1s) gives us the composition
morphism (εN ⊗ 1S ), which we can apply to

−−−−−→
kittens ⊗

−−−→
sleep.

Since we can express any vector as the weighted superposition of its basis vectors, let
us expand

−−−−−→
kittens =

∑
i ckittens

i
−→ni and

−−−→
sleep =

∑
i j csleep

i j
−→ni ⊗
−→s j. We can then express the

composition as follows:

−−−−−−−−−−−→
kittens sleep = (εN ⊗ 1S )(

−−−−−→
kittens ⊗

−−−→
sleep)

= (εN ⊗ 1S )

∑
i

ckittens
i

−→ni ⊗
∑

jk

csleep
jk
−→n j ⊗

−→sk


= (εN ⊗ 1S )

∑
i jk

ckittens
i csleep

jk
−→ni ⊗
−→n j ⊗

−→sk


=

∑
i jk

ckittens
i csleep

jk 〈
−→ni |
−→n j〉
−→sk

=
∑

ik

ckittens
i csleep

ik
−→sk

The above equations are hopefully fairly clear at this stage: I express the vectors in their
explicit form. I consolidate the sums by virtue of distributivity of the linear algebraic tensor
product over addition; I then apply the tensored linear maps to the vector components (as
the weights are scalars); and finally, I simplify the indices since 〈−→ni |

−→n j〉 = 1 if −→ni = −→n j and
0 otherwise. I obtain a vector that lives in sentence space S .
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Transitive sentences can be dealt with in a similar fashion:

−−−−−−−−−−−−−−−−→
kittens chase mice

= (εN ⊗ 1S ⊗ εN)(
−−−−−→
kittens ⊗

−−−−→
chase ⊗

−−−→
mice)

= (εN ⊗ 1S ⊗ εN)

∑
i

ckittens
i
−→ni ⊗

∑
jkl

cchase
jkl
−→n j ⊗
−→sk ⊗
−→nl

 ⊗∑
m

cmice
m
−→nm


= (εN ⊗ 1S ⊗ εN)

∑
i jklm

ckittens
i cchase

jkl cmice
m
−→ni ⊗
−→n j ⊗
−→sk ⊗
−→nl ⊗
−→nm


=

∑
i jklm

ckittens
i cchase

jkl cmice
m 〈
−→ni |
−→n j〉
−→sk〈
−→nl |
−→nm〉

=
∑
ikm

ckittens
i cchase

ikm cmice
m
−→sk

In both cases, it is important to note that the tensor product passed as argument to the
composition morphism, namely

−−−−−→
kittens⊗

−−−→
sleep in the intransitive case and

−−−−−→
kittens⊗

−−−−→
chase⊗

−−−→
mice in the transitive case, never needs to be computed.
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Part II

Theory
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Chapter 4

Syntactic Extensions

Chapter Abstract

This chapter discusses a general methodology for the integration of syntac-
tic formalisms into the DisCoCat framework by means of a functorial passage
between the categorical representations of such formalisms and the category
of vector spaces FVect. It presents such categorical semantics and functo-
rial passages for two grammatical formalisms: Context Free Grammars, and
Lambek Grammars.

The DisCoCat framework presented in Chapter 3 makes use of pregroup grammars for
syntactic analysis, principally because of their convenient algebraic structure which allows
us to interpret any pregroup as a compact closed category. However, on a general level, the
core strength of the framework is its ability to define the passage from syntax to semantics
without commitment to the particular syntactic formalism used, or indeed the particular
semantic mode of representation.

In this chapter, I will discuss how some other syntactic analysis formalisms can be
substituted for the pregroup grammars of Chapter 3. In §4.1, I discuss the notion of a func-
tor and of a functorial passage between categories, and demonstrate that the pair category
P × FVect used in §3.3.2 gives rise to a functor mapping syntactic analyses to semantic
representations. In §4.2, I present a way in which generative grammars such as context
free grammars may be supported in the framework. In §4.3, I will present work describ-
ing how such a functor can be defined for Lambek Grammar, how this requires the use of
non-compact categories, and how an existing diagrammatic calculus can be used to reason
about such categories.
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4.1 Functorial Passages

In Chapter 3, a product category was used to model the passage from syntactic aspects
of natural language composition to semantic representations of compositional operations
and their arguments. There is, however, no requirement that we use a product category
to model this passage. In fact—considering the compositional properties of functors de-
scribed above—a functorial passage from syntax to semantics might fit our needs better.
The idea of using a functorial passage from pregroup categories to FVect had been pre-
viously suggested by [68], and such a functorial passage has been described in a paper I
co-authored with Coecke and Sardzadeh [17]. In this section, I will show that we can also
define such a functorial passage from a product category to the category of vector spaces
given certain restrictions, which are provided by the association made between pregroup
types and vector spaces introduced in §3.3.2.

In §3.3.2 I discussed the construct developed by [13] of the pair category P × FVect
formed from a pregroup category P and the category of vector spaces FVect. We saw that
this category was compact closed because P and FVect were, and that for any linear map
f : A → B in FVect there are morphisms (≤, f ) : x ⊗ A → y ⊗ B for every x and y such
that x ≤ y. This definition actually covers a larger number of objects than we actually need,
since it gives no explicit association between pregroup types and vector spaces. Yet this
association is implicitly relied upon so that for every pregroup parse in P there is one and
only one linear map in FVect corresponding to the composition operation associated with
the parse. In other words, we rely on a pre-defined mapping M : ob(P) → ob(FVect) of
pregroup types to vector spaces in order to be able to talk about the association between
syntactic analysis and semantic composition, rather than an association between syntactic
analysis and semantic composition. To make the implicit explicit: we say that a morphism
(≤, f ) : x ⊗ A → y ⊗ B describes how f composes semantic vectors in vector space A

standing for words of type x to produce a phrase vector in B for words of type y if and

only if M(x) = A and M(y) = y. This restriction effectively allows us to ignore all the
other products in ob(P × FVect), and focus only on those pairs of products for which the
morphisms between elements of the pair correspond to unique semantic interpretations of
a pregroup parse.

To give a concrete example, consider the sentence “John loves Mary”, and suppose we
give nouns the pregroup type n and transitive verbs the type nr snl. We wish to model the
semantic vectors for nouns in some vector space N and sentences of type s in some vector
space S . Given the isomorphic relation between adjoints in FVect, we’d expect the vectors
for transitive verbs to live in N ⊗ S ⊗ N, for the composition of nouns with the ‘argument
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places’ of the verb to even be possible. The parse of “John loves Mary” corresponds to the
ordering n(nr snl)n ≤ s. This ordering corresponds to an arrow standing for the function
εr

n ⊗ 1s ⊗ ε
l
n in P mapping the object n(nr snl)n to s. To find the morphism in FVect allowing

for the composition of the word vectors for ‘John’ in N with ‘loves’ in N ⊗ S ⊗ N and
‘Mary’ in N to form a vector in the sentence space S , we look at the product category to
find what maps (n(nr snl)n,N ⊗ (N ⊗ S ⊗N)⊗N) to (s, S ). This morphism is, of course, one
of the structural morphisms in P × FVect, namely (εr

n ⊗ 1s ⊗ ε
l
n, εN ⊗ 1S ⊗ εN), as described

in §3.3.2. However it should be noted that there are an infinite number of other pairings
of vector spaces and linear maps with this parse which could have been considered, such
as (εr

n ⊗ 1s ⊗ ε
l
n, εN) : (n(nr snl)n,N ⊗ N) → (s, 1) or (εr

n ⊗ 1s ⊗ ε
l
n, idS ) : (n(nr snl)n, S ) →

(s, S ), amongst others, simply by virtue of the definition of product categories. These other
objects and morphisms of P × FVect are completely irrelevant to our task of associating
syntax with semantics, yet they are there for us to consider. What allows us to discount
them is the assumption, made earlier in this paragraph, that n should be associated with
N, nr snl with N ⊗ S ⊗ N, and s with S , which is essentially an instance of the sort of
mapping M discussed above. This shows us how the product-category approach works if
such a mapping is defined, but that product categories come with a lot of extra material
that is irrelevant, whereas the idea of defining a functor between P and FVect has no such
superfluous objects or morphisms and focuses on just the association of syntactic parses
with semantic morphisms.

In this section, I begin by briefly describing functors in §4.1.1, before demonstrating
in §4.1.2 that the mapping M between pregroup types and vector spaces and the product
category P × FVect can be used to canonically define a functor between P and FVect.

4.1.1 Functors

The simplest way to think of a functor is as a map between two categories A and B which
associates each object A in ob(A) with some object F(A) in ob(B), and each morphism f :
A1 → A2 in hom(A) with some morphism F( f ) : F(A1)→ F(A2) in hom(B). Functors must
furthermore preserve the structure of A in B by ensuring that the following two equations
hold for all morphisms f and g of hom(A) and all objects a of ob(A):

1. F(idA) = idF(A), i.e. if A maps to some F(A) then its identity morphism maps to that
same object’s identity morphism.

2. F( f ◦ g) = F( f ) ◦ F(g), i.e. if two morphisms f and g compose to some h = f ◦ g in
hom(A), then there must be some F(h) in hom(B) which is the composition of F( f )
and F(g).
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Furthermore, a strict monoidal functor between monoidal categories is such that the
following equality holds for two such categories A and B, equipped with monoidal tensors
⊗A and ⊗B. For any objects A and B of ob(A):

F(A ⊗A B) � F(A) ⊗B F(B)

To give a trivial example of a functor, consider the following two pregroups:

• P1, freely generated from the set {a, b} with:

– the ordering relation ≤1,

– the multiplicative operation ·1,

– the adjoint maps (−1)l and (−1)r,

– and the unit 11.

• P2, freely generated from {c, d, e}, with:

– the ordering relation ≤2,

– the multiplicative operation ·2,

– the adjoint maps (−2)l and (−2)r,

– the unit 12,

– and the stipulation that c ≤2 d.

We can define a functor F as follows:

• F(11) = 12, F(a) = c, F(b) = d (by the definition of functors between monoidal
categories, we therefore also have F(ab) = cd, F(aab) = ccd, and so on).

• F((−1)l
i) = (−2)l

F(i) and F((−1)r
i ) = (−2)r

F(i) for any i in P1. E.g. F((−1)l
a) = (−2)l

c, so
we map the adjoints of a in P1, such as al, to those of a’s “image” c in P2, such as cl.

• F(≤1
(i, j)) =≤2

(F(i),F( j)) for any i, j in P1. E.g. F(≤1
(bala,b)) =≤2

(dclc,d), so effectively we map
the reduction bala→ b in P1 to cdld → d in P2.

The first condition for functors is satisfied by mapping identity morphisms of P1 to
those of P2. The second is satisfied primarily through the natural transitivity of ordering
relations in both categories.

The important point to note here is that no type in P1 is mapped by F to the type c

of P2, or indeed to any compound types containing c (e.g. ac, bca, cc, etc.). Likewise,
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even though F maps a to c and b to d, the absence of a morphism ≤1
(a,b) in P1 means that

there exist ordering morphisms in P2, such as ≤2
(a,b), which are not images of morphisms in

P1 even though the objects they connect are images of objects in P1. Functors can, in this
sense, act like surjective mappings. They may, in this context, be seen as a way of explicitly
embedding one mathematical structure into another (possibly larger) structure.

A functor is said to be ‘forgetful’ if it maps complex objects in one category to simpler
objects in another category, where the simpler objects are “parts” of the more complex
objects of the original category. A trivial example is a functor F between a category of
pairs of atoms (of the form (a, b), (b, d), . . .) and a category of atoms (e.g. a, b, c, . . .) which
maps each pair in the original category to the atom corresponding to the left element of the
pair in the simpler category, and morphisms between pairs to morphisms between the left
elements of the pair. For example F would map (a, b) and (a, c) to a, and some morphism
f : (a, b) → (a, c) to the morphism F f : a → a. We can see here that F ‘forgets’ some
of the information from the objects and morphisms of the original category by ignoring
aspects of morphisms and objects relating to the right element of each pair.

Finally, functors can be interpreted as morphisms in the category of categories Cat, and
hence the usual morphism composition rules apply for functors. Explicitly, for categories
A, B and C, the functors F : A→ B and G : B→ C define a functor H = G ◦ F : A→ C.

4.1.2 From Product Categories to Functors

We have just seen that functors can be composed like morphisms to define a functor from
a category A to a category C through composition, if we are provided with ‘intermediate’
functors from A to B and B to C. This is an important property of functors within the
context of our desire to link syntax to semantics. If a functor is defined between a pregroup
category P and FVect (which, as will be discussed below, can be done for any pregroup
category), then to use another grammatical formalism in lieu of pregroup grammars, it
suffices to show that this other grammatical structure can be given categorical semantics as
well, and that a functor can be defined from the relevant categorification of the grammar
to some pregroup category. A functor from the new grammatical category to FVect then
arises directly from composition. Putting this more formally: if it can be shown that there
is a functor F mapping pregroup types in some pregroup category P to vector spaces in
FVect, and reduction morphisms in P to linear maps in FVect, then if some grammatical
formalism (e.g. a context free grammar, or combinatorial grammar, etc.) can be represented
as a category P′ for which there exists a functor G : P′ → P, it follows that the types and
analysis morphisms of P′ can be mapped directly to FVect by some functor H = F ◦ G :
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P′ → FVect.
Let us then consider how we might define a functor using a mapping M between pre-

group types and vector spaces, and the structure of the product category P × FVect. We
begin by formally defining M as follows. Let T be the set of basic pregroup types gen-
erating a pregroup P. This can be formalised by stating that any type t in P is written
as

t : wm1
1 . . .wmn

n

where 1 ≤ n, wi ∈ T for all i, and mi is an optional adjoint marker for wi (e.g. l, ll, r, etc. ,
or no adjoint).

We associate, via M, a vector space A to each element a of the generating set T , such
that M(a) = A, without any commitments to the uniqueness of this association. This allows
us to associate one vector space to several elements of the generating set, which might be
desirable if, for example, we wish for nouns and noun phrases to have separate pregroup
types (say n and n̄), but for words/phrases of both types to reside in the same vector space
so that we can compare the noun “dog” with the phrase “Mary’s favourite pet”.

We then recursively define the association of compound pregroup types with vector
spaces as follows:

M(1) = R

M(ab) = M(a) ⊗ M(b)

M(ar) = M(al) = M(a)∗ = A∗

for any types a and b in ob(P), and where (V1 ⊗ . . .⊗Vn)∗ � (Vn ⊗ . . .⊗V1). Because the set
of pregroup types is freely generated, we can view the objects of a category M(P) as being
freely generated by a set {M(x) | x ∈ T }, such that any object of the category M(t) can be
written as follows:

M(t) : M(w1) . . . M(wn) ∀i.[wi ∈ T ]

To give an example, if M(n) = N and M(s) = S , we can systematically generate the
vector space for transitive verbs of type nr snl as being M(nr snl) = M(nr)⊗M(s)⊗M(nl) =

N ⊗ S ⊗ N.
Next, we consider the full subcategory MP×FVect of P × FVect. A subcategory of a

category C is a category C′ where the objects of C′ are objects of C (hence ob(C′) ⊆
ob(C)), and likewise the morphisms of C′ are also morphisms of C (hence hom(C′) ⊆
hom(C)). A subcategory is full if for all X,Y in ob(C′), the sets { f | f : X → Y∧ f ∈ hom(C′)}
and { f | f : X → Y ∧ f ∈ hom(C)} are equal, i.e. if all morphisms between X and Y in C are
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also morphisms in C′. The subcategory MP×FVect of P × FVect is defined as follows:

• For all (a, A) ∈ ob(P × FVect), (a, A) ∈MP×FVect if and only if M(a) = A.

• For all morphisms ( f , g) : (x, X)→ (y,Y) in hom(P×FVect), ( f , g) ∈ hom(MP×FVect)
if and only if (x, X) and (y,Y) are in ob(MP×FVect), and for f = f1 ⊗ . . . ⊗ fn and
g = g1⊗. . .⊗gm the following conditions hold: m = n, and gi is a structural morphism
of FVect if fi is a structural morphism of P.

The first condition ensures that we only consider the object pairings relevant to our task of
associating syntax with semantics, and the second condition states that the subcategory is
full, and places restrictions on which morphisms exist in the subcategory. We can verify
that this category is still compact closed by the same reasoning used in §3.3.2, namely
that if f : x → y is a structural morphism of P and g : X → Y is a structural morphism
of FVect, then if (x, X) and (y,Y) are in ob(MP×FVect), ( f , g) : (x, X) → (y,Y) is also a
structural morphism of MP×FVect, by virtue of the subcategory being full.

The map M ensures that for every a ∈ ob(P) there is a unique (a, A) ∈ ob(MP×FVect), and
that for every morphism f ∈ hom(P) there is a unique morphism ( f , g) ∈ hom(MP×FVect) by
virtue of the fact that all morphisms in P are composed of structural morphisms, and that
there is an injective map from the set of structural morphisms in P to those of FVect. It
follows that there is a functor F : P→MP×FVect defined as above, using M.

Furthermore, there is a trivial forgetful functor G : MP×FVect → FVect which associates
any object (a, A) ∈ ob(MP×FVect) to A ∈ FVect, and any morphism ( f , g) ∈ hom(MP×FVect)
to a morphism g ∈ FVect. It follows that the functor G◦F maps the objects and morphisms
of P to those of FVect. I have therefore shown that from the product category P×FVect and
a mapping M between pregroup types and vector spaces, a functor between the pregroup
category P and the category of vector spaces FVect can naturally be defined.

4.2 Supporting Context Free Grammars

While the term “context free grammar” technically refers to any grammar which is con-
text free in the language theoretic sense, computational linguists usually refer to a specific
sort of phrase-structure-grammar when talking about “Context Free Grammars” (CFGs).
In this sense, the expression refers to a well-known and well-studied syntactic formalism
for analysing the phrase structure of sentences, formalised by Chomsky in [11]. As a topic,
it is covered in virtually any introduction to language theory, computational linguistics, or
mathematical linguistics. Efficient parsing algorithms have been developed to recover the
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CFG structure from digital text (e.g. CYK [15, 50, 89], Earley [25]), and a large number
of corpora and other resources have been created to assist the learning of such generative
grammars (e.g. the Penn Treebank [60]). It is a popular tool for computational linguistics,
and it would make little sense to develop a formalism for syntactically motivated com-
positional distributional semantics that does not offer the opportunity to leverage the vast
amounts of work done on and with CFGs.

In this section, I introduce a way of integrating context free grammars into the DisCoCat
formalism described in Chapter 3. I begin, in §4.2.1 by briefly introducing CFGs and
specifically the sort of CFGs I will be discussing later in this section. In §4.2.3, I then
show how a CFG can be given a simple categorical structure, and how a functor from this
category to FVect can be defined by showing that there exists at least one functor between
every CFG-as-a-category and some pregroup category P, guided by the fact that pregroup
grammars and CFGs are weakly equivalent [9].

4.2.1 Context Free Grammar

In this section, I begin by giving a general definition of context free grammar, followed
by the specification of some restrictions on CFGs which will be useful when giving CFGs
categorical structure.

4.2.1.1 General Definition

Formally, a context free grammar is defined by four elements:

• a finite set V of non-terminal symbols, which can be seen as being the syntactic types
of words and phrases. In simple grammars, these are usually given intuitive names
such as NP for noun-phrases, VP for verb phrases, S for sentences, and so on.

• a set Σ of terminals, which we can interpret, within the context of linguistics, as being
the words of our language.

• a finite set R of production rules, usually written in the form A ⇒ B C, A ⇒ B,
A ⇒ B C D and so on, where B, C and D may be elements of V or Σ, but A must
be an element of V since it ‘generates’ the other symbols (and therefore is a non-
terminal).

• the starting symbol of the grammar (from the set V). We will use S as starting symbol
in this section, but there is no obligation to do so.
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Rules of the form A ⇒ B C can be read as “A generates the types B C”, or, going
the other way, as saying that “a B and a C combine to form an A”. On the one hand, the
generative direction from “top” to “bottom” is usually followed when parsing a string to
assign to each word a syntactic type. The “bottom-to-top” approach, on the other hand,
is more akin to what we do with pregroups when the types of words are known, and the
CFG can be used to describe the phrasal structure of a sentence. Going this way, the
generative rules can be seen as substitution rules where the element on the left of the arrow
is substituted for the elements on the right to determine the type of the phrase comprising
them.

S ⇒ NP VP
VP ⇒ Vt NP
NP ⇒ Det N
Det ⇒ the
N ⇒ dog|cat
Vt ⇒ chases

Table 4.1: A simple CFG.

To give an example, a simple CFG is shown in Table 4.1. The set of non-terminal
symbols is V = {S , NP, VP, Vt, Det}, the set of terminal symbols is {the, dog, cat, chases},
and the production rules are as shown. The N ⇒ dog|cat is used as shorthand for the
definition of several rules (namely N ⇒ dog and N ⇒ cat) on one line. A parse tree
for the sentence “The dog chases the cat.” is shown in Figure 4.1. Such parse trees are
generated from the grammar’s production rules by interpreting each rule as the formation
of a tree with, as root, the symbol on the left of the arrow; and with, as children of the
root, the symbols on the right of the arrow, themselves being the roots of subtrees of one or
more nodes. In this case, we see that ‘the’ and ‘dog’, as well as ‘the’ and ‘cat’, both being
determiner-noun pairs DT N, each combine to form a small tree with a noun phrase NP as
a root. The second of these noun phrases (“the cat”) combines with the transitive verb Vt,
namely “chases”, to form a tree with a verb phrase VP as a root. This VP combines with
the first NP to produce a tree with a sentence S as root, which is the whole parse tree for
this sentence.

As a notational convenience, we state that if for some symbols A, B1, . . . , Bn there
exists a set of rules such that A generates B1 . . . Bn, we write A ⇒+ B1 . . . Bn and
call this a substitution sequence. We treat such substitution sequences as being uniquely
characterised by a set of production rules used to generate B1 . . . Bn from A. In this sense,
each distinct A ⇒+ B1 . . . Bn stands for a different subtree with A as root and B1, . . . , Bn
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The dog chases the cat.

Det N Vt Det N

NP NP

VP

S

Figure 4.1: Sample parse tree for the CFG in Table 4.1.

as leaves. Naturally, any two substitution sequences A⇒+ B and B⇒+ C can be combined
to form a unique substitution sequence A⇒+ C.

To give a short example, in the sample CFG in Table 4.1, we can see that there exists a
substitution sequence S ⇒+ NP Vt NP because S ⇒ NP VP and VP⇒ Vt NP.

4.2.1.2 Restrictions

While the above description of CFGs suffices to fully define the basic mechanics and com-
ponents of phrase-structure CFGs, I add a further four restrictions on the form of the CFGs
we will consider in this section. The reason for these restrictions will be explained at the
end of §4.2.3.2.

First, we will only consider pseudo-proper CFGs. A CFG is pseudo-proper if:

• Every non-terminal except I is on the left-hand side of some production rule;

• For every terminal or non-terminal, there is some sequence of production rules such
that the root symbol S generates a set of symbols including that terminal or non-
terminal;

• There are no cycles, i.e. for any symbol A there is no sequence of production rules
A ⇒+ A beginning with that symbol on the left and ending with that symbol as the
sole symbol on the right.

• Any sequence of symbols containing the empty string ε is equivalent to the same
sequence of symbols with all instances of ε removed. Any sequence of symbols is
trivially equivalent to itself.

These rules entail that for any sequence of symbols, there is at most a finite set of finite
trees with S as root that form valid parses of that sequence. I call these CFGs pseudo-
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proper because of the last rule about ε. The definition of proper CFGs replaces this rule
with one stating that the empty string will not be on the right-hand side of any production
rule, as a way of ensuring that there are a finite number of trees with a finite sequence of
symbols as leaves and S as a root. The modification of this rule which I introduced seeks
to preserve this property without removing ε from our list of symbols, as it will be useful
in the next section. The last rule instead simply equates all sequences of symbols which are
identical once ε is removed, thereby treating it as an ‘invisible’ symbol potentially present
in any sequence, and effectively eliminating it from the parsing process.

Second, we only consider CFGs that produce binarised parsed trees, meaning that every
production rule has at least one symbol on the right of the arrow, and at most two. We do
not count the ‘invisible’ symbol ε in this restriction. This restriction can be applied without
loss of generality, as any CFG can be modified to fit this constraint by introducing a finite
number of additional symbols while still recognising the same language. For any rules of
the form

A⇒ B1 B2 . . . Bn

I introduce a new symbol Cn and a rule

Cn ⇒ B1 B2 . . . Bn−1

and produce an amended version of the first rule

A⇒ B1 Cn

We apply this rewrite rule recursively to the newly produced rule in order to produce sym-
bols Cn−1, Cn−2, etc. and associated production rules, until we obtain some symbol Ci which
has as production rule

Ci ⇒ B1 B2

at which point the original rule has been fully binarised. To give a short example, assume
we have the rule

A⇒ B C D E

in our CFG. We begin by rewriting it as

A⇒ F E
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where F is a newly introduced symbol. We then introduce the rule

F ⇒ B C D

which is not binarised, so we must rewrite it as

F ⇒ G D

where G is newly introduced symbol. We then introduce the rule

G ⇒ B C

which is binarised, so the rewrite process is complete. We have therefore binarised the rule

A⇒ B C D E

by replacing it with the set of rules

A⇒ F E

F ⇒ G D

G ⇒ B C

This rewrite system is part of the process of translating any grammar to Chomsky Normal
Form (CNF), although the thus-produced binarised CFG is not technically in CNF, as we
allow rules for the form

A⇒ B

where B is a non-terminal (whereas a CFG in CNF has only binary production rules with
non-terminals on the right, and unary production rules with terminals on the right). The
point of binarising a grammar will be made clear in §4.2.3 when we discuss the categorical
structure of CFGs, but full-blown translation into CNF is not required.

Third, we will disallow production rules which have a mix of terminals and non-
terminals, excluding ε, on the right-hand side of the arrow. This assumption can be made
without loss of generality as any rule with such a mixture of non-terminals and terminals
can be rewritten by replacing each terminal symbol with a new non-terminal, and introduc-
ing a new production rule in which the newly created non-terminal produces the terminal
symbol.

Finally, the fourth restriction is that for any non-terminal which appears on the left-
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hand side of a production rule with non-terminals on the right-hand side, there is no rule
with that symbol on the left-hand side and non-terminals, excluding ε, on the right-hand
side. Again, this restriction can be applied without loss of generality: we modify any rule
violating the restriction, and of the form

A⇒ n

where n is one or more non-terminals (in the form n1|n2| . . . |nk), by rewriting it as

A⇒ N

where N is a new non-terminal symbol, and adding the rule

N ⇒ n

We call such non-terminals, which are on the left-hand side of production rules with ter-
minals on the right-hand side, basic types. All other non-terminals will be referred to as
complex types. Rules with basic types on the left-hand side will be referred to as ter-

minal rules, while rules with complex types on the left-hand side will be referred to as
non-terminal rules. We call RNT the subset of R consisting of all the non-terminal rules.

4.2.2 CFGs as Categories

To use CFGs in the DisCoCat formalism instead of pregroup grammars, two things must be
done. First, we need to show that CFGs can be given a categorical interpretation. Second,
we need to show that there is a functor between any CFG-as-a-category and the category
FVect.

Here, I show that any CFG satisfying the restrictions described above can be interpreted
as a category CFG:

1. Let V be the set of non-terminals of our CFG.

2. Let ob(CFG) be a set such that V ⊂ ob(CFG) and ε ∈ ob(CFG).

3. Let the sequence of symbols of form A B found on the right-hand side of production
rules in a CFG be the concatenation of the objects A and B.

4. Let the concatenation operation for types be the associative monoidal tensor ⊗ in the
category, such that for any A and B in ob(CFG), the object A ⊗ B is in ob(CFG).
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5. Let hom(CFG) be a set of arrows, where for any substitution sequence A⇒+ B there
is one unique arrow f : B→ A in hom(CFG).

6. Let A ⊗ ε � A � ε ⊗ A for any A ∈ ob(CFG), by the rule for equality of sequences
containing ε, defined above.

7. Let self equivalence of sequences of symbols define an arrow from each object to
itself.

I hypothesise that these stipulations define a monoidal category CFG. Stipulations 1–4
define the set of objects in the category. Stipulation 5 defines the set of morphisms in the
category. Stipulations 4 and 6 state that if CFG is a category, then it is a monoidal category
with ε as unit. To confirm that this is a valid definition of a category, we verify that it
satisfies the axioms outlined in §3.2.1:

• By the definition of substitution sequences, any two sequences A ⇒+ B and B ⇒+

C can be combined to form a substitution sequence A ⇒+ C. This combination
corresponds to arrow composition: for A ⇒+ B there is some arrow f : B → A; for
B⇒+ C there is some arrow g : C → B; for A⇒+ C there is some arrow h : C → A,
and the combination of substitution sequences states f ◦ g = h.

• Substitution sequences are uniquely characterised by the production rules involved,
hence if A ⇒+ B and B ⇒+ C combine to form a sequence A ⇒+ C, and B ⇒+ C

and C ⇒+ D combine to form a sequence B⇒+ D, then the combinations of A⇒+ B

with B ⇒+ D and A ⇒+ C with C ⇒+ D form the same sequence A ⇒+ D. With
morphisms f : B→ A as A⇒+ B, g : C → B as B⇒+ C and h : D→ C as C ⇒+ D,
then ( f ◦ g) ◦ h = f ◦ (g ◦ h), and therefore arrow composition is associative.

• The self equivalence arrows fA : A → A from any object A to itself correspond to
replacing a sequence of symbols with itself. Doing this before applying a substitution
sequence A ⇒+ B associated with some morphism g : B → A does not change the
outcome of the substitution, hence g ◦ fA = g. Furthermore, because the replacing of
the sequence of symbols B with itself after the application of a substitution sequence
A ⇒+ B does not change the outcome of the substitution sequence, it follows that
fB ◦ g = g. It follows that self equivalence arrows satisfy the identity arrow axiom.

So we have a collection of objects, a collection of morphisms, and a composition operation,
all of which satisfy the three axioms defining a category. Furthermore, we have an identity
object and a monoidal tensor, so it therefore follows that any CFG defined from a context
free grammar satisfying the restrictions outlined in §4.2.1 is a monoidal category.
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4.2.3 Defining a Functor

We now turn to the task of defining a functor between some CFG-as-a-category CFG and
FVect. Contrary to what we did with pregroup categories P where we relied on the compact
closed nature of both P and FVect to define a functor, things are not as simple with CFG.
While with pregroup categories, the structure of pregroup types dictates that a transitive
verb of form nr snl be mapped to a vector space N ⊗S ⊗N, nothing about the transitive verb
‘type’ in CFGs tells us that we should map Vt to something of the structure N⊗S ⊗N rather
than any other object in FVect. Likewise for arrows: the structure of pregroup reduction
morphisms in P dictates the structure of the morphisms they are mapped to in FVect, such
that for example εr

n⊗1s⊗ε
l
n : nr snl → s in hom(P) should map to εN⊗1S⊗εN : N⊗S⊗N → S

in hom(FVect) rather than some other linear map between N ⊗ S ⊗ N and S . In short,
contrary to pregroups which directly reveal their ‘functional structure’ for both objects and
reductions, CFGs conceal it, and an additional step must be taken before defining a functor
between some category CFG and FVect. Here, I will show how for every CFG there exists
one or more pregroup categories Pi such that a functor Fi can be systematically defined
between CFG and each Pi, thereby allowing functorial passage from CFG to FVect via
some Pi. I do this by first presenting an algorithm translating any CFG with |RNT | non-
terminal production rules into at most 2|RNT | pregroup grammars. Second, I will show that
each such CFG-to-pregroup grammar translation constitutes a functorial passage between
a CFG-as-a-category CFG and some pregroup category P.

4.2.3.1 CFG to Pregroup Translation

Inner Structure To translate a CFG to a pregroup, we must “reveal”, or rather make
assumptions about, the inner structure of types and generative rules. In other words, we
wish to treat a production rule as a type reduction, and spell out the mechanisms of such a
reduction, in order to add compact closure to the categorical representation of the grammar.
Recalling that for each production rule in a CFG of the form

A⇒ B C

there is some arrow f in the categorification of that CFG such that f : B ⊗ C → A, the
simplest way to reinterpret this in a compact closed setting is to assume that one of the
types B or C contains the adjoint of the other, and the type of A. Stating this explicitly, let’s
assume that CFG type A corresponds to some pregroup type a. Then either C corresponds
to some pregroup type c and B to some compound type acl, in which case f : B ⊗ C → A

in hom(CFG) corresponds to 1a ⊗ ε
l
c : (acl)c → a in hom(P); or B corresponds to some
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pregroup type b and C to some compound type bra, in which case f : B ⊗ C → A in
hom(CFG) corresponds to εr

b ⊗ 1a : b(bra)→ a in hom(P).
It is important to note that these two ways of translating a production rule make no as-

sumptions about whether the types which are not inferred to be compound types—namely
a and c in the first case, and a and b in the second—are compound or simple types them-
selves. For example, if we have already inferred that A must be of some pregroup type
a = dre, then the type of B in the first case will be acl = drecl, and the type of C in the
second case will be bra = brdre. Similarly, if we had previously inferred the pregroup type
of C to be c = pol, then the type of B in the first case becomes acl = a(pol)l, and similarly
for the type of C in the second case if that of B had previously been inferred.

Simple Type Inference Since each production rule in a binarised parse tree has at most
two elements on the right-hand side, and each such rule generates two options in terms
of pregroup interpretation of the CFG types, we immediately get the result that each CFG
with |RNT | production rules generates at most 2|RNT | different pregroup translations using this
process. At first blush, it seems that all we need to do is set some convention such as always
interpreting the left element of the pair of types on the right-hand side of each production
rule as being a compound type in order to obtain a canonical pregroup translation of a CFG.
For example, we could always treat a generative rule of the form

A⇒ B C

as a pregroup reduction of the form

(acl)c→ a

hence interpreting A as some type a, B as some type acl and C as some type C. However,
translating a CFG into a pregroup is not quite so straightforward, as there are two cases
where a rule of the form

A⇒ B C

may only be translated in one way.
The first case, where A = B or A = C, is fairly trivial. If A = B, then we cannot

interpret B as acl, since this would entail a = acl, which generates an infinite type if c , 1,
as a = acl = aclcl = aclclcl and so on. Hence if A = B, then the rule must be interpreted
as a(ara)→ a, and so B must be translated as a, and C must therefore be translated as ara.
By a similar argument, if A = C, then the rule must be interpreted as (aal)a → a, C must
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be translated as a, and B must therefore be translated as aar.
The second case is a little more subtle, and regards the fairly frequent situation where a

non-terminal symbol appears on the right-hand side of more than one rule. Let us assume
that the following two rules are in our CFG:

A⇒ B C

D⇒ B E

If we infer from the first rule that the pregroup types of A and C are a and c respectively,
and that B has the compound type acl, then we cannot make a new type inference for B in
the second case whereby B is a compound type. If we could, then we would, assuming D

and E have pregroup types d and e respectively, obtain the following equality:

acl = del

which holds only for the case where a = d and c = e. A similar argument holds for B in
the pairings:

A⇒ B C and D⇒ E B

A⇒ C B and D⇒ B E

A⇒ C B and D⇒ E B

thereby covering all cases without loss of generality.

Type Inference Algorithm Considering both of these cases and formalising them, we
can produce an algorithm, shown in Figure 4.2, which takes a CFG and outputs a set of
dictionaries each mapping the symbols of the CFG to pregroup types in a pregroup grammar
P. These dictionaries then allow for the production rules of the CFG to be interpreted as
reduction rules in P.

Let’s unpack the algorithm shown in Figure 4.2 a little. Step 1 defines an initial injec-
tive mapping from CFG symbols to hypothetical types in a pregroup, assuming that each
CFG non-terminal stands for a unique pregroup type. This mapping, represented as a type
dictionary, is used to intialise the algorithm, but also during the running of the algorithm
to verify whether or not a type has been already been set by a rule (i.e. whether or not the
pregroup type assigned to a CFG non-terminal has been changed since the beginning of the
algorithm). We also assign the empty string ε to the pregroup unit 1, an assignment which
will not be changed during the algorithm.
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1. Let D0 be a dictionary mapping each non-terminal X in a CFG to a unique symbol
D0[X] = x. Let D0[ε] = 1.

2. Let B be a list initially containing only D0.

3. Let RNT be a list of CFG production rules named R1, R2, . . .

4. If RNT is not empty, remove the first Ri element for R, otherwise terminate and return
B.

5. Let B′ be an empty list. For each D j ∈ B follow these steps:

(a) Let Dk, Dm be new dictionaries.

(b) If Ri is of the form A ⇒ B, then let Dk[X] = D j[X]〈D j[B] := D j[A]〉 for all X
in D j, where v〈w := y〉means that all instances of w in v are to be replaced with
y, and add Dk to B′.

(c) If Ri is of the form A ⇒ B C and Dk[B] = D0[B] and B , A, then let Dk[X] =

D j[X]〈D j[B] := D j[A] · D j[C]l〉 for all X in D j and add Dk to B′.

(d) If Ri is of the form A ⇒ B C and Dk[C] = D0[C] and C , A, then let Dm[X] =

D j[X]〈D j[C] := D j[B]r · D j[A]〉 for all X in D j and add Dm to B′.

6. Let B = B’. Go to step 4.

Figure 4.2: Procedure for translating a CFG with |RNT | production rules into k ≤ 2|RNT |

pregroup grammars.

Step 2 defines a boundary list. As the algorithm is effectively constructing a tree, this list
can be seen as containing all the leaves in the tree at any particular point in the algorithm’s
running. Step 3 defines a list of production rules RNT which we will use as a stack, and
which initially contains all the non-terminal rules in the CFG. Step 4 forms the beginning
of a loop which runs while RNT is not empty, and which at each iteration pops a new
production rule off the RNT stack and runs the steps which follow. If the stack is empty, it
returns the boundary list B which contains the leaves of the fully constructed tree.

Steps 5 is the body of a loop run for each new rule Ri popped off the RNT stack, iterating
over the CFG-to-pregroup type mapping dictionaries in the boundary B. It begins by creat-
ing an empty list B′ which will become the new boundary (as we are turning leaves in the
old boundary into branch nodes). Step 5a creates two new empty dictionaries Dk and Dm

for each dictionary D j in the old boundary. If the Ri is a unary rule (one non-terminal), step
5b is run. Step 5b interprets rules of the form A ⇒ B as mappings b → a where b and a

are obtained from D j[B] and D j[A]. It copies all the mappings in D j to the new dictionary
Dk while replacing every instance of b in the value of Dk with a. This new dictionary is
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added to the new boundary B′, discarding Dm. If the rule is binary, steps 5c and 5d are
run. Step 5c interprets rules of the form A ⇒ B C as mappings (acl)a → a where c and a

are obtained from D j[C] and D j[A]. If non-terminals B and A do not use the same symbol
(i.e. B , A), and if the pregroup type of B has not already been defined by some other
rules (i.e. Dk[B] = D0[B], namely if the pregroup interpretation of B is still the same as
the initial assignment in D0), then the mappings of D j are copied to the new dictionary Dk,
replacing all instances of b = D0[B] with acl, and then adding Dk to the new boundary list
B′. Similarly, step 5c interprets rules of the form A ⇒ B C as mappings bbra → a where
b and a are obtained from D j[B] and D j[A]. If non-terminals C and A do not use the same
symbol (i.e. C , A), and if the pregroup type of C has not already been defined by some
other rules (i.e. Dk[C] = D0[C], namely if the pregroup interpretation of C is still the same
as the initial assignment in D0), then the mappings of D j are copied to the new dictionary
Dm, replacing all instances of c = D0[C] with bra, and then adding Dm to the new boundary
list B′.

Finally, step 6 sets the boundary B to the newly produced boundary list B′ by redefining
B as being equal to B′. The algorithm then returns to step 4.

Revisiting this algorithm in even more general terms, steps 1–3 initialise a tree con-
struction algorithm. Step 4 creates a loop over non-terminal rules in the CFG, creating a
new set of nodes to be added to leaves of the tree. And step 5 does the actual work of
creating new nodes for each leaf of the tree, the number of which depends on the structure
of the CFG rule being considered, and whether or not the types being inferred have already
been inferred by a previous rule, or whether there are restrictions on what inferences can
take place. Step 6 completes the loop started in step 4.

Algorithm Output The thus constructed tree starts with a single type dictionary assum-
ing every CFG terminal corresponds to a unique atomic pregroup type. As we progress
down the tree, nodes correspond modified copies of their parents where the pregroup struc-
ture of CFG types is progressively inferred by considering the pregroup interpretations of
CFG rules. Each branch node has one or more children generated by different interpreta-
tions of the CFG rule being considered at that depth. Left children correspond to the infer-
ence made from the interpretation of unary rules and of binary rules where the left element
of the right-hand side is interpreted as a compound type; while right children correspond
to the inference made from the interpretation of binary rules where the right element of
the right-hand side is interpreted as a compound type. The leaves of the tree are the type
dictionaries inferred once all the CFG non-terminal rules have been considered.
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Algorithm Complexity Let m = |RNT | be the number of production rules in the grammar
being processed by this algorithm, and n = |V | be the number of non-terminals. The
algorithm creates a binary tree of depth m where each node costs n operations to construct.
The time complexity of the algorithm is therefore O(m2n).

The algorithm can be modified to run in O(mn) time by skipping to step 6 once one
of steps 5b, 5c, or 5d has been executed (i.e. produced a new leaf). This corresponds to a
dynamic algorithm descending the tree produced by the full-blown algorithm by following
the left-most path.

Algorithm Termination As a byproduct of the complexity analysis, it is easy to see that
the algorithm is guaranteed to terminate: each loop in Step 5 changes the definition of
exactly one of the remaining unchanged types, and hence the loop will run at most n times
before terminating the algorithm. The algorithm is furthermore guaranteed to succeed if
the CFG satisfies the restrictions presented above, as is discussed at the end of this section.

4.2.3.2 From Translation Dictionaries to Functors

We now complete this section by showing that each of these dictionaries Di ∈ B is sufficient
to define a functorial passage Fi : CFG → Pi from the categorification CFG of a CFG to
some pregroup Pi associated with Di. Each dictionary Di assigns to each CFG non-terminal
symbol a pregroup type in some pregroup Pi, freely generated by the set of atomic symbols
in the dictionary {Di[X]|X ∈ Di ∧ Di[X] = D0[X]}. Therefore we obtain our functorial map
for objects:

Fi : ob(CFG)→ ob(Pi) :: X 7→ Di[X]

which covers symbol concatenation as follows:

Fi : ob(CFG)→ ob(Pi) :: X ⊗CFG Y 7→ Di[X] ⊗Pi Di[Y]

Therefore if some Di defines

Di[Vt] = n̄r sn̄l

Di[N] = n

Di[Det] = n̄nl

then the CFG parse in of a sentence such as “The dog chased the cat”, namely S ⇒+

Det N Vt Det N, would translate via Fi to (n̄nl)n(n̄r sn̄l)(n̄nl)n in Pi, which reduces to s.
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This brings us to the second aspect of the functor, which is the map between morphisms
which would allow us to formalise how a parse in a CFG maps to a reduction operation in
Pi. We essentially get this “for free” by the uniqueness up to isomorphism of morphisms
between any two objects in any pregroup category Pi, since the morphisms stand for order-
ing relations. The idea is then that for any morphism f : A→ B in hom(CFG) we map f to
the unique morphism g = F( f ) : F(A)→ F(B) in Pi. This presupposes that there is a mor-
phism g : F(A) → F(B) in hom(Pi) when there is some f : A → B in hom(CFG), but this
is precisely what the algorithm I presented here ensures: we assign pregroup types to CFG
non-terminals by exploiting the fact that whatever the concatenation of symbols on the right
of the production rule is translated as reduces to whatever the translation of the symbol on
the left is. This is to say that for every concatenation of CFG symbols in the grammar there
is some morphism in Pi which stands for the reduction of their corresponding pregroup
types.

Throughout this section we have been talking about non-terminals. However, an essen-
tial part of a pregroup grammar is the type dictionary for terminal symbols which assigns
to each word in our language one or more pregroup types. We get this type dictionary for
free from the pregroup translation dictionaries defined above and the terminal rules in our
CFG. We simply state that for every map Di translating the non-terminals and productions
of some context free grammar into the types and reductions of some pregroup grammar Pi

there exists a term-to-type dictionary Ti. This term-to-type dictionary is defined as follows:
for any terminal rule in the CFG of the form

A⇒ w1|w2| . . . |wn

producing one or more terminal symbols from a non-terminal A, the pregroup type of those
non-terminals is simply the type of the non-terminal producing them; in other words:

Ti[w1] = Di[A] Ti[w2] = Di[A] . . . Ti[wn] = Di[A]

To conclude this section, let’s examine why the restrictions on CFGs presented in
§4.2.1.2 were helpful in defining this algorithm and functorial passage:

1. We only considered pseudo-proper CFGs so that:

• All non-terminals (except I) are on the left-hand side of some rule, allowing us
to infer the type of all non-terminals with complex types, and produce the type
dictionaries for the basic types.

• All symbols are connected to the root S by some sequence of rules, ensuring
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once again that each type can be inferred.

• The prohibition of cycles ensures that the algorithm does not reach a deadlock.

• Equivalence under concatenation with ε allows us to use ε as special ‘empty’
type, purely so it can be mapped to the unit object in a pregroup category.

2. Only considering binarised rules allowed for a fairly simple algorithm. This isn’t
necessary per se, but was set as a restriction principally out of convenience.

3. Disallowing production rules with a mix of terminals and non-terminals on the right-
hand side served to separate type inference from the creation of a type dictionary
mapping words to sets of basic types.

4. The restriction prohibiting a symbol from being on the left-hand side of both rules
with non-terminals on the right and rules with terminals on the right served to cre-
ate a distinction between basic and complex types, which was, once again, done to
separate type inference from the production of the type dictionary.

4.3 Supporting Lambek Grammar

Another grammatical formalism which might be useful to support in the DisCoCat frame-
work is the categorial grammar developed by Lambek in the 50s, generally referred to as
Lambek Grammar. Aside from showcasing the ability of DisCoCat to adapt to a wide-
range of grammatical systems, supporting Lambek Grammar has the additional advantage
of laying groundwork for supporting a more expressive categorial grammar, namely Com-
binatorial Categorial Grammar (CCG), which I will discuss in §7.3. In this section, I will
briefly present Lambek Grammar, and the sort of category it will be represented as, before
discussing how a functorial passage can be defined from this category to the category of
vector spaces FVect.

4.3.1 Lambek Grammar

Lambek Grammar (LG), first described in [51], is a context free categorial grammar con-
sisting of an infinite set of types, and a set of type operations, which allow for the analysis
of syntax to be completed in a manner akin to logical proofs.

Types in LG are recursively defined as follows:

• Atomic types are represented as single letters A, B, . . .
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• A\LB is a type if A and B are types1.

• A/B is a type if A and B are types.

• A · B is a type if A and B are types, with · being associative.

(Axiom) A ` A
Γ, A,Π ` B ∆ ` A(Cut)

Γ,∆,Π ` B

Γ, A, B,Π ` C(L·)
Γ, A · B,Π ` C

Γ ` A ∆ ` B(R·)
Γ,∆ ` A · B

Γ, B,Π ` C ∆ ` A(L\L)
Γ,∆, A\LB,Π ` C

A,Γ ` B(R\L)
Γ ` A\LB

Γ, A,Π ` C ∆ ` B(L/)
Γ, A/B,∆,Π ` C

Γ, B ` A(R/)
Γ ` A/B

Table 4.2: Axioms of Lambek Grammar.

The axioms of LG are shown in Table 4.2, in the form presented in [8]. These axioms
allow ‘empty’ values for Γ, ∆ and Π. We therefore assume the existence of an empty type
I acting as a multiplicative unit for the operation · such that A · I = A = I · A for any A.

From these axioms, the following type operations are inferred [66, 29]:

• Slash introduction: If A · B ` C then A ` C/B and B ` A\LC.

• Slash elimination: (A/B) · B ` A and B · (B\LA) ` A.

• Composition: A/B · B/C ` A/C and A\LB · B\LC ` A\LC.

• Type-raising: A ` B/(A\LB) and A ` (B/A)\LB.

To complete the definition of a Lambek Grammar, a type dictionary is defined map-
ping each word in our lexicon to the set of types it can hold. A sentence w1w2 . . .wn is
grammatically correct if there is some Ti for each word wi in the type dictionary such that
T1 · T2 · . . . · Tn ` S , where S the type associated with sentences, can be logically derived
from the axioms of LG.

1Here, I write backslashes with the subscript L to indicate that I am following Lambek’s slash notation,
which differs from the slash notation commonly used in CCG, discussed in §7.3.
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4.3.2 Lambek Grammars as Monoidal Bi-Closed Categories

Here, we show that a Lambek Grammar LG can be modelled as a monoidal bi-closed
category LG, as was discussed and formalised by Bob Coecke, Mehrnoosh Sadrzadeh and
myself in [17], and previously observed in the original work on Lambek Grammars by
Lambek himself.

A monoidal bi-closed category is a monoidal category with unit I and associative
monoidal tensor ⊗. What differentiates it from a normal monoidal category is that for
every pair of objects A and B in the category, there are objects A � B and A( B, and the
morphisms

• evl
A,B : A ⊗ (A( B)→ B

• evr
A,B : (A � B) ⊗ B→ A

• Λl( f ) : C → A( B for any f : A ⊗C → B

• Λr(g) : C → A � B for any g : C ⊗ B→ A

such that the following diagrams commute:

A ⊗C
1A ⊗ Λl( f )

- A ⊗ (A( B) C ⊗ B
Λr(g) ⊗ 1B- (A � B) ⊗ B

B

evl
A,B

?

f
-

A

evr
A,B

?

g

-

The morphisms evl and evr are referred to as evaluation morphisms, while the Λ morphisms
Λl and Λr are called currying morphisms.

It is fairly straightforward to show that any LG can be represented as a closed monoidal
category LG which is free in its objects. The empty type I is the unit object I. For any
atomic type A there is an object A in the category. For each type of the form A · B there
is some object A ⊗ B. For each type A\LB there is an object A ( B and for each type
A/B there is an object A � B. In short: the objects of the category are freely generated
from the set of of atomic types. This feature will be essential to the definition of a functor
between the categorical representation of Lambek Grammars and the category of vector
spaces FVect.

As for our type operations:
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• Slash introduction: let A · B ` C be the morphism f : A ⊗ B → C. Slash intro-
duction B ` A\LC corresponds to the morphism Λl( f ) : B → A ( C, and A ` C/B

corresponds to the morphism Λr( f ) : A→ C � B.

• Slash elimination simply corresponds to the evaluation morphisms.

• Composition: for any pair of objects A ( B and B ( C in the category, there is a
morphism

compr
A(B,B(C : (A( B) ⊗ (B( C)→ A( C

Likewise, for any pair of objects A � B and B � C in the category, there is a
morphism

compl
A�B,B�C : (A � B) ⊗ (B � C)→ A � C

• Type raising morphisms raisel
A,B and raiser

A,B are just the right and left currying of
the left and right evaluation morphisms:

– raisel
A,B = Λr(evl

A,B) : A→ B � (A( B)

– raiser
A,B = Λl(evr

B,A) : A→ (B � A)( B

We saw, in Chapter 3, that compact closed categories have a sound and complete graphi-
cal calculus allowing us to reason diagrammatically about structures within such categories.
Do we need to give up on this powerful tool when dealing with closed monoidal categories
as we do here? Fortunately not.

As I discussed in [17], with Mehrnoosh Sadrzadeh and Bob Coecke, a diagrammatic
calculus for such categories has been developed by Baez and Stay [3]. Apart from depicting
the flow of meaning, this calculus can also be applied to depict grammatical reduction
of Lambek monoids, resembling the constituency parse trees obtained from context free
grammars.

idA

A

f : A→ B

f
A

B

A ⊗ B

idA⊗B

= A B A( B

idA(B

= A B A � B

idA�B

= A B

Figure 4.3: Basic diagrammatic language constructs.

The basic constructs of the diagrammatic language for monoidal bi-closed categories is
shown in Figure 4.3. These are read from top to bottom, such that sequential composition of
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morphisms in the category corresponds to the downwards extension of the diagram. Arrows
are annotated with objects of the category, and morphisms are represented as ‘blobs’ with
one or more ‘input’ arrows and one or more ‘output’ arrows standing for the domain and
codomain. The tensoring of two objects corresponds to the side by side placement of their
arrows. Topological equivalence between diagrams indicates an isomorphism between the
corresponding categorical objects and vice versa, hence the diagram for (A ⊗ B) ⊗ C is
identical to that of A ⊗ (B ⊗ C). Finally, there exists a rewrite rule for the objects of the
form A ( B and A � B as shown in the last two diagrams of Figure 4.3. The clasp is
a restriction in the diagrammatic calculus which prevents us from treating both arrows as
separate entities, e.g. such that a function cannot be applied to one and not to the other.

evl
A,B

A A( B

B

evl
A,B : A ⊗ (A( B)→ B

=

A A B

B

evr
A,B

B � A A

B

evr
A,B : (B � A) ⊗ A→ B

=

AAB

B

Figure 4.4: Rewrite rules for evl and evr.

Another more complex rewrite rule is that provided for the evl and evr morphisms,
shown in Figure 4.4. These each take two arrows in and output one: the in arrow of the
form A ( B or B � A is rewritten in clasp form using the rewrite rules from Figure 4.3;
and the ‘internal structure’ of the morphism is exposed by drawing a bubble around cups
and twists that redirect the non-clasped input arrow into the upward arrow from the clasped
pair with a cup. Figure 4.5 shows the diagrams for currying, taken from [3], which represent
the slash introduction rules. Figure 4.6 shows the diagrams for the composition rules.

Finally, Figure 4.7 shows the diagrams for the type raising rules, obtained by currying
the evaluation rules. This last figure may require a bit of explanation: note that the clasps
on the bottom don’t seem to fully match the direction of the ( and � operators in the
mathematical definition shown above them. This is no error: since expressions of the form
A( B and B � A are represented diagrammatically as an upwards pointing arrow labelled
A clasped with a downward pointing arrow labelled B; when A is of the form C ( D

or D � C we must in turn expand the upward pointing arrow into two clasped arrows.
However, as the arrow we are ‘expanding’ is pointing upwards, we must turn the clasped
arrow representations upside-down, thereby reversing the up/down direction of clasped
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arrows and swapping their order (effectively rotating the clasped arrows by 180◦). This
means that if A is pointing upwards, then its clasped expansion will have a clasp pointing
from left to right (from C to D) if A = D � C and from right to left (again, from C to D)
if A = C ( D, thereby showing the clasp in the opposite direction as it is written in the
formula.

f

A C

B

f : A ⊗C → B Λl( f ) : C → A( B
C

f

A
B

g

C B

A

g : C ⊗ B→ A Λr(g) : C → A � B
C

g

A
B

Figure 4.5: Diagrams for currying rules.

compr
A,B,C

A( B B( C

A( C

A B B C

compr
A,B,C : (A( B) ⊗ (B( C)→ (A( C)

=

A C

compl
A,B,C

A � B B � C

A � C

A B B C

compl
A,B,C : (A � B) ⊗ (B � C)→ (A � C)

=

A C

Figure 4.6: Diagrams for composition rules.
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raisel
A,B

A

B B A

raisel
A,B : A→ B � (A( B)

=

A

B B A

raiser
A,B

A

A B B

raiser
A,B : A→ (B � A)( B

=

A

A B B

Figure 4.7: Diagrams for type raising rules.

To give a short example of how parses are represented diagrammatically, the diagrams
for “men kill” and “men kill dogs” are shown in Figure 4.8. We assume nouns have the type
N, intransitive verbs have type N ( S and transitive verbs have the type (N ( S ) � N.
The parse for “men kill” is just an evl

N,S . For the parse of “men kill dogs”, we start with
one line with the type N ( S , do an evr

N(S ,N with the object, then rewrite (marked with the
dotted lines) this line to a clasp form with two lines of type N and S respectively, then do
an evl

N,S with the subject.

Men kill

n sn

s

Men kill dogs

n( s n n

n( s

n

sn

s

Figure 4.8: Diagrams for sample Lambek Grammar parses.

4.3.3 Defining a Functor

Equipped with this categorical representation LG of a Lambek Grammar, we now turn
to the task of defining a functorial passage from a category LG to the category of vector
spaces FVect. Such a categorical passage was described in [17] which I co-authored with
Mehrnoosh Sadrzadeh and Bob Coecke. I am indebted in particular to Mehrnoosh, who
worked on the definition of this functor, and has permitted me to reproduce her work here

74



in my own words.
The bi-closed monoidal categories we used to represent LG are structurally similar to

the compact closed monoidal categories used to model pregroup categories P and FVect,
in that the evaluation morphisms ‘act’ like epsilon maps; for example:

evl
A,B : A ⊗ (A( B)→ B � εr

A ⊗ 1B : A ⊗ (Ar ⊗ B)→ B

To generalise this similarity to a strict functor F, let each atomic object ALG in ob(LG)
be assigned to a vector space F(ALG) = AFVect in ob(FVect). To simplify things notationally,
we will drop the subscripts and just use the same letter. As a special case, the unit type I in
LG maps to the unit type in FVect, namely R, such that F(I) = R.

The functorial passage for the monoidal tensor is simply the map of the monoidal tensor
from LG to FVect, such that for any A and B in ob(LG) we have:

F(A ⊗LG B) = F(A) ⊗FVect F(B)

Here too, we will dispense with indicating the subscript on the tensor operator.
Next comes the functorial definition for the( and � operations. Generally speaking,

for the passage from a bi-closed monoidal category to a compact closed monoidal category,
we would have the following two functorial passages:

F(A( B) = F(A)r ⊗ F(B)

F(A � B) = F(A) ⊗ F(B)l

However let us remember that in FVect the adjoints are degenerate such that Al = Ar = A∗

and A∗ � A for all vector spaces A, so we can do away with the adjoint notation. We
therefore obtain a simpler functorial definition:

F(A( B) = F(A) ⊗ F(B)

F(A � B) = F(A) ⊗ F(B)

We now turn to the functorial passage for morphisms. The most complex case to con-
sider here is slash introduction. Slash introduction states that for any morphism f : A⊗B→

C in hom(LG) there are morphisms Λl( f ) : B → A ( C and Λr( f ) : A → C � B

in hom(LG). Translating this to FVect, this would entail that for any morphism F( f ) :
F(A) ⊗ F(B) → F(C) in hom(FVect) there must be F(Λl( f )) : F(B) → F(A) ⊗ F(C) and
F(Λr( f )) : F(A) → F(C) ⊗ F(B) in hom(FVect). For this passage to hold, we must show
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that there are such curried morphisms for every such F( f ) in hom(FVect).

f

A C

B

f : A ⊗C → B Λl( f ) : C → A ⊗ B
C

f
A

B

g

C B

A

g : C ⊗ B→ A Λr(g) : C → A ⊗ B
C

g

A
B

Figure 4.9: Diagrams for compact closed currying.

This is where a powerful feature of the graphical calculus for bi-closed categories of
[3] comes into play: we can go from the diagrams of morphisms in bi-closed monoidal
categories to those in compact closed categories simply by removing the bubbles and the
clasps. This allows us to produce the diagrams for currying in FVect simply by ‘cleaning
up’ those for currying in LG (or any other bi-closed monoidal category). I therefore show,
in Figure 4.9, the diagrams for currying in a compact closed category, based on those shown
earlier in Figure 4.5. From these diagrams, we can simply read the morphisms which are
needed for currying rules to hold in FVect, and these turn out to require nothing more
than the ηA : R → A ⊗ A maps, which we represent as caps in the diagrammatic calculus,
and which we know must exist in FVect for any object A by virtue of the category being
compact closed. This ‘magical’ use of the diagrams implicitly corresponds to the functorial
passage from the bi-closed monoidal category representing the Lambek Grammar to a strict
compact closed monoidal category which is free in its objects, and then passing from this
category to FVect using a similar functor as was defined for the passage from P to FVect in
§4.1.2. Using the diagrammatic calculus to avoid dealing with the underlying mathematics
greatly simplifies the operation of defining a function in such a way, but it is important to
be aware of the reliance on the freely generated nature of the source category LG.

We can therefore read the following from these diagrams: for any morphism F( f ) :
F(A) ⊗ F(B) → F(C) in hom(FVect) there must be F(Λl( f )) : B → F(A) ⊗ F(C) and
F(Λr( f )) : F(A)→ F(C) ⊗ F(B) in hom(FVect), where:

F(Λl( f )) = (1A ⊗ F( f )) ◦ (ηF(A) ⊗ 1F(B)) : F(B)→ F(A) ⊗ F(C)

F(Λr( f )) = (F( f ) ⊗ 1F(B)) ◦ (1F(A) ⊗ ηF(B)) : F(A)→ F(C) ⊗ F(B)

So slash introduction is well defined under the functorial passage F.
The rest of the operations are far simpler to define, and can be read from Figures 4.4, 4.6
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and 4.7:

F(evl
A,B) = εF(A) ⊗ 1F(B) : F(A) ⊗ F(A) ⊗ F(B)→ F(B)

F(evr
A,B) = 1F(B) ⊗ εF(A) : F(B) ⊗ F(A) ⊗ F(A)→ F(B)

F(compr
A,B,C) = 1F(A) ⊗ εF(B) ⊗ 1F(C) : F(A) ⊗ F(B) ⊗ F(B) ⊗ F(C)→ F(A) ⊗ F(C)

F(compl
A,B,C) = 1F(A) ⊗ εF(B) ⊗ 1F(C) : F(A) ⊗ F(B) ⊗ F(B) ⊗ F(C)→ F(A) ⊗ F(C)

F(raisel
A,B) = (ηF(B) ⊗ 1F(A)) : F(A)→ F(B) ⊗ F(B) ⊗ F(A)

F(raiser
A,B) = (1F(A) ⊗ ηF(B)) : F(A)→ F(A) ⊗ F(B) ⊗ F(B)

This completes the definition of a functorial passage between LG and FVect.
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Chapter 5

Learning Procedures for a DisCoCat

Chapter Abstract

This chapter presents a procedure for generating concrete compositional dis-
tributional models of semantics from the DisCoCat framework presented in
Chapter 3. It discusses several considerations as to the shape and structure of
the semantic vector space for sentences, before presenting a learning proce-
dure for the production of the semantic representation for words and relations
based on corpus data.

Previously, in §3.3 I presented a categorical formalism which relates syntactic analysis
steps to semantic composition operations. The structure of the syntactic representation used
dictates the structure of the semantic spaces, but in exchange for this constraint, we are
provided with natural composition functions by the syntactic analysis, rather than having
to stipulate them ad hoc. Whereas the approaches to compositional DSMs presented in
Chapter 2 either failed to take syntax into account during composition, or did so at the
cost of not being able to compare sentences of different structure in a common space, this
categorical approach projects all sentences into a common sentence space where they can
be directly compared. However, this alone does not give us a compositional DSM.

As we have seen in the above examples, the structure of semantic spaces varies with
syntactic types. We therefore cannot construct vectors for different syntactic types in the
same way, as they live in spaces of different structure and dimensionality. Furthermore,
nothing has yet been said about the structure of the sentence space S into which expres-
sions reducing to type s are projected. If we wish to have a compositional DSM which
leverages all the benefits of lexical DSMs and extends them to sentence-level distributional
representations, we must specify a new sort of vector construction procedure.
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In the original formulation of this formalism by [13, 19], examples of how such a com-
positional DSM could be used for logical evaluation are presented, where S is defined as
a boolean space with True and False as basis vectors. However, the word vectors used are
hand-written and specified model-theoretically, as the authors leave it for future research to
determine how such vectors might be obtained from a corpus. In this chapter, I will discuss
a new way of constructing vectors for Compositional DSMs, and of defining the sentence
space S , in order to reconcile this powerful categorical formalism with the applicability
and flexibility of standard distributional models.

5.1 Defining Sentence Space

5.1.1 Intuition

Assume the following sentences are all true:

1. The dogs chased the cats.

2. The dogs annoyed the cats.

3. The puppies followed the kittens.

4. The train left the station.

5. The president followed his agenda.

If asked which sentences have similar meaning, we would most likely point to the pair (1)
and (3), and perhaps to a lesser degree (1) and (2), and (2) and (3). Sentences (4) and (5)
obviously speak of a state of the world unrelated to that which is described by the other
sentences.

If we compare these by truth value, we obviously have no means of making such dis-
tinctions. If we compare these by lexical similarity, (1) and (2) seem to be a closer match
than (1) and (3). If we are classifying these sentences by some higher order relation such
as ‘topic’, (5) might end up closer to (3) than (1). What, then, might cause us to pair (1)
and (3)?

Intuitively, this similarity seems to be because the subjects and objects brought into
relation by similar verbs are themselves similar. Abstracting away from tokens to some
notion of property, we might say that both (1) and (3) express the fact that something furry
and feline and furtive is being pursued by something aggressive (or playful) and canine.
Playing along with the idea that lexical distributional semantics presents concepts (word

80



meanings) as ‘messy bundles of properties’, it seems only natural to have the way these
properties are acted upon, qualified, and related as the basis for sentence-level distribu-
tional representations. In this respect, I here suggest that the sentence space S , instead
of qualifying the truth value of a sentence, should express how the properties of the se-
mantic objects within are qualified or brought into relation by verbs, adjectives, and other
predicates and relations.

The above intuitions serve primarily to guide the development of a learning procedure
as described below. The question of what are the “true semantics” of phrase and sentence
vectors, of what they represent, is fundamental and difficult to answer. Such vectors could
be interpreted as being the distributions of contexts in which sentences occur in an infinite
idealised corpus; alternatively, they can be viewed simply as vectors of feature weights to
be used in supervised machine learning algorithms such as classifiers, or as pre-training for
unsupervised machine learning algorithms such as clustering algorithms. Either way, the
construction procedure described below is general, and makes no commitments in terms of
the interpretation of phrase and sentence vectors.

5.1.2 A Concrete Proposal

More specifically, I examine two suggestions for defining the sentence space, namely S I �

N for sentences with intransitive verbs and S T � N ⊗ N for sentences with transitive verbs.
These definitions mean that the sentence space’s dimensions are commensurate with either
those of N, or those of N ⊗N. These are by no means the only options, but as I will discuss
here, they offer practical benefits.

In the case of S I , the basis elements are labelled with unique basis elements of N, hence
−→s1 = −→n1, −→s2 = −→n2, and so on. In the case of S T , the basis elements are labelled with unique
ordered pairs of elements from N, for example −→s1 =

−−−−−→
(n1, n1), −→s2 =

−−−−−→
(n2, n1), −→s3 =

−−−−−→
(n1, n2), and

so on. Because of the isomorphism between S T and N ⊗ N, I will use the notations
−−−−−→
(ni, n j)

and −→ni ⊗
−→n j interchangeably, as both constitute appropriate ways of representing the basis

elements of such a space.
To propagate this distinction to the syntactic level, I define types sI and sT for intransi-

tive and transitive sentences, respectively.
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5.2 Noun-Oriented Types

5.2.1 Dealing with Nouns

Lambek’s pregroup types presented in [53] include a rich array of basic types and hand-
designed compound types in order to capture specific grammatical properties. Here, for the
sake of simplicity I will use a simpler set of grammatical types for experimental purposes,
similar to some common types found in Combinatory Categorial Grammar (CCG) [77].

I assign a basic pregroup type n for all nouns, with an associated vector space N for
their semantic representations. Furthermore, I will treat noun-phrases as nouns, assigning
to them the same pregroup type and semantic space.

5.2.2 Dealing with Relational Words

CCG treats intransitive verbs as functions NP\S that consume a noun phrase and return
a sentence, and transitive verbs as functions (NP\S )/NP that consume a noun phrase and
return an intransitive verb function, which in turn consumes a noun phrase and returns a
sentence. Using my distinction between intransitive and transitive sentences, I give intran-
sitive verbs the type nr sI associated with the semantic space N ⊗ S I , and transitive verbs
the type nr sT nl associated with the semantic space N ⊗ S T ⊗ N.

Adjectives, in CCG, are treated as functions NP/NP consuming a noun phrase and
returning a noun phrase, and hence I give them the type nnl and associated semantic space
N ⊗ N.

With the provision of a learning procedure for vectors in these semantic spaces, we can
use these types to construct sentence vector representations for simple intransitive verb-
based and transitive verb based sentences, with and without adjectives applied to subjects
and objects.

5.3 Learning Procedures

5.3.1 Groundwork

To begin, I construct the semantic space N for all nouns in my lexicon (typically limited by
the words available in the corpus used). Any distributional semantic model can be used for
this stage, such as those presented in [21], or the lexical semantic models used by [63]. It
seems reasonable to assume that higher quality lexical semantic vectors—as measured by
metrics such as the WordSim353 test of [27]—will produce better relational vectors from
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the procedure designed below. I will not test this hypothesis here, but note that it is an
underlying assumption in most of the current literature on the subject [26, 63, 5].

Building upon the foundation of the thus-constructed noun vectors, I construct semantic
representations for relational words. In pregroup grammars (or other combinatorial gram-
mars such as CCG), we can view such words as functions taking as arguments those types
present as adjoints in the compound pregroup type, and returning a syntactic object whose
type is that of the corresponding reduction. For example, an adjective nnl takes a noun
or noun phrase n and returns a noun phrase n from the reduction (nnl)n → n. It can also
compose with another adjective to return an adjective (nnl)(nnl) → nnl. I wish for my
semantic representations to be viewed in the same way, such that the composition of an
adjective with a noun (1N ⊗ εN)((N ⊗N)⊗N) can be viewed as the application of a function
f : N → N to its argument of type N.

To learn the representations of such functions, I assume that their meaning can be char-
acterised by the properties that their arguments hold in the corpus, rather than just by their
context as is the case in lexical distributional semantic models. To give an example, rather
than learning what the adjective “angry” means by observing that it co-occurs with words
such as “fighting”, “aggressive” or “mean”, we can learn its meaning by observing that it
typically takes, as argument, words that co-occur with words such as “fighting”, “aggres-
sive” and “mean”. While in the lexical semantic case, such associations might only rarely
occur in the corpus, in this indirect method we learn what properties the adjective relates
to even if they do not co-occur with it directly.

In turn, through composition with its argument, I expect the function for such an ad-
jective to strengthen the properties that characterise it in the representation of the object it
takes as argument. Let us assume “angry” is characterised by arguments that have high ba-
sis weights for basis elements corresponding to the concepts (or context words) “fighting”,
“aggressive” and “mean”, and relatively low counts for semantically different concepts
such as “passive”, “peaceful” and “loves”. When I apply “angry” to “dog” the vector for
the compound “angry dog” should contain some of the information found in the vector
for “dog”. But this vector should also have higher values for the basis weights of “fight-
ing”, “aggressive” and “mean”, and correspondingly lower values for the basis weights of
“passive”, “peaceful”, “loves”.

5.3.2 A Learning Algorithm

To turn this idea into a concrete algorithm for constructing the semantic representation for
relations of any arity, as first presented in [38], let’s examine how we would deal with this
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for binary relations such as transitive verbs. If a transitive verb of semantic type N⊗S T ⊗N

is viewed as a function f : N ×N → S T which expresses the extent to which the properties
of subject and object are brought into relation by the verb, we learn the meaning of the
verb by looking at what properties are brought into relation by the verb in terms of what
arguments it takes in a corpus. Recall that the vector for a verb v, −→v ∈ N ⊗ S T ⊗ N, can be
expressed as the weighted superposition of its basis elements:

−→v =
∑
i jk

cv
i jk
−→ni ⊗
−→s j ⊗
−→nk

I take the set of vectors for the subject and object of v in the corpus to be the set of pairs
argv = {(

−−−−−→
S UBJl,

−−−−→
OBJl)}l. I wish to calculate the basis weightings {cv

i jk}i jk for v. Exploiting
my earlier definition of the basis {s j} j of S T which states that for any value of i and k there
is some value of j such that s j = (ni, nk), I define ∆i jk = 1 if s j = (ni, nk) and 0 otherwise.
Using all of the above, I define the calculation of each basis weight cv

i jk as:

cv
i jk =

∑
l

∆i jkc
S UBJl
i cOBJl

k

This allows for a full formulation of −→v as follows:

−→v =
∑

l

∑
i jk

∆i jkc
S UBJl
i cOBJl

k
−→ni ⊗
−→s j ⊗
−→nk

The nested sums here may seem computationally inefficient, seeing how this would
involve computing size(argv)×dim(N)2×dim(S ) = size(argv)×dim(N)4 products. However,
using the decomposition of basis elements of S into pairs of basis elements of N (effectively
basis elements of N ⊗ N), we can remove the ∆i jk term and ignore all values of j where
s j , (ni, nk), since the basis weight for this combination of indices would be 0. Therefore I
simplify the formulation of −→v :

−→v =
∑

l

∑
ik

cS UBJl
i cOBJl

k
−→ni ⊗
−−−−−→
(ni, nk) ⊗ −→nk

This representation is still bloated: we perform less calculations, but still obtain a vector
in which all the basis weights where s j , (ni, nk) are 0, hence where only dim(N)2 of the
dim(N)4 values are non-zero. In short, the vector weights for −→v are, under this learning
algorithm, entirely characterised by the values of a dim(N) by dim(N) matrix, the entries
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of which are products cS UBJl
i cOBJl

k where i and k have become row and column indices.
Using this and my definition of S T as a space isomorphic to N ⊗ N, I can formulate a

compact, ‘reduced’ expression of −→v as follows. Let the Kronecker product of two vectors
−→u ,−→w ∈ N, written −→u ⊗ −→w ∈ N ⊗ N, be as follows:

−→u ⊗ −→w =
∑

i j

cu
i cw

j
−→ni ⊗
−→n j

Equipped with this definition, I can formulate the compact form of −→v :

−→v =
∑

l

∑
ik

cS UBJl
i cOBJl

k
−→ni ⊗
−→nk

=
∑

l

−−−−−→
S UBJl ⊗

−−−−→
OBJl

In short, we are only required to iterate through the corpus once, taking for each instance
of a transitive verb v the Kronecker product of its subject and object, and summing these
across all instances of v. It is simple to see that no information was discarded relative to
the previous definition of −→v : the dimensionality reduction by a factor of dim(N)2 simply
discards all basis elements for which the basis weight was 0 by default.

5.3.3 Problems with Reduced Representations

This raises a small problem though: this compact representation can no longer be used in
the compositional mechanism presented in §3.3, as the dimensions of −→v no longer match
those which it is required to have according to its syntactic type. However, a solution can
be devised if we return to the sample calculation, shown in §3.3.3, of the composition of a
transitive verb with its arguments. The composition is as follows:

(εN ⊗ 1S ⊗ εN)(
−−−−−→
S UBJ ⊗ −→v ⊗

−−−→
OBJ) =

∑
ikm

cS UBJ
i cv

ikmcOBJ
m
−→sk

where the verb v is represented in its non-compact form. By introducing the compact
representation permitted by the isomorphism S T � N ⊗ N I can express this as

−−−−−−−−−−−−→
S UBJ v OBJ =

∑
im

cS UBJ
i cv

imcOBJ
m
−→ni ⊗
−→nm
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where v is represented in its compact form. Furthermore, by introducing the component
wise multiplication operation �:

−→u � −→v =
∑

i

cu
i cv

i
−→ni

I can show the general form of transitive verb composition using the reduced verb repre-
sentation to be as follows:

−−−−−−−−−−−−→
S UBJ v OBJ =

∑
im

cS UBJ
i cv

imcOBJ
m
−→ni ⊗
−→nm

=

∑
im

cv
im
−→ni ⊗
−→nm

 � ∑
im

cS UBJ
i cOBJ

m
−→ni ⊗
−→nm


= −→v �

(
−−−−−→
S UBJ ⊗

−−−→
OBJ

)
Considering the diagrammatic form of reduced representations may help understand

their construction and how composition works. Let −→v be the reduced representation of a
verb, and the function f v be defined as follows:

f v : N ⊗ N → N ⊗ N :: −→a ⊗
−→
b 7→ −→v �

(
−→a ⊗
−→
b
)

The diagrammatic representation of a verb is shown in Figure 5.1 as being embedded within
the full representation of the verb. Composition of a subject and object with the full rep-
resentation results in a yank which feeds the vectors to the function f v which applies the
reduced representation to the Kronecker product of the subject and object vectors, as shown
in Figure 5.2. In sum, I am doing exactly the same sort of computation when I use reduced
representations as I do when I used full representations. The ‘simplification’ of reduced
representations is only a reduction in the cost of the computation; in all other respects, it is
identical to computing using ε maps.

f v

Figure 5.1: Diagrammatic form of reduced representations.
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f v

s o =
f v

s o

Figure 5.2: Composition under reduced representations.

To summarise what I have done with transitive verbs:

1. I have treated them as functions taking two nouns and returning a sentence in a space
S T � N ⊗ N.

2. I have built the semantic representations for these functions by counting which prop-
erties of subject and object noun vectors are related by the verb in transitive sentences
in a corpus.

3. I have assumed that output properties are a function of input properties by the use of
the ∆i jk function, i.e. the weights associated to ni from the subject argument and with
nk from the object argument only affect the ‘output’ weight for the sentence basis
element −→s j = −→ni ⊗

−→nk.

4. I have shown that this leads to a compact representation of the verb’s semantic form,
and an optimised learning procedure.

5. I have shown that the composition operations of this formalism can be adapted to this
compact representation.

The compact representation and amended composition operation hinge on the choice
of S T � N ⊗ N as output type for N ⊗ N as input type (the pair of arguments the verb
takes), justifying my choice of a transitive sentence space. In the intransitive case, the
same phenomenon can be observed, since such a verb takes as argument a vector in N and
produces a vector in S I � N. Furthermore, my choice to make all other types dependent on
one base type—namely n (with associated semantic space N)—yields the same property
for every relational word we wish to learn: the output type is the same as the concatenated
(on the syntactic level) or tensored (on the semantic level) input types. It is this symmetry
between input and output types that guarantees that any m-ary relation, expressed in the
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original formulation as an element of tensor space N ⊗ . . . ⊗ N︸        ︷︷        ︸
2m

has a compact representation

in N ⊗ . . . ⊗ N︸        ︷︷        ︸
m

where the ith basis weight of the reduced representation stands for the degree

to which the ith element of the input vector affects the ith element of the output vector.

5.3.4 A Generalised Algorithm for Reduced Repesentations

The learning procedure discussed above allows the specification of a generalised learning
algorithm for reduced representations, first presented in [36], which is as follows. Each
relational word P (i.e. those words with compound pregroup types) with grammatical type
π and m adjoint types α1, α2, · · · , αm is encoded as an (r × . . . × r) multi-dimensional array
with m degrees of freedom (i.e. an order m tensor). Since the vector space N has a fixed
basis, each such array is represented in vector form as follows:

−→
P =

∑
i j · · · ζ︸ ︷︷ ︸

m

ci j···ζ (−→n i ⊗
−→n j ⊗ · · · ⊗

−→n ζ)︸                     ︷︷                     ︸
m

This vector lives in the tensor space N ⊗ N ⊗ · · · ⊗ N︸              ︷︷              ︸
m

. Each ci j···ζ is computed according to

the procedure described in Figure 5.3.

1) Consider a sequence of words containing a relational word ‘P’ and its arguments w1, w2,
· · · , wm, occurring in the same order as described in P’s grammatical type π. Refer to these
sequences as ‘P’-relations. Suppose there are K of them.
2) Retrieve the vector −→wl of each argument wl.
3) Suppose w1 has weight c1

i on basis vector −→n i, w2 has weight c2
j on basis vector −→n j, · · · ,

and wm has weight cm
ζ on basis vector −→n ζ . Multiply these weights

c1
i × c2

j × · · · × cm
ζ

4) Repeat the above steps for all the K ‘P’-relations, and sum the corresponding weights

ci j···ζ =

K∑
k=1

(
c1

i × c2
j × · · · × cm

ζ

)
k

Figure 5.3: Procedure for learning weights for matrices of words ‘P’ with relational types
π of m arguments.

Linear algebraically, this procedure corresponds to computing the following sum:

−→
P =

∑
k

(
−→w1 ⊗

−→w2 ⊗ · · · ⊗
−→wm

)
k
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The general formulation of composing a relational word P with its arguments arg1, . . . , argm

is now expressed as
−→
P �

(
−−−→arg1 ⊗ . . . ⊗

−−−→argm

)
For example the computation of “furry cats nag angry dogs” would correspond to the fol-
lowing operation:

−−−−−−−−−−−−−−−−−−−−−−−→
furry cats nag angry dogs =

−−→nag �
((
−−−→
furry � −→cat

)
⊗

(
−−−−→angry �

−−→
dog

))
5.3.5 Example

To give an example, taken from [36], I demonstrate how the meaning of the world ‘show’
might be learned from a corpus and then composed. Suppose there are two instances of the
verb ‘show’ in the corpus:

s1 = table show result
s2 = map show location

The vector of ‘show’ is

−−−−→
show =

−−−→
table ⊗

−−−−→
result +

−−−→map ⊗
−−−−−−→
location

Consider a vector space N with four basis vectors ‘far’, ‘room’, ‘scientific’, and ‘elect’.
The TF/IDF-weighted values for vectors of selected nouns (built from the British National
Corpus) are as shown in Table 5.1.

i −→ni table map result location master dog
1 far 6.6 5.6 7 5.9 4.3 5.5
2 room 27 7.4 1.0 7.3 9.1 7.6
3 scientific 0 5.4 13 6.1 4.1 0
4 elect 0 0 4.2 0 6.2 0

Table 5.1: Sample weights for selected noun vectors.

Part of the matrix compact representation of ‘show’ is presented in Table 5.2.

As a sample computation, the weight c11 for basis element (−→n1,
−→n1), i.e. (

−→
far,
−→
far), is com-

puted by multiplying weights of ‘table’ and ‘result’ on
−→
far, i.e. 6.6× 7, multiplying weights

of ‘map’ and ‘location’ on
−→
far, i.e. 5.6 × 5.9 then adding these 46.2 + 33.04 and obtaining

the total weight 79.24.
I now wish to compute the vector for the sentence “[the] master shows [his] dog” (omit-

ting the determiner and possessive for simplicity). The calculation will be:
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far room scientific elect
far 79.24 47.41 119.96 27.72

room 232.66 80.75 396.14 113.2
scientific 32.94 31.86 32.94 0

elect 0 0 0 0

Table 5.2: Sample semantic matrix for ‘show’.

−−−−−−−−−−−−−−−→
master show dog

=
−−−−→
show �

(
−−−−−→master ⊗

−−→
dog

)

=


79.24 47.41 119.96 27.72

232.66 80.75 396.14 113.2
32.94 31.86 32.94 0

0 0 0 0

 �


23.65 32.68 0 0
50.05 69.16 0 0
22.55 31.16 0 0
34.1 47.12 0 0


=


1874.03 1549.36 0 0

11644.63 5584.67 0 0
742.80 992.76 0 0

0 0 0 0


The row-wise flattening of the final matrix representation gives us the result we seek,

namely the sentence vector in S T for “[the] master shows [his] dog”:

−−−−−−−−−−−−−−−→
master show dog = [1874, 1549, 0, 0, 11645, 5585, 0, 0, 743, 993, 0, 0, 0, 0, 0, 0]

5.3.6 An Efficient Alternative

To complete this chapter, let us consider an alternative and efficient way of learning the rep-
resentations for transitive verbs, which I will call the Kronecker method. I first presented
this efficient learning method with Mehrnoosh Sadrzadeh in [37], where we observed that
the compact representation of a verb in the DisCoCat framework, under the assumptions
presented earlier in this chapter, can be viewed as dim(N) × dim(N) matrices in N ⊗ N.
We considered alternatives to the algorithm presented earlier for the construction of such
matrices, and were surprised by the results of the Kronecker method, wherein we replaced
the matrix learned by our algorithm with the Kronecker product of the lexical semantic
vectors for the verb. Concretely this means that given the lexical vector −−→vlex for a transitive
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verb, built as we would build noun vectors, we construct the matrix representation verb of
the verb as follows:

verb = −−→vlex ⊗
−−→vlex

Further analysis performed since the publication of that paper can help to understand
why this method might work. Using the following property that for any vectors −→a ,

−→
b ,−→c ,

−→
d ,

we have
(−→a ⊗

−→
b ) � (−→c ⊗

−→
d ) = (−→a � −→c ) ⊗ (

−→
b �
−→
d )

we can see that the Kronecker model’s composition operation can be expressed as

Kronecker :
−−−−−−−−−−−−−−−−−−→
sub ject verb ob ject =

(
−−−→
verb �

−−−−−−→
sub ject

)
⊗

(
−−−→
verb �

−−−−−→
ob ject

)
Bearing in mind that the cosine measure we are using as a similarity metric is equivalent to
the inner product of two vectors normalised by the product of their length

cosine(−→a ,
−→
b ) =

〈
−→a |
−→
b 〉

‖
−→a ‖ × ‖

−→
b ‖

and the following property of the inner product of Kronecker products

〈
−→a ⊗
−→
b |−→c ⊗

−→
d 〉 = 〈−→a |−→c 〉 × 〈

−→
b |
−→
d 〉

we finally observe that comparing two sentences under Kronecker corresponds to the fol-
lowing computation:

cosine(
−−−−−−−−−−−−−−−−−−−→
sub ject verb1 ob ject,

−−−−−−−−−−−−−−−−−−−→
sub ject verb2 ob ject)

= α
〈(
−−−−→
verb1 ⊗

−−−−→
verb1

)
�

(
−−−−−−→
sub ject ⊗

−−−−−→
ob ject

)
|

(
−−−−→
verb2 ⊗

−−−−→
verb2

)
�

(
−−−−−−→
sub ject ⊗

−−−−−→
ob ject

)〉
= α

〈(
−−−−→
verb1 �

−−−−−−→
sub ject

)
⊗

(
−−−−→
verb1 �

−−−−−→
ob ject

)
|

(
−−−−→
verb2 �

−−−−−−→
sub ject

)
⊗

(
−−−−→
verb2 �

−−−−−→
ob ject

)〉
= α

〈(
−−−−→
verb1 �

−−−−−−→
sub ject

)
|

(
−−−−→
verb2 �

−−−−−−→
sub ject

)〉 〈(
−−−−→
verb1 �

−−−−−→
ob ject

)
|

(
−−−−→
verb2 �

−−−−−→
ob ject

)〉
where α is the normalisation factor

α =
1

‖
−−−−−−−−−−−−−−−−−−−→
sub ject verb1 ob ject‖ × ‖

−−−−−−−−−−−−−−−−−−−→
sub ject verb2 ob ject‖

I note here that the Kronecker model is effectively a parallel application of the multi-
plicative model presented in §2.3.2, combining the subject and verb, and object and verb
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separately. In short, it more or less constitutes the introduction of some mild syntactic
sensitivity into the multiplicative model of [63].

I can generalise this Kronecker model to any relation of any arity, provided that it takes
n inputs and produces n outputs of matching types (since all I am doing is component-wise
multiplication of reduced representations). The general learning procedure for learning an
n-ary relation using the Kronecker method is as follows:

1. We learn the lexical vector R for the relation.

2. We produce its tensor representation T R by computing

T R =

n⊗
i=1

R

3. To compose T R with its N arguments {−→a1, . . . ,
−→an} we compute:

T R �

 n⊗
i=1

−→ai


This is, in some sense, a Kronecker product-based generalisation of the multiplicative
model of [63], as the case for n = 1 is simply component-wise multiplication.

f v

s o

= f v̄ f v̄

s o

Figure 5.4: Composition under the Kronecker model.

To conclude this section, let us examine the diagrammatic representation of compo-
sition under the Kronecker model. We saw, in Figure 5.2, that reduced representations
could be seen as being diagrammatically embedded inside full representations. Further-
more, these diagrams can be simplified through yank operations to show the application of
some function f v to the Kronecker product of subject and object, where f v corresponds to
the component-wise multiplication of Kronecker product two arguments with the reduced
representation of the verb. In the case of the Kronecker model, this reduced representation
is itself the Kronecker product of the lexical vectors for the verb, which I will call v̄. Let a
function f v̄ be defined as follows:

f v̄ : N → N :: −→a 7→ −→a � v̄
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I can therefore express f v in terms of f v̄ as follows:

f v = f v̄ ⊗ f v̄

which allows us to formulate the diagrammatic representation of composition under the
Kronecker model as shown in Figure 5.4. The general form of the Kronecker model can
be shown in a similar way. If we construct the representation of some n-ary relation R

according to the Kronecker model, by taking the Kronecker product of its lexical vector R̄

n times, then we have:

f R =

n⊗
i=1

f R̄

and the composition of R with its n arguments {−→a1, . . . ,
−→an} can be represented diagrammat-

ically as shown in Figure 5.5.

f R

a1 an. . .

. . .

= f R̄ f R̄

a1 an

. . .

Figure 5.5: Composition under the generalised Kronecker model.
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Practice

95



96



Chapter 6

Evaluating a DisCoCat

Chapter Abstract

This chapter presents three phrase-similarity detection experiments designed
to evaluate the models discussed in Chapter 5, and compare them to selected
other models discussed in Chapter 2 within the context of these experiments.
It shows the concrete models generated by the DisCoCat framework to outper-
form other competing models.

Evaluating compositional models of semantics is no easy task: first, we are trying to
evaluate how well the compositional process works; second, we also are trying to deter-
mine how useful the final representation—the output of the composition—is, relative to
our needs.

The scope of this second problem covers most phrase and sentence-level semantic mod-
els, from bag-of-words approaches in information retrieval to logic-based formal semantic
models, via language models used for machine translation. It is heavily task dependent, in
that a representation that is suitable for machine translation may not be appropriate for tex-
tual inference tasks, and one that is appropriate for information retrieval may not be ideal
for paraphrase detection. Therefore this aspect of semantic model evaluation ideally should
take the form of application-oriented testing, e.g. to test semantic representations designed
for machine translation purposes, we should use a machine translation evaluation task.

The DisCoCat framework of [13, 19], described above in Chapter 3, allows for the
composition of any words of any syntactic type. The general learning algorithm presented
in §5.3 technically can be applied to learn and model relations of any semantic type. How-
ever, many open questions remain, such as how to deal with logical words, determiners and
quantification, and how to reconcile the different semantic types used for sentences with
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transitive and intransitive sentences. I will leave these questions for future work, briefly
discussing some of them in Chapter 7. In the meantime, we concretely are left with a way
of satisfactorily modelling only simple sentences without having to answer these bigger
questions.

With this in mind, in this chapter I present a series of experiments centred around
evaluating how well various models of semantic vector composition (along with the one
described in Chapter 5) perform in a phrase similarity comparison task. This task aims
to test the quality of a compositional process by determining how well it forms a clear
joint meaning for potentially ambiguous words. The intuition here is that tokens, on their
own, can have several meanings, and that it is through the compositional process—through
giving them context—that we understand their specific meaning. For example, “bank” itself
could (amongst other meanings) mean a river bank or a financial bank; yet in the context
of a sentence such as “The bank refunded the deposit” it is likely we are talking about the
financial institution.

I will present three datasets designed to evaluate how well word-sense disambiguation
occurs as a by-product of composition. I begin by describing the first dataset, based around
noun-intransitive verb phrases, in §6.1. In §6.2, I present a dataset based around short
transitive-verb phrases (a transitive verb with subject and object). In §6.3, I discuss a
new dataset, based around short transitive-verb phrases where the subject and object are
qualified by adjectives. I leave discussion of these results for §6.4.

6.1 First Experiment

This first experiment, which is based on that of Mitchell and Lapata [63], and which I
presented in [36] with Mehrnoosh Sadrzadeh, evaluates the degree to which an ambiguous
intransitive verb (e.g. “draws”) is disambiguated by combination with its subject.

6.1.1 Dataset Description

The dataset1 comprises 120 pairs of intransitive sentences, each of the form “NOUN VERB”.
These sentence pairs are generated according the following procedure, which will be the
basis for the construction of the other datasets discussed below:

1. A number of ambiguous intransitive verbs (15, in this case) are selected from fre-
quently occurring verbs in the corpus.

1Available at http://homepages.inf.ed.ac.uk/s0453356/results.
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2. For each verb V , two mutually exclusive synonyms V1 and V2 of the verb are pro-
duced, and each is paired with the original verb separately (for a total of 30 verb
pairs). These are generated by taking maximally distant pairs of synonyms of the
verb on Wordnet (e.g. ), but any method could be used here.

3. For each pair of verb pairs (V,V1) and (V,V2), two frequently occurring nouns N1

and N2 are picked from the corpus, one for each synonym of V . For example if V is
“glow” and the synonyms V1 and V2 are “beam” and “burn”, we might choose “face”
as N1 because a face glowing and a face beaming mean roughly the same thing, and
“fire” as N2 because a fire glowing and a fire burning mean roughly the same thing.

4. By combining the nouns with the verb pairs, we form two high similarity triplets
(V,V1,N1) and (V,V2,N2), and two low similarity triplets (V,V1,N2) and (V,V2,N1).

The last two steps can be repeated to form more than four triplets per pair of verb pairs. In
[63], eight triplets are generated for each pair of verb pairs, obtaining a total of 120 triplets
from the 15 original verbs. Each triplet, along with its HIGH or LOW classification (based
on the choice of noun for the verb pair) is an entry in the dataset, and can be read as a pair
of sentences: (V,Vi,N) translates into the intransitive sentences “N V” and “N Vi”.

Finally, the dataset is presented, without the HIGH/LOW ratings, to human annotators.
These annotators are asked to rate the similarity of meaning of the pairs of sentences in
each entry on a scale of 1 (low similarity) to 7 (high similarity). The final form of the
dataset is a set of lines each containing:

• A (V,Vi,N) triplet

• A HIGH or LOW label for that triplet

• An annotator identifier and the annotator’s score for that triplet

Sample sentences from this dataset are shown in Table 6.1.

Sentence 1 Sentence 2
butler bow butler submit
head bow head stoop

company bow company submit
government bow government stoop

Table 6.1: Example entries from the intransitive dataset without annotator score, first ex-
periment.
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6.1.2 Evaluation Methodology

This dataset is used to compare various compositional distributional semantic models ac-
cording to the following procedure:

1. For each entry in the dataset, the representation of the two sentences “N V” and
“N Vi”, which we will name S 1 and S 2, formed from the entry triple (V,Vi,N) is
constructed by the model.

2. The similarity of these sentences according to the model’s semantic distance measure
constitutes the model score for the entry.

3. The rank correlation of entry model scores against entry annotator scores is calcu-
lated using Spearman’s rank correlation coefficient ρ.

The Spearman ρ scores are values between −1 (inverse rank correlation) and 1 (perfect
correlation). The higher the ρ score, the higher the compositional model can be said to
produce sentence representations that match human understanding of sentence meaning,
when it comes to comparing the meaning of sentences. As such, I will rank the models
evaluated using the task by decreasing order of ρ score.

One of the principal appealing features of Spearman’s ρ is that the coefficient is rank
based: it does not require models’ semantic similarity metrics to be normalised for a com-
parison to be made. One consequence is that a model providing excellent rank correlation
with human scores, but producing model scores on a small scale (e.g.values between 0.5
and 0.6) will obtain a higher ρ score than a model producing models scores on a larger scale
(e.g. between 0 and 1) but with less perfect rank correlation. If we wished to then use the
former model in a task requiring some greater degree of numerical separation (let’s say 0
for non-similar sentences and 1 for completely similar sentences), we could simply renor-
malise the model scores to fit the scale. By eschewing score normalisation as an evaluation
factor, we minimise the risk of erroneously ranking one model over another.

Finally, in addition to computing the rank alignment coefficient between model scores
and annotator scores, [63] calculate the mean models scores for entries labelled HIGH, and
for entries labelled LOW. This information is reported in their paper as additional means
for model comparison. However, for the same reason I considered Spearman’s ρ to be a
fair means of model comparison, namely in that it required no model score normalisation
procedure and thus was less likely to introduce error by adding such a degree of freedom,
we consider the HIGH/LOW means to be inadequate grounds for comparison precisely
because it requires normalised model scores for comparison to be meaningful. As such, I
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will not include these mean scores in the presentation of this experiment’s results, or any
further experiments in this Chapter.

6.1.3 Models Compared

In this experiment, I compare the best and worst performing models of [63] to my own.
I begin by building a vector space W for all words in the corpus, using standard distribu-
tional semantic model construction procedures (n-word window) with the parameters of
[63]. Specifically, the basis elements of this vector space are the 2000 most frequently oc-
curring words in the British National Corpus (BNC), excluding common stop words. For
my evaluation, the corpus was lemmatised using Carroll’s Morpha [62], which was applied
as a by-product of my parsing of the BNC with the C&Ctools parser of [20].

The context of each occurrence of a word in the corpus was defined to be five words on
either side. After the vector for each word w was produced, the basis weights cw

i associated
with context word bi were normalised by the following ratio of probabilities weighting
scheme:

cw
i =

P(bi|w)
P(bi)

=
fw∧bi fb∗

fbi fw

where fb∗ is the total number of context word in the corpus.
Let
−−−→
verb and −−−→noun be the lexical semantic vectors for the verb and the noun, from W.

It should be evident that there is no significant difference in using W for nouns in lieu of
building a separate vector space N strictly for noun vectors.

As a first baseline, Verb Baseline, I ignored the information provided by the noun in
constructing the sentence representation, effectively comparing the semantic content of the
verbs:

Verb Baseline :
−−−−−−−−→
noun verb =

−−−→
verb

The models from [63] which I evaluate here are those which were strictly unsupervised
(i.e. no free parameters for composition). These are the additive model Add, wherein

Add :
−−−−−−−−→
noun verb = −−−→noun +

−−−→
verb

and the multiplicative model Multiply, wherein

Multiply :
−−−−−−−−→
noun verb = −−−→noun �

−−−→
verb

Other models with parameters which must be optimised against a held-out section the
dataset are presented in [63]. I omitted them here principally because they do not per-

101



form as well as Multiply, but also because the need to optimise the free parameters for this
experiment and other datasets makes comparison with completely unsupervised models
more difficult, and less fair.

I also evaluate the Categorical model from Chapter 5 here, wherein

Categorical :
−−−−−−−−→
noun verb =

−−−−−→
verbcat �

−−−→noun

where
−−−−−→
verbcat is the compact representation of the relation the verb stands for, computed

according to the procedure described in Chapter 5. It should be noted that for the case
of intransitive verbs, this composition operation is mathematically equivalent to that of
the Multiply model (as component-wise multiplication � is a commutative operation), the
difference being the learning procedure for the verb vector.

For all such vector-based models, the similarity of two sentences s1 and s2 is taken to
be the cosine similarity of their vectors, defined in §2.2:

similarity(s1, s2) = cosine(−→s1,
−→s2)

In addition to these vector-based methods, I define an additional baseline and an upper-
bound. The additional baseline, Bigram Baseline, is a bigram-based language model
trained on the BNC with SRILM [79], using the standard language model settings for
computing log-probabilities of bigrams. To determine the semantic similarity of sentences
s1 = noun verb1 and s2 = noun verb2 I assumed sentences have mutually conditionally
independent properties, and computed the joint probability:

similarity(s1, s2) = logP(s1 ∧ s2) = log(P(s1)P(s2)) = logP(s1) + logP(s2)

The upper bound of the dataset, UpperBound, was taken to be the inter-annotator
agreement: the average of how each annotator’s score aligns with other annotator scores,
using Spearman’s ρ. The procedure for this was to take all possible pairs of annotators,
measure their agreement using ρ, and take the average ρ across all such pairs to be the
inter-annotator agreement.

6.1.4 Results

The results of the first experiment are shown in Table 6.2. As expected from the fact that
Multiply and Categorical differ only in how the verb vector is learned, the results of these
two models are virtually identical, outperforming both baselines and the Additive model
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by a significant margin. However, the distance from these models to the upper bound is
even greater, demonstrating that there is still a lot of progress to be made.

Model ρ

Verb Baseline 0.08
Bigram Baseline 0.02
Add 0.04
Multiply 0.17
Categorical 0.17
UpperBound 0.40

Table 6.2: Model correlation coefficients with human judgements, first experiment. p <
0.05 for each ρ.

6.2 Second Experiment

This second experiment, which I initially presented in [36] with Mehrnoosh Sadrzadeh,
is an extension of the first experiment to the case of sentences centred around transitive
verbs, composed with a subject and an object. The results of the first experiment did not
demonstrate any difference between the multiplicative model, which takes into account no
syntactic information or word ordering, and the syntactically motivated categorical com-
positional model. By running the same experiment over a new dataset, where the relations
expressed by the verb have a higher arity than in the first, I hope to demonstrate that added
structure leads to better results for our syntax-sensitive model.

6.2.1 Dataset Description

The construction procedure for this dataset2 is almost exactly as for the first dataset, with
the following differences:

• Verbs are transitive instead of intransitive.

• For each verb pair, I select a set of subject and object nouns to use as context, as
opposed to just a subject noun.

Lemmatised sentences from sample entries of this dataset are shown in Table 6.3.

2Available at http://www.cs.ox.ac.uk/activities/compdistmeaning/GS2011data.txt.
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Sentence 1 Sentence 2
table show result table express result

map show location map picture location
table show result table picture result

map show location map express location

Table 6.3: Example entries from the transitive dataset without annotator score, second
experiment.

The dataset was passed to a group of annotators, as was done for the previous dataset,
who scored each pair of sentences on the same scale of 1 (not similar in meaning) to 7
(similar in meaning).

6.2.2 Evaluation Methodology

The methodology for this experiment is exactly that of the previous experiment. Models
compositionally construct sentence representations, and compare them using a distance
metric (all vector-based models once again used cosine similarity). The rank correlation of
model scores with annotator scores is calculated using Spearman’s ρ, which is used in turn
to rank models.

6.2.3 Models Compared

The models compared in this experiment are those of the first experiment, with the addition
of an extra trigram-based baseline (trained with SRILM, using addition of log-probability
of a sentence as a similarity metric), and the Kronecker variation on our categorical model,
previously presented in §5.3.6. With W as the distributional semantic space for all words in
the corpus, trained using the same parameters as in the first experiment,

−−−→
sub j,

−−−→
verb,

−−−−−→
ob ject ∈

W as the vectors for subject, verb and object of a sentence, respectively, and with verbcat as
the compact representation of a transitive verb learned using the algorithm presented in the
previous chapter, we have the following compositional methods:

Add :
−−−−−−−−−−−−−−−−−−→
sub ject verb ob ject =

−−−−−−→
sub ject +

−−−→
verb +

−−−−−→
ob ject

Multiply :
−−−−−−−−−−−−−−−−−−→
sub ject verb ob ject =

−−−−−−→
sub ject �

−−−→
verb �

−−−−−→
ob ject

Categorical :
−−−−−−−−−−−−−−−−−−→
sub ject verb ob ject =

−−−−−→
verbcat �

(
−−−−−−→
sub ject ⊗

−−−−−→
ob ject

)
Kronecker :

−−−−−−−−−−−−−−−−−−→
sub ject verb ob ject =

(
−−−→
verb ⊗

−−−→
verb

)
�

(
−−−−−−→
sub ject ⊗

−−−−−→
ob ject

)
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The upper bound UpperBound here is, again, the inter-annotator agreement.

6.2.4 Results

The results for the second experiment are shown in Table 6.4. The baseline scores fall in the
0.14–0.18 range, with best results being obtained for the Trigram Baseline. The additive
model Add performs comparably to the additive model in the first experiment. This is most
likely due to the fact that, through addition, the semantic noise caused by the overlapping
word senses present in semantic vectors is increased rather than cancelled out. In other
words, information from the verb vectors (namely relatively low or high values) which
might be used to implicitly discriminate senses through composition is instead “drowned
out” by the information from the subject and object vectors through summation, rather
than being used to provide a more finely-grained representation. The multiplicative model
Multiply performs on par with the version used for the intransitive experiment, but obtains
a score comparable to the baselines.

The best performing models here are those developed and described in this thesis. The
Categorical model now outperforms both the baselines and Multiply, obtaining a score of
0.21. Finally, the newly introduced Kronecker model leads the pack by a steady margin,
with a score of 0.28.

The inter-annotator agreement UpperBound is much higher in this experiment than in
the previous experiment, indicating even more room for improvement.

Model ρ

Verb Baseline 0.16
Bigram Baseline 0.14
Trigram Baseline 0.18
Add 0.05
Multiply 0.17
Categorical 0.21
Kronecker 0.28
UpperBound 0.62

Table 6.4: Model correlation coefficients with human judgements, second experiment. p <
0.05 for each ρ.
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6.3 Third Experiment

The third and final experiment I present is a modified version of the second dataset pre-
sented above, where the nouns in each entry are under the scope of adjectives applied to
them. The intuition behind the datasets presented in §6.1 and §6.2 was that ambiguous
verbs are disambiguated through composition with nouns. These nouns themselves may
also be ambiguous, and a good compositional model will be capable of separating the
noise produced by other meanings through its compositional mechanism to produce less
ambiguous phrase representations. The intuition behind this dataset is similar, in that ad-
jectives provide both additional information for disambiguation of the nouns they apply to,
but also additional semantic noise. Therefore a good model will also be able to separate
the useful information of the adjective from its semantic noise when composing it with its
argument, in addition to doing this when composing the noun phrases with the verb.

6.3.1 Dataset Description

The construction procedure for this dataset was to take the dataset from §6.2, and, for each
entry, add a pair of adjectives from those most frequently occurring in the corpus. The first
adjective from the pair is applied to the first noun (subject) of the entry when forming the
sentences, and the second adjective is applied to the second noun (object).

This new dataset3 was then annotated again by a group of 50 annotators using Ama-
zon’s Mechanical Turk service, asked to give each sentence pair a meaning similarity score
between 1 and 7, as for the previous datasets. As a form of quality control, I inserted “gold
standard” sentences in the form of identical sentence pairs and rejected annotators that did
not score these gold standard sentences with a high score of 6 or 7. Some 94 users returned
annotations, of which I kept 50 according to gold standard tests. I did not apply this “gold
standard” quality test to the second dataset as it was annotated by friends, and am unaware
of whether or not it was applied in the production of the first dataset, but believe that this
can only lead to the production of higher quality annotations.

Sample sentences from this dataset are shown in Table 6.5.

6.3.2 Evaluation Methodology

The evaluation methodology in this experiment is identical to that of the previous experi-
ments.

3Available at http://www.cs.ox.ac.uk/activities/compdistmeaning/GS2012data.txt.
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Sentence 1 Sentence 2
statistical table show good result statistical table express good result
statistical table show good result statistical table depict good result

Table 6.5: Example entries from the adjective-transitive dataset without annotator score,
third experiment.

6.3.3 Models Compared

In this experiment, in lieu of simply comparing compositional models “across the board”,
e.g. using the multiplicative model for both adjective-noun composition and verb-argument
composition, I experimented with different combinations of models. This evaluation pro-
cedure was chosen because I believe that adjective-noun composition need not necessarily
be the same kind of compositional process as subject-verb-object composition, but also be-
cause different models may latch onto different semantic features during the compositional
process, and it would be interesting to see what model mixtures work well together.

Each mixed model has two components: a verb-argument composition model and an
adjective-noun composition model. For verb-argument composition, I used the three best
models from the previous experiment, namely Multiply, Categorical and Kronecker. For
adjective-noun composition I used three different methods. With

−−−−−−−−→
ad jective and −−−→noun being

the vectors for an adjective and a noun in the distributional lexical semantic space W (built
using the same procedure as the previous experiments) and

−−−−→
ad jcat being the compact rep-

resentation in the Categorical model, built according to the algorithm from §5.3, we have
the following models:

AdjMult :
−−−−−−−−−−−−−→
ad jective noun =

−−−−−−−−→
ad jective � −−−→noun

Categorical :
−−−−−−−−−−−−−→
ad jective noun =

−−−−−−−−−−→
ad jectivecat �

−−−→noun

The third model, AdjNoun, is a holistic (non-compositional) model, wherein the adjective-
noun compound was treated as a single token, as its semantic vector

−−−−−−−−−−−−−−−−−→
(ad jective noun)lex ∈

W was learned from the corpus using the same learning procedure applied to construct
other vectors in W. Hence the model defines adjective-noun “composition” as:

AdjNoun :
−−−−−−−−−−−−−→
ad jective noun =

−−−−−−−−−−−−−−−−−→
(ad jective noun)lex

In addition to these models, I also evaluated three baselines: Verb Baseline, Bigram
Baseline, and Trigram Baseline. As in previous experiments, the verb baseline uses the
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verb vector as a sentence vector, ignoring the information provided by other words. The
bigram and trigram baselines are calculated from the same language model as used in the
second experiment. In both cases, the log-probability of each sentence is calculated using
SRLIM, and the sum of log-probabilities of two sentences is used as a similarity measure.

Finally, three addition-based models of sentence formation were evaluated as well, us-
ing basic linear algebraic operations. With

−−−−−−−→sentence =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ad jective1 noun1 verb ad jective2 noun2

these are:

Additive : −−−−−−−→sentence =
−−−−−−−−−→
ad jective1 + −−−−→noun1 +

−−−→
verb +

−−−−−−−−−→
ad jective2 + −−−−→noun2

AddMult : −−−−−−−→sentence = (
−−−−−−−−−→
ad jective1 + −−−−→noun1) �

−−−→
verb � (

−−−−−−−−−→
ad jective2 + −−−−→noun2)

MultAdd : −−−−−−−→sentence = (
−−−−−−−−−→
ad jective1 �

−−−−→noun1) +
−−−→
verb + (

−−−−−−−−−→
ad jective2 �

−−−−→noun2)

6.3.4 Results

The results for the third experiment are shown in Table 6.6. Going through the combined
models, we can notice that in most cases the results stay the same whether the adjective-
noun combination method is AdjMult or CategoricalAdj. This is because, as was shown
in the first experiment, composition of a unary-relation such as an adjective or intransitive
verb with its sole argument under the categorical model with reduced representations is
mathematically equivalent to the multiplicative model. The sole difference is the way the
adjective or intransitive verb vector is constructed. I note, however, that with Categorical
as a verb-argument composition method, the CategoricalAdj outperforms AdjMult by a
non-negligible margin (0.19 vs. 0.14), indicating that the difference in learning procedure
can lead to different results depending on what other models it is combined with.

Overall, the best results are obtained for AdjMult+Kronecker (ρ = 0.26) and Cat-
egoricalAdj+Kronecker (ρ = 0.27). Combinations of the adjective composition meth-
ods with other composition methods than the two listed above at best matches the best-
performing baseline, Verb Baseline. In all cases, the holistic model AdjNoun provides the
worst results.

Finally, I note that the fairly simple model AddMult trails the best performing models
by only a few points.
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Model ρ

Verb Baseline 0.20
Bigram Baseline 0.14
Trigram Baseline 0.16
Additive 0.10
AddMult 0.24
MultAdd 0.05
Multiplicative
AdjMult 0.20
AdjNoun 0.05
CategoricalAdj 0.20
Categorical
AdjMult 0.14
AdjNoun 0.16
CategoricalAdj 0.19
Kronecker
AdjMult 0.26
AdjNoun 0.17
CategoricalAdj 0.27
Upperbound 0.48

Table 6.6: Model correlation coefficients with human judgements, third experiment. p <
0.05 for each ρ.

6.4 Discussion

In this Chapter, I evaluated the framework described in Chapter 3, implemented using the
learning procedures described in Chapter 5, and variants described earlier in this Chapter
against other unsupervised compositional distributional models. I used non-compositional
models and n-gram language models as baselines. These experiments show that the con-
crete categorical model developed here, and the Kronecker product-based variant presented
alongside it, outperform all other models in each experiment save the first, where they
perform on par with the leading model. As the experiments involved progressively more
syntactically complicated sentences, the increased reliability of the categorical approaches
relative to competing models as sentence complexity rises seems to indicate that both the
Categorical and Kronecker models successfully leverage the added information provided
by additional terms and syntactic structures. While these experiments demonstrate that the
added structure provided by the categorical passage from syntax to semantics yields im-
provements in the quality of semantic representations obtained through composition, they
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also reveal that there is still significant ground to cover in order to approach levels of per-
formance comparable to that of human annotators.

The third experiment also served to show that using different combinations of composi-
tion operations depending on the syntactic type of the terms being combined can yield bet-
ter results, and that some models combine better than others. Notably, the adjective-noun
combination models AdjMult and CategoricalAdj, despite their mathematical similarity,
produce noticeably different results when combined with the categorical verb-argument
composition operation, while they perform equally with most other verb-argument com-
position operations. Likewise, the combination of additive and multiplicative models in
AddMult performs surprisingly well, despite its simplicity (although the choice of opera-
tions was chosen by hand, and there is no canonical way of extending this to every sentence
structure). We can conclude that different models combine different semantic aspects more
prominently than others, and that through combination we can obtain better representations
by assuming that different kinds of composition play on different semantic properties. For
example, predicates such as intersective adjectives often add information to their argument
(a red ball is a ball that is also red), hence it may be no surprise that using addition in Add-
Mult performs better than across-the-board component-wise multiplication. This opens the
question of how to design models of composition that systematically select which opera-
tions will match the semantic aspects of the words being combined based on their syntactic
type. This is an open question, which I believe warrants further investigation.
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Chapter 7

Further Work

Chapter Abstract

This chapter presents three areas in which further work has been undertaken,
based on the foundations established by the rest of this thesis. It describes the
issues surrounding the integration of logic into compositional distributional
models, presents a new machine learning algorithm for learning semantic rep-
resentations, and outlines how Combinatory Categorial Grammars may be in-
tegrated into the DisCoCat framework. It concludes by suggesting directions
future work might take in this field.

Before concluding this thesis, let us examine some topics which have constituted further
research on this topic, both from my own work and from work done in collaboration with
colleagues. In this chapter, I will examine three areas in which further developments of the
DisCoCat framework and models stemming from it have occurred, before discussing how
these three areas exemplify and provide a foundation for future work. In §7.1, I will discuss
the issues surrounding the modelling of logical operators within the DisCoCat framework,
and what difficulties our reliance on multilinear maps modelled as tensors gives rise to.
In §7.2, I will report new work done on the topic of integrating sophisticated machine
learning methods into the learning procedures for our semantic representations. In §7.3, I
will present the foundations for further syntactic extensions allowing us to integrate a more
expressive grammatical formalism, Combinatory Categorial Grammar, into the DisCoCat
framework. Finally, in §7.4, I conclude by showing how these three areas of research set
the tone for future work to be done on the topic of categorical compositional distributional
semantics.
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7.1 Distributional Logic

The DisCoCat formalism of [19] presented in Chapter 3 and the models derived from it
presented in Chapter 5 allow us to represent and learn syntactically-motivated semantic ob-
jects which can be composed to form distributional sentence representations. The learning
algorithms provided allow us to model a large class of word-types, technically including
logical words present in every day language use, such as “and”, “or”, and “not”. How-
ever, this closed lexical class has a very specific use in language, which historically has
been modelled as operations in propositional or predicate logical calculus. As such, it may
seem counter-intuitive to learn these from data; in fact, it would be more reasonable to take
the finite class of words used to express quantification, conjunction, implication, and other
logical concepts, as semantic objects which are designed.

A good question following this observation might therefore be: how can logic be mod-
elled in a compositional distributional semantic model? Furthermore, how would logical
operators work when applied to non-truth theoretic representations such as those developed
in Chapter 5? This second question is an open problem I leave for future work, but to even
begin to answer it, it would be helpful to see how classical predicate logic can be simulated
within the DisCoCat framework (or something similar). The hope is that we could use such
a simulation as a basis or inspiration for the development of non-truth theoretic distribu-
tional logic operations in future research. In this section, I discuss how such a logic might
be simulated, based on work presented in [34], as well as the issues faced by our models in
doing so.

7.1.1 Distributional Formal Semantics

A popular approach to compositionality in formal semantics is to derive a formal represen-
tation of a phrase from its grammatical structure and a set of associated rules. I represent
the semantics of words as functions and arguments, and use the grammatical structure to
dictate the order and scope of function application. For example, formal semantic models
in the style of [65] will associate a semantic rule with each syntactic rule in a context-free
grammar. A simple formal semantic model is shown in Figure 7.1.

Following these rules shown, the parse of a simple sentence like ‘angry dogs chase furry
cats’ yields the following interpretation: [[chase]] ([[furry]] ([[cats]]) , [[angry]] ([[dogs]])). This
model is very simplistic, and typically, a higher order logic such as a lambda calculus will
be used to provide additional structure, but the key aspect retained by this simple model
is that the grammar dictates the translation from natural language to the functional form.
Generally, in formal semantic models, such functions will be logical relations and pred-
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Syntax Semantics
S⇒ NP VP [[S ]]⇒ [[VP]] ([[NP]])
NP⇒ N [[NP]]⇒ [[N]]
N⇒ ADJ N [[N]]⇒ [[ADJ]] ([[N]])
VP⇒ Vt NP [[VP]]⇒ [[Vt]] ([[NP]])
VP⇒ Vi [[VP]]⇒ [[Vi]]

Syntax (cont’d) Semantics (cont’d)
Vt⇒ {verbst} [[Vt]]⇒ [[verbt]]
Vi⇒ {verbsi} [[Vi]]⇒ [[verbi]]
ADJ⇒ {adjs} [[ADJ]]⇒ [[adj]]
N⇒ {nouns} [[N]]⇒ [[noun]]

Figure 7.1: A simple formal semantic model.

icates applied to arguments, namely objects from the logical domain. In this section, I
consider a way of defining such functions as multilinear maps over geometric objects in-
stead. This framework is generally applicable to other formal semantic models than that
which is presented here.

7.1.2 Tensors as Functions

The bijective correspondence between linear maps and matrices is a well known property
in linear algebra: every linear map f : A → B can be encoded as a dim(B) by dim(A)
matrix M, and conversely every such matrix encodes a class of linear maps determined by
the dimensionality of the domain and co-domain. The application of a linear map f to a
vector −→v ∈ A producing a vector −→w ∈ B is equivalent to the matrix multiplication:

f (−→v ) = M × −→v = −→w

This correspondence generalises for multilinear maps to a correlation between n-ary maps
and order n + 1 tensors [6, 56].

Tensors are best described as a generalisation of the notion of vectors and matrices to
larger degrees of freedom referred to as tensor orders (one for vectors, two for matrices).
To illustrate this generalisation, consider how vectors, which are order 1 tensors, may be
written as the weighted superposition (summation) of their basis elements: for some vector
space V with basis {

−→
bi}i, any vector −→v ∈ V can be written

−→v =
∑

i

cv
i
−→
bi =

[
cv

1, . . . , cv
i , . . . , cv

dim(V)

]
where the weights cv

i are elements of the underlying field (e.g. R), and thus vectors can
be fully described by such a one-index summation. Likewise, matrices, which are order 2
tensors, can be seen as a collection of row vectors from some space Vr with basis {−→ai}i, or
of column vectors from some space Vc with basis {

−→
d j} j. Such a matrix M is an element of
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the space Vr ⊗ Vc, and can be fully described by the two index summation:

M =
∑

i j

cM
i j
−→ai ⊗
−→
d j

where, once again, cM
i j is an element of the underlying field which in this case is simply the

element from the ith row and jth column of the matrix M, and the basis element −→ai ⊗
−→
d j

of Vr ⊗ Vc is formed by a pair of basis elements from Vr and Vc. The number of indices
(or degrees of freedom) used to fully describe a tensor in this superposition notation is its
order, e.g., an order 3 tensor T ∈ A ⊗ B ⊗ C would be described by the superposition of
weights cT

i jk associated with basis elements −→ei ⊗
−→
f j ⊗
−→gk.

Matrix multiplications, inner products, and traces all generalise to tensors as the non-
commutative tensor contraction operation (×). For tensors T ∈ A ⊗ . . . ⊗ B ⊗ C and U ∈

C ⊗ D ⊗ . . . ⊗ E, with bases {−→a i ⊗ . . . ⊗
−→
b j ⊗
−→ck}i... jk and {−→ck ⊗

−→
dl ⊗ . . . ⊗

−→em}kl...m, the tensor
contraction of T × U is calculated:∑

i... jkl...m

cT
i... jkc

U
kl...m
−→ai ⊗ . . . ⊗

−→
b j ⊗
−→
dl ⊗ . . . ⊗

−→em

where the resulting tensor is of order equal to two less than the sum of the orders of the
input tensors; the subtraction reflects the elimination of matching basis elements through
summation during contraction.

For every curried multilinear map g : A→ . . .→ Y → Z, there is a tensor T g ∈ Z ⊗ Y ⊗

. . .⊗A encoding it [6, 56]. The application of a curried n-ary map h : V1 → . . .→ Vn → W

to input vectors −→v1 ∈ V1, . . . ,
−→vn ∈ Vn to produce output vector −→w ∈ W corresponds to the

tensor contraction of the tensor T h ∈ W ⊗ Vn ⊗ . . . ⊗ V1 with the argument vectors:

h(−→v1) . . . (−→vn) = T h ×
−→v1 × . . . ×

−→vn

This isomorphism between tensors (objects) and multilinear maps (maps) is also known in
the quantum information theory literature (e.g. [91, 10]) as map-state duality, whereby for
each map there is a bi-partite entangled state, with the map and state each forming part of
the dual representation of the same piece of information.

7.1.3 Formal Semantics with Tensors

Using the correspondence between n-ary maps and tensors of order n+1 discussed in §7.1.2,
and the correspondence between function arguments and semantic vectors in standard dis-
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tributional semantic models, we can turn any formal semantic model into a compositional
distributional semantic model. This is done by first running a type inference algorithm on
the semantic interpretations of generative rules and obtaining both basic (i.e. uninferred)
and function (i.e. inferred) types, then assigning to each basic type a vector space and to
each function type a tensor space. Following this, we can represent arguments by vectors
and functions by tensors, and finally, we can model function application by tensor contrac-
tion.

To give an example, in the simple formal semantic model presented in Figure 7.1, a
type inference algorithm in the vein of [48, 61] would give the following type assignments:

• It would leave the types of [[N]] and [[S ]] uninferred, as they are not treated as func-
tions in any rule; therefore, we treat nouns and sentences as vectors in some spaces
N and S .

• Noun phrases are simply assigned the same type as [[N]], hence elements of [[NP]]
would also be vectors in N.

• Verb phrases map noun phrase interpretations to sentence interpretations, hence [[VP]] :
type([[NP]]) → type([[S ]]) or, as we have inferred the relevant spaces, [[VP]] : N →

S .

• Intransitive verb interpretations are assigned the same types as verb phrase inter-
pretations, and hence an intransitive verb “vi” can be represented by some tensor
T vi ∈ S ⊗ N.

• Transitive verbs are interpreted as maps [[Vt]] : type([[NP]]) → type([[VP]]), which
can be expanded to [[Vt]] : N → N → S , giving us, for some transitive verb “vt”, the
tensor form T vt ∈ S ⊗ N ⊗ N.

• Finally, adjectives are maps of form [[Ad j]] : type([[N]]) → type([[N]]), and hence
some adjective “adj” has the tensor form T adj ∈ N ⊗ N.

Putting all this together with tensor contraction (×) as function application, let us ex-
amine the computation of a sample sentence “angry dogs chase furry cats” with interpreta-
tion [[chase]] ([[furry]] ([[cats]]) , [[angry]] ([[dogs]])). This would simply be the calculation of(
T chase ×

(
T furry × T cats

))
×

(
T angry × T dogs

)
, where T cats and T dogs would be lexical semantic

vectors, T furry and T angry would be square matrices, and T chase would be an order 3 tensor.
It should be noted that the semantic tensors generated in this framework are in fact

identical to those found in the DisCoCat framework, as tensor contraction is just iterated
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application of ε maps. To give an example, let T f be tensor in C ⊗ B ⊗ A modelling a
multilinear map f : A × B → C. Let −→v ∈ A and −→w ∈ B be its arguments. Then the tensor
contraction corresponding to the application of T f to its arguments can be expressed as ε
maps as follows:(

T f ×
−→v

)
×
−→w = ((1C ⊗ εB) ◦ (1C ⊗ εA ⊗ 1B))(T f ⊗

−→v ⊗ −→w)

The principal (superficial) difference between this framework and DisCoCat is that tensors
always ‘absorb’ arguments on the right through contraction, forming a linear λ-calculus,
whereas in DisCoCat, contraction can happen on the left of a tensor. This difference is
indeed superficial, in that any tensor can be transposed to ‘take arguments’ on the left or
the right, thereby allowing us to produce an isomorphism between the tensors in a DisCoCat
model and those in this distributional formal semantics framework, provided that the vector
spaces match.

7.1.4 Simulating Simple Predicate Calculi

The approach described above allows us to adapt very simple formal semantic models to
work with tensors in a way similar to the DisCoCat framework discussed throughout this
thesis. Before turning to the question of how logical connectives and quantifiers might be
modelled using tensors in either the distributional formal semantics described above, or in
the DisCoCat framework, I begin by showing how tensors can represent model-theoretic
predicates from a finite-domain predicate calculus.

In [19], a short example shows how simple predicate logic can be simulated within the
DisCoCat framework by setting S to a boolean space. This can be done in one of two ways:
namely either by setting S to be a one dimensional space B1 with basis vector −→>, where
the vector −→> ≡ > and

−→
0 ≡ ⊥; or by setting S to be a two dimensional space B2 with basis

{
−→
>,
−→
⊥}, where:

−→
> =

 1
0

 ≡ > −→
⊥ =

 0
1

 ≡ ⊥
To represent a logical model in vector spaces using either of the above options for boolean
space, I consider the following translation mechanism:

• I assign to the domain D—the set of objects in our logic—a vector space N over N
of |D| dimensions where each basis vector of N is in one-to-one correspondence with
elements ofD.

• An element of D is therefore represented as a one-hot vector in N (a sparse unit-
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length vector with a single non-zero value), the single-non null value of which is the
weight for the basis vector mapped to that element ofD.

• Similarly, a subset of D is a vector of N where those elements of D in the subset
have 1 as their corresponding basis weights in the vector, and those not in the subset
have 0. Therefore there is a one-to-one correspondence between the vectors in N

with basis weights of either 0 or 1 and the elements of the power set P(D).

• Each unary predicate P in the logic is represented in the logical model as a set
MP ⊆ D containing the elements of the domain for which the predicate is true.
Traditionally, we could view the predicate as a function fP : D → B where:

fP(x) =

 > if x ∈ MP

⊥ otherwise

Given that our sentence space is set to a boolean space, using one of the forms sug-
gested above (i.e. B1 or B2), we could directly model this function as a tensor in
S ⊗ N as discussed in §7.1.3. However, I suggest a different way of distributionally
modelling predicates which is more in line with how predicates work in a DisCoCat.
Let us instead view predicates P as functions fP : P(D)→ P(D), defined as:

fP(X) = X ∩ MP

Therefore the distributional form of these functions will be tensors in N⊗N. Through
tensor contractions, they map subsets ofD (elements of N) to subsets ofD containing
only those objects of the original subset for which P holds (i.e. yielding another
vector in N).

• Finally, n-ary relations R such as verbs are represented in a logical model as the set
MR of n-tuples of elements from D for which R holds. Therefore such relations can
be represented as functions fR : Dn → B where:

fR(x1, . . . , xn) =

 > if (x1, . . . , xn) ∈ MR

⊥ otherwise

Considering our choice of S as a boolean space, and using the process described in
§7.1.3, we can represent these relations distributionally as tensors in S ⊗N ⊗ . . . ⊗ N︸        ︷︷        ︸

n

.

To give a concrete example about how predicates and relations (namely verbs) would
work in our setting, let our domain be the individuals John ( j), Mary (m) and Peter (p). John
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and Mary love each other and love themselves, but are indifferent about Peter. Peter hates
himself and John, but loves Mary. The logical model for this budding romantic tragedy is
as follows:

D = { j,m, p}

Mloves = {( j, j), (m,m), ( j,m), (m, j), (p,m)}

Mhates = {(p, p), (p, j)}

Distributionally speaking, the elements of the domain will be mapped to the following
one-hot vectors in some three-dimensional space N as follows:

j 7→
−→
j =


1
0
0

 m 7→ −→m =


0
1
0

 p 7→ −→p =


0
0
1


The representation of the verbs will depend on our choice of sentence space S . If we set
S = B1, we define the verbs as follows, using the Kronecker product:

floves 7→ (−→> ⊗
−→
j ⊗
−→
j ) + (−→> ⊗ −→m ⊗ −→m) + (−→> ⊗

−→
j ⊗ −→m) + (−→> ⊗ −→m ⊗

−→
j ) + (−→> ⊗ −→p ⊗ −→m)

fhates 7→ (−→> ⊗ −→p ⊗ −→p ) + (−→> ⊗ −→p ⊗
−→
j )

Using the distributivity of ⊗ over + we can express this more compactly as:

floves 7→ T loves =
−→
> ⊗ ((

−→
j ⊗
−→
j ) + (−→m ⊗ −→m) + (

−→
j ⊗ −→m) + (−→m ⊗

−→
j ) + (−→p ⊗ −→m))

fhates 7→ T hates =
−→
> ⊗ ((−→p ⊗ −→p ) + (−→p ⊗

−→
j ))

These definitions implicitly set the basis weight for sets of elements not in Mloves and Mhates

to zero.
If we set S = B2 we simply have to explicitly state all the element pairs for which the

relation is false, in addition to those pairs for which it is true. Using the more compact
notation used above, this gives:

floves 7→ T loves =
−→
> ⊗ ((

−→
j ⊗
−→
j ) + (−→m ⊗ −→m) + (

−→
j ⊗ −→m) + (−→m ⊗

−→
j ) + (−→p ⊗ −→m))

+
−→
⊥ ⊗ ((−→p ⊗ −→p ) + (−→m ⊗ −→p ) + (

−→
j ⊗ −→p ) + (−→p ⊗

−→
j ))

fhates 7→ T hates =
−→
> ⊗ ((−→p ⊗ −→p ) + (⊗−→p ⊗

−→
j ))

+
−→
⊥ ⊗ ((

−→
j ⊗
−→
j ) + (−→m ⊗ −→m) + (

−→
j ⊗ −→m) + (−→m ⊗

−→
j ) + (

−→
j ⊗ −→p ) + (−→m ⊗ −→p ) + (−→p ⊗ −→m))
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Computing the value of a sentence such as “John loves Mary” would then involve pro-
ducing the distributional representation of floves( j,m). In the distributional setting, this
would be equivalent to the following computation with S = B1, and with × as the tensor
contraction operation:

(T loves ×
−→m) ×

−→
j

= ((−→> ⊗ ((−→m ⊗ −→m) + (
−→
j ⊗ −→m) + (−→p ⊗ −→m))) × −→m) ×

−→
j

= (−→> ⊗ (−→m +
−→
j + −→p )) ×

−→
j

= (−→> ⊗
−→
j ) ×
−→
j

=
−→
>

In contrast, “Peter hates Mary” would yield the computation:

(T hates ×
−→m) × −→p

= ((−→> ⊗ ((−→p ⊗ −→p ) + (−→p ⊗
−→
j ))) × −→m) × −→p

=
−→
> · 0 × −→p

=
−→
> · 0

=
−→
0

which is the origin in S = B1, which I interpret as false. In the case of false statements, the
nature of the computation is a lot less clear mathematically. In contrast, it is explicit in the
case of S = B2, for which we reproduce both computations initially shown above here. For
“John loves Mary” we can notice very little change, since everybody loves Mary:

(T loves ×
−→m) ×

−→
j

= ((−→> ⊗ ((−→m ⊗ −→m) + (
−→
j ⊗ −→m) + (−→p ⊗ −→m)) +

−→
⊥ · 0 × −→m) ×

−→
j

= (−→> ⊗ (−→m +
−→
j + −→p ) +

−→
⊥ · 0) ×

−→
j

= (−→> ⊗
−→
j +
−→
⊥ · 0) ×

−→
j

=
−→
> · 1 +

−→
⊥ · 0

=

 1
0


=
−→
>

119



But for “Peter hates Mary” the falsehood of the statement is more clearly computed:

(T hates ×
−→m) × −→p

= ((−→> ⊗ ((−→p ⊗ −→p ) + (−→p ⊗
−→
j )) +

−→
⊥ ⊗ ((−→m ⊗ −→m) + (

−→
j ⊗ −→m) + (−→p ⊗ −→m))) × −→m) × −→p

= (−→> · 0 +
−→
⊥ ⊗ (−→m +

−→
j + −→p )) × −→p

=
−→
> · 0 +

−→
⊥ · 1

=

 0
1


=
−→
⊥

Let us quickly illustrate how predicates work distributionally: let us consider a domain
with two dogs (a and b) and a cat (c). One of the dogs is brown, as is the cat. Let D be
the set of dogs, and B the predicate “brown”. I represent these statements in the model as
follows:

D = {a, b, c}

D = {a, b}

MB = {b, c}

Distributionally, I model the domain as a three dimensional vector space, the set of dogs as
a vector

D 7→


1
1
0


and the predicate ‘brown’ as a tensor in N ⊗ N

fB 7→ T brown =


0 0 0
0 1 0
0 0 1


The set of brown dogs is obtained by computing fB(D), which distributionally corresponds
to applying the tensor T brown to the vector representation of D via tensor contraction, as
follows:

T brown × D =


0 0 0
0 1 0
0 0 1




1
1
0

 =


0
1
0

 =
−→
b
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Therefore using tensors and vectors, we can effectively simulate a simple predicate
calculus within either the DisCoCat framework or the formal distributional semantics pre-
sented earlier in this chapter.

7.1.5 Logical Operations, and Integrating Non-Linearity

In §7.1.3, I presented a way of combining tensor-based compositional distributional mod-
els with simple formal semantic models. In §7.1.4, I showed how a simple predicate logic
could be simulated within such a distributional formal semantics or the DisCoCat frame-
work discussed throughout this thesis. However, both in the case of formal semantics and
in the natural language statements we wish to model the semantics of with DisCoCat mod-
els, there are not only predicates and relations, but also logical words such ‘and’, ‘or’ and
expressions such as ‘every’, ‘some’, ‘for all’, which we model logically as logical connec-
tives (∧, ∨, ¬, and so on) and as quantifiers (∀, ∃). How are these to be represented within
tensor-based models? In this subsection, I show that the linear maps encoded by tensors
do not prima-facie suffice to simulate all these logical elements, but that the distributional
formal semantics described above can be enhanced with non-linear operations that fit the
bill.

Logical Operations Consider the following additional rules for the formal semantics
presented in Figure 7.1:

Syntax Semantics
S⇒ S1 and S2 [[S ]]⇒ ∧ ([[S 1]], [[S 2]])

S⇒ S1 or S2 [[S ]]⇒ ∨ ([[S 1]], [[S 2]])

S⇒ not S [[S ]]⇒ ¬ ([[S ]])

Can these additional semantic functions, corresponding to conjunction, disjunction and
negation be modelled by linear maps (and thereby represented as tensors)?

I considered two options for a boolean sentence space, B1 and B2, as suggested by [19].
For B1 it is trivial to show that negation cannot be modelled by a linear map. Assume there
is some linear map not : B1 → B1 such that:

not(−→>) =
−→
0

not(
−→
0 ) =

−→
>

All linear maps f must satisfy
f (
−→
0 ) =

−→
0
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so not is not a linear map, and hence no tensor models negation for S = B1. Similarly, the
obvious representations for conjunction and disjunction, namely

and(−→v ,−→w) = min(−→v ,−→w) or(−→v ,−→w) = max(−→v ,−→w)

where min and max are component-wise minimum and maximum operators, are not multi-
linear maps.

For S = B2, [19] show that the swap matrix

T not =

 0 1
1 0


models negation, which can easily be verified:

T not ×
−→
> =

 0 1
1 0

  1
0

 =

 0
1

 =
−→
⊥

T not ×
−→
⊥ =

 0 1
1 0

  0
1

 =

 1
0

 =
−→
>

I go further here and show that various other logical operators can be modelled with
S = B2. To make talking about order-3 tensors used to model binary operations easier, I
will use the following block matrix notation for 2 × 2 × 2 order-3 tensors T :

T =

 a1 b1 a2 b2

c1 d1 c2 d2


which allows us to express tensor contractions as follows, for some −→v = [α β]>:

T × −→v =

 a1 b1 a2 b2

c1 d1 c2 d2

  α
β

 =

 α · a1 + β · a2 α · b1 + β · b2

α · c1 + β · c2 α · d1 + β · d2


or more concretely:

T × −→> =

 a1 b1 a2 b2

c1 d1 c2 d2

  1
0

 =

 a1 b1

c1 d1


T × −→⊥ =

 a1 b1 a2 b2

c1 d1 c2 d2

  0
1

 =

 a2 b2

c2 d2
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Using this notation, we can define tensors for the following operations:

(¬) 7→ T¬ =

 0 1
1 0


(∨) 7→ T∨ =

 1 1 1 0
0 0 0 1


(∧) 7→ T∧ =

 1 0 0 0
0 1 1 1


(→) 7→ T→ =

 1 0 1 1
0 1 0 0


The design behind these tensors is not particularly complicated. They are applied to two
arguments: if the first argument is true (−→>) then the left matrix of the block matrix is applied
to the second argument; if the first argument is false (−→⊥) then the right matrix of the block
matrix is applied to the second argument. It is fairly trivial, using the truth tables for any
logical connective, to design such partitioned matrices for the tensor representation of any
logical operator in a propositional calculus. For example, for the case of ∧, the truth table
states that a∧b is true if and only if a is true and b is true. Therefore if a is true, a∧b holds
the truth value of b, and if a is false, a ∧ b is false regardless of the value of b. From this,
we design the tensor for ∧ as follows

T∧ =

 1 0 0 0
0 1 1 1


When a is true, the partial application of the tensor to the first argument should yield an
identity matrix, as its application to the second argument should yield the truth value of b:

T∧ × −→> =

 1 0 0 0
0 1 1 1

  1
0

 =

 1 0
0 1


When a is false, the partial application of the tensor to the first argument should yield a
matrix which ignores the truth value of the second argument, mapping both true and false
to false:

T∧ × −→⊥ =

 1 0 0 0
0 1 1 1

  0
1

 =

 0 0
1 1
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Having established these partial applications, we can verify that the truth table for ∧ is
replicated:

(
T∧ × −→>

)
×
−→
> =

 1 0
0 1

  1
0

 =

 1
0

 =
−→
>

(
T∧ × −→>

)
×
−→
⊥ =

 1 0
0 1

  0
1

 =

 0
1

 =
−→
⊥

(
T∧ × −→⊥

)
×
−→
> =

 0 0
1 1

  1
0

 =

 0
1

 =
−→
⊥

(
T∧ × −→⊥

)
×
−→
⊥ =

 0 0
1 1

  0
1

 =

 0
1

 =
−→
⊥

A similar set of steps can be used to verify the other tensor encodings of logical connectives
specified above.

Non-linearity and Quantification It may therefore seem that for the case where S = B2,
logical operators may be dealt with using only multi-linear maps represented as tensors.
However, when it comes to dealing with quantification, it is not obvious that a solution
using multilinear maps exists.

An intuitive way of modelling universal quantification is as follows: expressions of the
form “All Xs are Ys” are true if and only if MX = MX ∩ MY , where MX and MY are the
sets of Xs and the set of Ys, respectively. We saw earlier that sets of objects of the domain
could be represented as vectors

−→
X and

−→
Y in a vector space N. The intersection of two such

sets can be represented distributionally using the component-wise minimum function min:

MX ∩ MY 7→ min(
−→
X ,
−→
Y )

Using this, we can define the map f orall for distributional universal quantification mod-
elling expressions of the form “All Xs are Ys” as follows:

f orall(
−→
X ,
−→
Y ) =

 −→> if
−→
X = min(

−→
X ,
−→
Y )

−→
⊥ otherwise

Existential statements of the form “There exists X” can be modelled using the function
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exists, which tests whether or not MX is empty, and is defined as follows:

exists(
−→
X ) =

 −→> if |
−→
X | > 0

−→
⊥ otherwise

In both cases, the definitions are given for S = B2, but are adaptable to S = B1 by setting
−→
⊥ =

−→
0 .

To give a simple example, let us take the domainD = {dog1, dog2, cat1}, where dog1 is
a black dog, dog2 is a brown dog, and cat2 is a brown cat. Let the set

−→
B of brown things,

the set
−→
C of cats and

−→
P of dogs be represented in vector form as follows:

−→
B =


1
0
1

 −→
C =


0
0
1

 −→
P =


1
1
0


To evaluate a sentence such as “all brown things are dogs” we would compute f orall(

−→
B ,
−→
P)

by first computing

min(
−→
B ,
−→
P) =


1
0
0


then checking if the result is equal to

−→
B , which it is not, and hence f orall(

−→
B ,
−→
P) =

−→
⊥.

We can check if there exist any brown cats by first computing the intersection of the set of
brown things and the set of cats:

−→
B ∩
−→
C = min(

−→
B ,
−→
C ) =


0
0
1


We then check the size of this vector, which is 1. The definition of exists tells us that
exists(

−→
B ∩
−→
C ) =

−→
>.

Neither of the quantification functions defined above are multi-linear, since a multilin-
ear function must be linear in all arguments. A counter example for f orall is to consider
the case where MX and MY are empty, and multiply their vector representations by non-zero
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scalar weights α and β.

α
−→
X =
−→
X

β
−→
Y =
−→
Y

f orall(α
−→
X , β
−→
Y ) = f orall(

−→
X ,
−→
Y ) =

−→
>

f orall(α
−→
X , β
−→
Y ) , αβ−→>

I observe that the equations above demonstrate that f orall is not a multilinear map. This
proof holds for S = B1 and S = B2.

The proof that exists is not a multilinear map is equally trivial. Assume MX is an empty
set and α is a non-zero scalar weight:

α
−→
X =
−→
X

exists(α
−→
X ) = exists(

−→
X ) =

−→
⊥

exists(α
−→
X ) , α−→⊥

This proof holds for S = B2.
To conclude this section, we have seen how the two choices for boolean sentence space

differ when we consider how to ‘implement’ logical operations as tensors. For S = B1,
most operations need be non-linear maps, which can be defined in our distributional formal
semantic models but not in those constructed within the DisCoCat formalism. For S = B2,
logical connectives can be modelled as multilinear maps (and therefore as tensors), and
can thus be used in the DisCoCat setting as well as in the distributional formal semantics
model presented in this section, however the (perhaps naı̈ve) functions used to model basic
quantification were shown to be non-linear maps for both settings. The question of how to
approach quantification and logic in the DisCoCat framework, either using only multilinear
maps or by using some semantic representation other than FVect, as well as the question
of how to go from simulating predicate logic with tensors to defining (or learning) logical
connectives for the non-truth theoretic compositional distributional models described in
this thesis (i.e. going from vector encodings of classical logic to logic for continuous vector
space models), are both difficult and fundamental questions which would merit attention in
future research on this topic.
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7.2 Learning Tensors by Multi-Step Linear Regression

In Chapter 5, I presented learning procedures that could be used to produce distributional
representations of words and relations within the DisCoCat framework based on informa-
tion provided by a corpus. A parallel effort to describe distributional compositionality has
been presented in the work of Marco Baroni, Roberto Zamparelli and colleagues, which I
briefly described in §2.4.2.

To quickly repeat how their approach, first presented in [5], works: nouns are vectors
in some vector space N, and adjectives are square matrices in N ⊗ N. Adjective-noun
composition is simply matrix-vector multiplication. In sum, this is exactly how things
work in the DisCoCat models I discussed in Chapter 5. The novel aspect of their approach
is the learning procedure for adjective matrices. To learn the matrix for an adjective ad j,
the following steps are taken:

1. For each instance of the adjective applied to some noun n, the vector
−−−−→
ad j n is learned

using the same procedure used to learn noun vectors.

2. Let I be the set of noun vectors ad j takes as ‘input’ and O be the set of adjective-noun
vectors learned in the previous steps. Therefore for each input vector in I there is an
output vector in O.

3. The matrix for ad j is learned through linear regression, such that the output set O′

produced by multiplying the matrix for ad j with the elements of I is minimally dif-
ferent from O.

This is an interesting machine-learning approach, with a high degree of parametric free-
dom: we are free to select the procedure for building the noun and adjective-noun vectors,
the linear-regression algorithm used, the distance metric used to compare O and O′, what
sort of dimensionality reduction techniques are applied, and so on.

It should be noted that this approach can directly be applied to how we dealt with intran-
sitive verbs in Chapter 5, since they are also matrices in N ⊗ N. The question is now: can
this learning procedure be scaled to deal with the higher order tensors used for other con-
structs, such as transitive verbs? In [35]1, in collaboration with Baroni and his colleagues,
Mehrnoosh Sadrzadeh and I have produced a generalised multi-step linear regression learn-
ing procedure which permits the construction of higher order semantic tensors for use in

1I am indebted to my collaborators Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh Sadrzadeh and Marco
Baroni for their contribution to this work, and for allowing me to reproduce the contents. The figure in
this section was produced by Marco Baroni. The parameters for the learning procedure were described by
Georgiana Dinu.
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DisCoCat models. In this section, I will first present this procedure before discussing how
well tensors produced using this new learning mechanism performed in the experiments
presented in Chapter 6.

7.2.1 Multi-Step Linear Regression

Multi-step regression learning is a generalisation of linear regression learning for tensors
of order 3 or higher, as procedures already exist for tensors of order 1 (lexical semantic
vectors) and order 2 (cf. [5]). For order 1 tensors, we suggest learning vectors using any
standard lexical semantic vector learning model, and present sample parameters in §7.2.2
below. Learning order 2 tensors (matrices) can be treated as a multivariate multiple re-
gression problem, where the matrix components are chosen to optimise (in a least squares
error sense) the mapping from training instances of input (argument) and output (composed
expression) vectors. Consider for example the task of estimating the components of the ma-
trix representing an intransitive verb, that maps subject vectors to (subject-verb) sentence
vectors (Baroni and Zamparelli discuss the analogous adjective-noun composition case):

−→s = V ×
−−−→
sub j

The weights of the matrix are estimated by least-squares regression from example pairs of
input subject and output sentence vectors directly extracted from the corpus. For example,
the matrix for sing is estimated from corpus-extracted vectors representing pairs such as
(mom, mom sings), (child, child sings), etc. Note that if the input and output vectors are
n dimensional, we must estimate an n × n matrix, each row corresponding to a separate
regression problem (the i-th row vector of the estimated matrix will provide the weights to
linearly combine the input vector components to predict the i-th output vector component).
Regression is a supervised technique requiring training data. However, as we are extract-
ing the training data automatically from the corpus, this approach does not incur an extra
knowledge cost with respect to unsupervised methods.

Learning tensors of higher order by linear regression involves iterative application of the
linear regression learning method described above. The idea is to progressively learn the
functions of arity two or higher encoded by such tensors by recursively learning the partial
application of these functions, thereby reducing the problem to the same matrix-learning
problem as addressed by Baroni and Zamparelli. To start with an example: the matrix-by-
vector operation of [5] is a special case of the general tensor-based function application
model we are proposing, where a ‘mono-argumental’ function (intransitive verbs) corre-
sponds to a order 2 tensor (a matrix). The approach is naturally extended to bi-argumental
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functions, such as transitive verbs, where the verb will be a order 3 tensor to be multiplied
first by the object vector and then by the subject, to return a sentence-representing vector:

−→s = V ×
−−→
ob j ×

−−−→
sub j

The first multiplication of a n × n × n tensor by a n-dimensional vector will return a n-by-n
matrix (equivalent to an intransitive verb, as it should be: both sings and eats meat are
VPs requiring a subject to be saturated). Note that given n-dimensional input vectors, the
i j-th n-dimensional vector in the estimated tensor provides the weights to linearly combine
the input object vector components to predict the i j-th output component of the unsatu-
rated verb-object matrix. The matrix is then multiplied by the subject vector to obtain a
n-dimensional vector representing the sentence. Again, we estimate the tensor components
by linear regression on input-output examples. In the first stage, we apply linear regression
to obtain examples of semi-saturated matrices representing verb-object constructions with
a specific verb. These matrices are estimated, like in the intransitive case, from corpus-
extracted examples of (subject, subject-verb-object) pairs. After estimating a suitable num-
ber of such matrices for a variety of objects of the same verb, we use pairs of corpus-derived
object vectors and the corresponding estimated verb-object matrices as input-output pairs
for another regression, where we estimate the verb tensor components. The estimation pro-
cedure is schematically illustrated for eat in Fig. 7.2. We first estimate matrices for the
VPs eat-meat, eat-pie etc. by linear regression on input subject and output sentence vector
pairs. We then estimate the tensor for eat by linear regression with the matrices estimated
in the previous step as output examples, and the vectors for the corresponding objects as
input examples.

We can generalise this learning procedure to functions of arbitrary arity. Consider an n-
ary function f : X1 → . . . → Xn → Y . Let Li be the set of i-tuples {w j

1, . . . ,w
j
i }i∈[1,k], where

k = |Li|, corresponding to the words which saturate the first i arguments of f in a corpus.
For each tuple in some set Li, let f w j

1 . . . w j
i = f j

i : Xi+1 → . . . → Xn → Y . Trivially,
there is only one such f j

0 —namely f itself—since L0 = ∅ (as there are no arguments of
f to saturate for i = 0). The idea behind multi-step regression is to learn, at each step,
the tensors for functions f j

i by linear regression over the set of pairs (w j′

i+1, f j′

i+1), where the
tensors f j′

i+1 are the expected outcomes of applying f j
i to w j′

i+1 and are learned during the
previous step. We bootstrap this algorithm by learning the vectors in Y of the set { f j

n } j by
treating the word which each f j

n models combined with the words of its associated tuple
in Ln as a single token. We then learn the vector for this token from the corpus using our
preferred distributional semantics method. By recursively learning the sets of functions
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PIE
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cats.eat.meat

STEP 1: ESTIMATE VP MATRICES

STEP 2: ESTIMATE V TENSOR
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PIE

boys

girls

boys.eat.pie

girls.eat.pie

meat
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training example (output)

training example (input)

function to estimate

Figure 7.2: Estimating a tensor for eat in two steps.

from i = n down to 0, we obtain smaller and smaller sets of increasingly de-saturated
versions of f , which converge towards f0 = f .

To specify how the set of pairs used for recursion is determined, let there exist a function
super which takes the index of a tuple from Li and returns the set of indices from Li+1 which
denote tuples identical to the first tuple, excluding the last element:

super : N × N→ P(N) :: (i, j) 7→ { j′|∀ j′ ∈ [1, k′].[w j
1 = w j′

1 ∧ . . . ∧ w j
i = w j′

i ]} where k′ = |Li+1|

Using this function, the regression set for some f j
i can be defined as {(w j′

i+1, f j′

i+1)| j′ =

super(i, j)}.

7.2.2 Experiments

We evaluated tensors produced using this multi-step regression method against the datasets
presented in Chapter 6, producing three new sets of experimental results. In this section, I
will first report the model parameters initially described by Georgiana Dinu, before report-
ing the experimental results that show this new learning procedure to produce models that
perform competitively against other leading models.
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Source corpus We extract co-occurrence data from the concatenation of the Web-derived
ukWaC corpus2, a mid-2009 dump of the English Wikipedia 3 and the British National
Corpus 4. The corpus has been tokenised, POS-tagged and lemmatised with the TreeTagger
[71] and dependency-parsed with the MaltParser [43]. It contains about 2.8 billion tokens.

Co-occurrence extraction We collect vector representations for the top 8K most fre-
quent nouns and 4K verbs in the corpus, as well as for the subject-verb (320K) and subject-
verb-object (1.36M) phrases containing one of the verbs to be used in one of the experi-
ments below and subjects and objects from the list of top 8K nouns. For all target items,
we collect within-sentence co-occurrences with the top 10K most frequent content words
(nouns, verbs, adjectives and adverbs), save for a stop list of the 300 most frequent words.
We extract co-occurrence statistics at the lemma level, ignoring inflectional information.

Weighting Following standard practice, raw co-occurrence counts are transformed into
statistically weighted scores. We tested various weighting schemes of the semantic space
on a word similarity task. We used a subset of the MEN data-set [7] containing 2000 pairs
of words (present in our vocabulary) together with human-assigned similarity judgments
obtained through crowdsourcing. We observed that non-negative pointwise mutual infor-
mation (PMI) and local mutual information (raw frequency count multiplied by PMI score)
generally outperform other weighting schemes by a large margin, and that PMI in particular
works best when combined with dimensionality reduction by non-negative matrix factor-
ization (described below). Consequently, we pick PMI weighting for our experiments.

Dimensionality reduction Reducing co-occurrence vectors to lower dimensionality is a
common step in the construction of distributional semantic models. Extensive evidence
suggests that dimensionality reduction does not affect, and might even improve the quality
of lexical semantic vectors [55, 70, 72]. In our setting, dimensionality reduction is virtu-
ally a necessary step, since working with 10K-dimensional vectors is problematic for the
Regression approach, which requires learning matrices and tensors with dimensionalities
which are quadratic and cubic in the dimensionality of the input vectors, respectively.

We consider two dimensionality reduction methods, the Singular Value Decomposition
(SVD) and Non-negative Matrix Factorization (NMF). SVD is the most common tech-
nique in distributional semantics, and it was used by [5]. NMF is a less commonly adopted
method, but it has also been shown to be an effective dimensionality reduction technique for

2http://wacky.sslmit.unibo.it/
3http://en.wikipedia.org
4http://www.natcorp.ox.ac.uk/
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distributional semantics [24]. It has a fundamental advantage from our point of view: the
Multiply and Kronecker composition approaches, because of their multiplicative nature,
cannot be meaningfully applied to vectors containing negative values. NMF, unlike SVD,
produces non-negative vectors, and thus allows a fair comparison of all composition meth-
ods in the same reduced space. For this reason, we follow [5] in performing dimensionality
reduction to obtain 300-dimensional representations.

We perform the Singular Value Decomposition of the input matrix X: X = UΣV>

and, like Baroni and Zamparelli and many others, pick the first k = 300 columns of UΣ

to obtain reduced representations. Non-negative Matrix Factorization factorizes a (m × n)
non-negative matrix X into two (m × k) and (k × n) non-negative matrices: X ≈ WH (we
normalize the input matrix to

∑
i, j Xi j = 1 before applying NMF). We use the Matlab im-

plementation of the projected gradient algorithm5 proposed in [57], which minimizes the
squared error of Frobenius norm F(W,H) = ‖X −WH‖2F . We set k = 300 and we use W as
reduced representation of input matrix X. For both SVD and NMF, the latent dimensions
are computed using a “core” matrix containing nouns and verbs only, subsequently project-
ing phrase vectors onto the same space. In this way, the dimensions of the reduced space
do not depend on the ad-hoc choice of phrases required by our experiments.

By experimenting with the MEN data-set of word similarity judgments (see above), we
found that the performance using distributional semantic vectors from the original 10K-
dimensional space or from the two reduced spaces is very similar, confirming the hypoth-
esis that dimensionality reduction does not have a negative impact on the quality of distri-
butional word representations.

We evaluated this new learning procedure against other models of composition, most
of which were discussed in Chapter 6. Here are the ones we used in the new set of experi-
ments.

Verb is a baseline measuring the cosine between the verbs in two sentences as a proxy
for sentence similarity (e.g., similarity of mom sings and boy dances is approximated by
the cosine of sing and dance).

We adopt the widely used and generally successful multiplicative and additive models
of [64] and others. Composition with the Multiply and Add methods is achieved by, re-
spectively, component-wise multiplying and adding the vectors of the constituents of the
sentence we want to represent. Vectors are normalised before addition, as this has consis-
tently shown to improve the performance of additive models in earlier experiments run by
Baroni and his colleagues.

In §5.3.6, I proposed an alternative implementation of the general DisCoCat approach

5Available at http://www.csie.ntu.edu.tw/˜cjlin/nmf/.
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to compositional distributional semantics [19], namely Kronecker. Under this approach, a
transitive sentence is a matrix S derived from:

S = (−→v ⊗ −→v ) � (
−−−→
sub j ⊗

−−→
ob j)

That is, if nouns and verbs live in a n-dimensional space, a transitive sentence is a n × n

matrix given by the component-wise multiplication of two Kronecker products: that of the
verb vector with itself and that of the subject and object vectors. I showed, in §6.2, that
this method outperforms other implementations of the same formalism and is the current
state of the art on the transitive sentence task, which we also tackle below. For intransitive
sentences, the same approach reduces to the component-wise multiplication of verb and
subject vectors, that is, to the Multiply method.

Training of nouns and verbs under the proposed (multi-step) Regression model is im-
plemented using Ridge Regression (RR) [45]. RR, also known as L2 regularized regression,
is a different approach from the Partial Least Square Regression (PLSR) method that was
used in previous related work [5, 42] to deal with the multicollinearity problem. When
multicollinearity exists, the matrix X>X (X here is the input matrix after dimensionality
reduction) becomes nearly singular and the diagonal elements of (X>X)−1 become quite
large, which makes the variance of weights too large. In RR, a positive constant λ is added
to the diagonal elements of X>X to strengthen its non-singularity. Compared with PLSR,
RR has a simpler solution for the learned weight matrix B = (X>X + λI)−1X>Y and pro-
duces competitive results at a faster speed. For each verb matrix or tensor to be learned, we
tuned the parameter λ by generalized cross-validation [32]. The objective function used for
tuning minimizes least square error when predicting corpus-observed sentence vectors or
intermediate VP matrices; the data sets we evaluate the models on are not touched during
tuning.

The training examples for Regression are constructed by combining the 8K nouns we
have vectors for with any verb in the evaluation sets into subject-verb-(object) construc-
tions, and extracting the corresponding vectors from the corpus, where attested (vectors are
normalised before feeding them to the regression routine). We use only example vectors
with at least 10 dimensions with non-zero basis weights before dimensionality reduction,
and we require at least 3 training examples per regression. For the first experiment (in-
transitives), these (untuned) constraints result in an average of 281 training examples per
verb. In the second experiment, in the verb-object matrix estimation phase, we estimate on
average 324 distinct matrices per verb, with an average of 15 training examples per ma-
trix. In the verb tensor estimation phase we use all relevant verb-object matrices as training
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examples.

Experimental Results We present the results for two experiments testing our set of mod-
els in Table 7.1. ‘Humans’ is inter-annotator correlation. The multiplication-based Multi-
ply and Kronecker methods are not well-suited for the SVD space and their performance
is reported in NMF space only. ‘Kronecker’ is only defined for the transitive case, with
‘Multiply’ functioning as its intransitive-case equivalent.

We first tested our set of models against the intransitive verb dataset presented in §6.2, to
verify that the regression approach developed for adjectives worked suitably for intransitive
verbs as well. The results in Table 7.1(a) show that the Regression-based model achieves
the best correlation when applied to SVD space, confirming that the approach proposed by
Baroni and Zamparelli for adjective-noun constructions can be straightforwardly extended
to composition of a verb with its subject with good empirical results. The Regression
model also achieves good performance in NMF space, where it is comparable to Multiply.
Multiply was found to be the best model by Mitchell and Lapata, and we confirm their
results here (recall that Multiply can also be seen as the natural extension of Kronecker to
the intransitive setting). The correlations attained by Add and Verb are considerably lower
than those of the other methods.

(a) Intransitive Sentences

method ρ

Humans 0.40
Multiply.nmf 0.19
Regression.nmf 0.18
Add.nmf 0.13
Verb.nmf 0.08
Regression.svd 0.23
Add.svd 0.11
Verb.svd 0.06

(b) Transitive Sentences

method ρ

Humans 0.62
Regression.nmf 0.29
Kronecker.nmf 0.25
Multiply.nmf 0.23
Add.nmf 0.07
Verb.nmf 0.04
Regression.svd 0.32
Add.svd 0.12
Verb.svd 0.08

Table 7.1: Spearman correlation of composition methods with human similarity intuitions
on two sentence similarity data sets (all correlations significantly above chance).

We then applied our regression method to the task of learning transitive verbs from a
corpus, and tested these representations against the transitive verb dataset presented in §6.2.
As the results in Table 7.1(b) show, the Regression model performs very well again, better
than any other methods in NMF space, and with a further improvement when SVD is used,
similarly to the first experiment. The Kronecker model is also competitive, confirming the
results from §6.2. Neither Add nor Verb achieve very good results, although even for them
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the correlation with human ratings is significant.

7.2.3 Discussion

The results presented in the previous section show that our iterative linear regression al-
gorithm outperforms the leading multiplicative method on intransitive sentence similarity
when using SVD (and it is on par with it when using NMF), and outperforms both the
multiplicative method and the leading Kronecker model in predicting transitive sentence
similarity.

Here again, we saw that Kronecker also performs very well in our modified experi-
mental setup (although not as well as Regression). The main advantage of Kronecker over
Regression lies in its simplicity: there is no training involved, all it takes is two vector outer
products and a component-wise multiplication.

While our new regression-based model’s estimation procedure is considerably more
involved than for Kronecker, the model has much to recommend it, both from a statistical
and from a linguistic point of view. On the statistical side, there are many aspects of
the estimation routine that could be tuned on automatically collected training data, thus
bringing up the Regression model performance. We could, for example, harvest a larger
number of training phrases (not limiting them to those that contain nouns from the 8K most
frequent in the corpus, as we did), or vice versa limit training to more frequent phrases,
whose vectors are presumably of better quality. Moreover, Ridge Regression is only one
of many estimation techniques that could be tried to come up with better matrix and tensor
weights.

On the linguistic side, the model is clearly motivated as an instantiation of the vector-
space “dual” of classic composition by function application via the tensor contraction op-
eration, as discussed earlier in this chapter. Moreover, Regression produces vectors of the
same dimensionality for sentences formed with intransitive and transitive verbs, whereas
for Kronecker, if the former are n-dimensional vectors, the second are n×n matrices. Thus,
under Kronecker composition, sentences with intransitive and transitive verbs are not di-
rectly comparable, which is counter-intuitive (being able to measure the similarity of, say,
kids sing and kids sing songs is both natural and practically useful).

135



7.3 Further Syntactic Extensions: Combinatory Catego-
rial Grammar

In Chapter 4, I discussed procedures for extending the DisCoCat framework to work with
other grammatical formalisms, and showed how Context Free Grammars and Lambek
Grammars could be included into the formalism in such a way. In this section, I sketch the
foundations for extending DisCoCat to work with a more powerful grammatical formal-
ism called Combinatory Categorial Grammar, a weakly context sensitive grammar which
is widely used and comes with efficient parsing tools such as the C&C parser of [22]. I
show that at least some aspects of the grammar can be given categorical semantics, and
briefly discuss aspects which should be the subject of future work, should we wish to fully
integrate variants of CCG into the DisCoCat formalism.

7.3.1 Combinatory Categorial Grammar

Combinatory Categorial Grammars (CCGs) are very similar in spirit—and notation—to
Lambek Grammar, discussed in §4.3. They are categorial, in that every word in a natu-
ral language belongs to one or more syntactic categories; and they are combinatorial in
that syntactic categories act as functions which combine to produce syntactical analyses of
phrases. Because I also talk about category theory, I will talk of CCG types instead of CCG
categories to avoid confusion.

CCG types are generally defined recursively as follows:

• Let there be a set of atomic types N, S , etc.

• A\C B is a type if A and B are types.

• A/B is a type if A and B are types.

This completes the type definition. So far, it is very similar to the type definition for Lam-
bek Grammar. However, the backslash \C has a slightly different meaning than the back-
slash \L used for Lambek grammars, as will become clear below. Generally speaking the
two notations can be used interchangeably if the combination operations are rewritten ap-
propriately: A\LB is equivalent to writing B\CA, and vice-versa. These are merely two
different notational conventions used in categorial grammars.

CCGs come equipped with a set of reduction rules. The principal ones surveyed by
[30], are as follows:
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• Application:

X/Y, Y → X

Y, X\CY → X

• Composition:

X/Y, Y/Z → X/Z

Y\CZ, X\CY → X\CZ

• Type raising:

X → T/(T\CX)

X → T\C(T/X)

So far, these rules are almost exactly similar to the combination rules for Lambek Grammar
presented in §4.3, with the difference that · operations become commas and the expressions
of the form X\LY are turned into Y\CX in the rules.

Two sets of rules which are not found in Lambek Grammar are the following:

• Crossed composition:

X/Y, Y\CZ → X\CZ

Y/Z, X\CY → X/Z

• Substitution:

(X/Y)/Z, Y/Z → X/Z

(X/Y)\CZ, Y\CZ → X\CZ

Y/Z, (X\CY)/Z → X/Z

Y\CZ, (X\CY)\CZ → X\CZ

Additionally, both composition and crossed composition have a generalised form which
allows the rule to be applied when Z is not an atomic type.

These rules are used to perform grammatical analysis of sentences as follows: if there
is some type-assignment for each word in the sentence such that the sequence of types
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assigned to the sentence reduces to some sentence type S through the combinatorial rules
described above, then the sentence is grammatical.

There are many additional rules, restrictions and modifications of the above that are
available to generate CCGs with certain properties. For example, CCGs are generally
mildly-context sensitive [84], meaning that they can identify or generate sentence struc-
tures which context free grammars such as CFGs, LGs or pregroup grammars could not.
However, with certain rule restrictions such as removing the unrestricted type raising rule
described above, it can be shown [30] that some CCGs are in fact context free.

7.3.2 Categorical Semantics for CCGs

I now turn to the task of trying to represent CCGs as categories. This section will provide
foundations for this task and discuss some of the issues faced. It does not aim to provide a
complete solution, leaving this for future work.

In §4.3.2, we saw that Lambek Grammars could be viewed as bi-closed monoidal cate-
gories. Since CCGs and LGs have some very similar combination rules, let us first consider
how far bi-closed monoidal categories get us.

We begin by assuming that the categorical representation CCG of a CCG is a bi-closed
monoidal category, with the following objects:

• For each atomic type A in the CCG there is some object A in ob(CCG).

• For each type of the form A/B in the CCG there is some object A � B in ob(CCG),
where A and B are in ob(CCG).

• For each type of the form A\C B in the CCG there is some object B( A in ob(CCG),
where A and B are in ob(CCG).

• For each sequence of types A, B permitted by the CCG, there is an object A ⊗ B in
ob(CCG), where A and B are in ob(CCG).

So far, this is effectively the same set of objects as one would expect to find in the cat-
egorical representation LG of a Lambek Grammar. The same goes for the first set of
combination operations. As a reminder, the biclosed category has the following general
morphisms for any A, B and C in ob(CCG):

• evl
A,B : A ⊗ (A( B)→ B

• evr
A,B : (A � B) ⊗ B→ A
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• Λl( f ) : C → A( B for any f : A ⊗C → B

• Λr(g) : C → A � B for any g : C ⊗ B→ A

Using these we can define the first set of composition operations categorically, as was done
in §4.3.2:

• Application operations are simply the evaluation morphisms.

• Composition: for any pair of objects A ( B and B ( C in the category, there is a
morphism

compr
A(B,B(C : (A( B) ⊗ (B( C)→ A( C

Likewise, for any pair of objects A � B and B � C in the category, there is a
morphism

compl
A�B,B�C : (A � B) ⊗ (B � C)→ A � C

• Type raising morphisms raisel
A,B and raiser

A,B are just the right and left currying of
the left and right evaluation morphisms:

– raisel
A,B = Λr(evl

A,B) : A→ B � (A( B)

– raiser
A,B = Λl(evr

B,A) : A→ (B � A)( B

Note that the composition morphisms make no assumptions about the structure of C in
the first case and A in the second, thereby representing both composition and generalised
composition at the same time. The diagrams for these operations are shown in Figures 4.3–
4.7 of Chapter 4.

So far, it seems like bi-closed monoidal categories are a suitable categorical representa-
tion for CCGs. However, a problem comes up when we consider crossed composition and
substitution, which have the following forms:

crossr
A,B,C : (A � B) ⊗ (C ( B)→ C ( A

crossl
A,B,C : (B � C) ⊗ (B( A)→ A � C

lsubl
A,B,C : ((A � B) � C) ⊗ (B � C)→ A � C

lsubr
A,B,C : (C ( (A � B)) ⊗ (C ( B)→ C ( B

rsubl
A,B,C : (B � C) ⊗ ((A( B) � C)→ A � C

rsubr
A,B,C : (C ( B) ⊗ (C ( (A( B))→ C ( A
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It should be fairly clear from the domain and codomains of these morphisms that bi-closed
monoidal categories will most likely not support these operations using just the evaluation
and currying morphisms provided above. This becomes especially clear when we con-
sider the simple diagrammatic form of these morphisms, shown in Figure 7.3 for the cross

morphisms, and in Figures 7.4 and 7.5 for the lsub and rsub morphisms, respectively.

A B C B

crossr
A,B,C

C A

B C B A

crossl
A,B,C

A C

Figure 7.3: Simple diagrammatic form of cross morphisms.

A B

C B C

lsubl
A,B,C

A C

A B

C BC

lsubr
A,B,C

AC

Figure 7.4: Simple diagrammatic form of lsub morphisms.

For the cross morphisms in Figure 7.3 we can see that within the internal structure of
the morphisms, there must be some point where the wires for B and the wire for C cross
over each other in order for the two B wires to form a cup, which is not possible in a
bi-closed monoidal category. For the substitutions morphisms in Figures 7.4 and 7.5, the
problem is a little more subtle: not only must wires cross for the B wires to form a cup, but
there are two C wires as input and only one as output. This means that there must be some
mechanism within the morphism that takes two wires bearing the same letter and direction,
and produces one wire bearing the same letter and direction as the other two.

Let us begin by addressing the issue of crossing wires: we modify our hypothesis about
the categorical structure of CCG to state that it is a closed monoidal category. Typically
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AB

CB C

rsubl
A,B,C

A C

AB

CBC

rsubr
A,B,C

AC

Figure 7.5: Simple diagrammatic form of rsub morphisms.

A B

lswapA,B

AB

=

A B

AB

AB

rswapA,B

A B

=

AB

A B

Figure 7.6: Diagrams for lswap and rswap morphisms.

a closed monoidal category is defined identically to a bi-closed monoidal category, except
for the fact that instead of the pair of objects A ( B and B � A for each A and B in the
category, there is a single object A ( B which satisfies A ⊗ (A ( B) � (A ( B) ⊗ A � B.
In short, A ( B in the closed monoidal category acts like both A ( B and B � A in a
bi-closed monoidal category. Here, we will modify our categorical definition explicitly to
turn the bi-closed category into a closed category by adding the following morphisms for
each A and B:

lswapA,B : A( B→ B � A rswapA,B : B � A→ A( B

such that rswapA,B ◦ lswapA,B = idA(B and lswapA,B ◦ rswapA,B = idB�A (i.e. lswap and
rswap morphisms are isomorphisms). We give these morphisms the diagrammatic repre-
sentation shown in Figure 7.6. Using these morphisms, we can diagrammatically show the
inner structure for the cross morphisms initially shown in Figure 7.3, as demonstrated in
Figure 7.7.

To deal with the substitution morphisms, I suggest borrowing a particular map from
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A B C B

C A

B C B A

CA

Figure 7.7: Expanded diagrammatic form of cross morphisms.

Frobenius Algebras represented in categories as done in [49], defined as follows for any
object A in our category:

µA : A ⊗ A→ A

This map effectively works like a cup, cancelling out some of the information provided as
input, but instead of completely eliminating the input information, it preserves some of it
and outputs it. Diagrammatically, it is represented as shown in Figure 7.8. Using this mor-
phism, we can diagrammatically show the inner structure for the substitution morphisms
initially shown in Figures 7.4 and 7.5, as demonstrated in Figures 7.9 and 7.10.

A A

µA

A

=

A A

A

Figure 7.8: Diagrammatic representation of µ morphisms.

So to summarise what we have seen here, I hypothesise that closed monoidal categories
with an additional set of µ morphisms model those composition operations in CCGs which
we discussed here. I say ‘hypothesise’ for two reasons. Firstly, because the inner structure
of the cross composition and substitution morphisms presented here is obtained through
‘diagrammatic reverse-engineering’, rather than through any real appeal to the algebraic
structure of CCGs (as there is not a tidy definition of this structure, especially compared
to Pregroup Grammars or Lambek Grammars). As such, future work should seek to de-
termine whether or not the inner structure of these morphisms presented here makes sense
from an algebraic—or indeed a linguistic—standpoint to confirm or reject this hypothesis.
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A B

C B C

A C

A B

C BC

AC

Figure 7.9: Expanded diagrammatic form of lsub morphisms.

Secondly, this is a hypothesis because it does not fully capture all the variants of CCGs
present in the literature. Earlier in this section, I talked about optional restrictions placed
on rules such as composition and cross composition. Other work in the CCG literature
(e.g. [4]) goes further in suggesting that the slashes should be augmented with composi-
tional modalities, and that restrictions should apply to most rules based on the modalities
of the slashes involved. For both cases, there is no obvious way of modelling restrictions
in closed monoidal categories. I leave it to further work to determine whether or not this
matters, and if so, how these aspects of CCG can be incorporated into our categorical dis-
course.

An additional topic for further work on this subject would be to check that no issues
arise from the introduction of swap morphisms into this category. In [81, 82], van Ben-
them shows that associative and commutative extensions of the Lambek calculus under-
lying Lambek grammar recognises/generates all permutation closures of context-free lan-
guages, which makes it unsuitable for syntactic analysis. In practical terms, this means
that the grammar will overgenerate, recognising sentences as grammatical which are not
meant to be recognised as such. This ‘overgenerative’ property also holds for the categori-
cal representation of CCG presented above, for the case of unrestricted cross-composition
morphisms. Insofar as this is an issue for CCG as a whole, rather than the categorical rep-
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AB

CB C

A C

AB

CBC

AC

Figure 7.10: Expanded diagrammatic form of rsub morphisms.

resentation, I will consider this outside of the scope of this thesis. However, this strongly
supports the case for further investigation of how to include rule restrictions into the cate-
gorical representation of CCGs.

7.3.3 Defining a Functor

To complete this section, I will briefly present how a functorial passage from the closed
monoidal category CCG defined here to the category of vector spaces FVect can be defined.
Because of the similarity between LG and CCG, we can re-use substantial parts of the work
presented in §4.3.3 here.

Let F be a functor between CCG and FVect. We begin by assigning each atomic type
A in the CCG to a vector space V = F(A). We then define the compound objects as was
done in LG:

F(A ⊗ B) = F(A) ⊗ F(B)

F(A( B) = F(A) ⊗ F(B)

F(A � B) = F(A) ⊗ F(B)
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The functors mapping those composition operations in CCGs that are also in LGs are ex-
actly as defined for the case of a functor between LG and FVect, and are as follows:

F(evl
A,B) = εF(A) ⊗ 1F(B) : F(A) ⊗ F(A) ⊗ F(B)→ F(B)

F(evr
A,B) = 1F(B) ⊗ εF(A) : F(B) ⊗ F(A) ⊗ F(A)→ F(B)

F(compr
A,B,C) = 1F(A) ⊗ εF(B) ⊗ 1F(C) : F(A) ⊗ F(B) ⊗ F(B) ⊗ F(C)→ F(A) ⊗ F(C)

F(compl
A,B,C) = 1F(A) ⊗ εF(B) ⊗ 1F(C) : F(A) ⊗ F(B) ⊗ F(B) ⊗ F(C)→ F(A) ⊗ F(C)

F(raisel
A,B) = (ηF(B) ⊗ 1F(A)) : F(A)→ F(B) ⊗ F(B) ⊗ F(A)

F(raiser
A,B) = (1F(A) ⊗ ηF(B)) : F(A)→ F(A) ⊗ F(B) ⊗ F(B)

This leaves us only with the task of defining a functorial passage for the cross composition
and substitution morphisms. We begin with the internal structure of the cross composition
morphisms, which we can read from the diagrams:

F(crossr
A,B,C) = F(compl

A,B,C ◦ (1A�B ⊗ lswapA,B))

= (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (1F(A) ⊗ 1F(B) ⊗ F(lswapA,B))

F(crossl
A,B,C) = F(compr

A,B,C ◦ (rswapA,B) ⊗ 1B(A)

= (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (F(rswapA,B) ⊗ 1F(A) ⊗ 1F(B))

We know how the functorial passage for every element of the above expressions above is
defined, except for the swap morphisms. To complete the functorial passage for the cross
composition morphisms, we must therefore describe what the swap morphisms correspond
to in FVect. As FVect is a symmetric monoidal category, there is an isomorphism swapA,B

for all objects A and B in ob(FVect) defined as follows:

swapA,B : A ⊗ B→ B ⊗ A

This is the obvious target for the swap morphisms in CCG, and hence:

F(lswapA,B) = F(rswapA,B) = swapF(A),F(B)

Linear algebraically, this morphism of FVect corresponds to the permutation of tensor in-
dices. The simplest and most intuitive case to illustrate this is that of applying swap(A, B)
to a matrix in A ⊗ B, which yields a matrix in B ⊗ A which is the transpose of the original
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matrix.
So we can rewrite the functorial definition for the cross composition morphisms as

follows:

F(crossr
A,B,C) = (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (1F(A) ⊗ 1F(B) ⊗ swapF(A),F(B))

F(crossl
A,B,C) = (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (swapF(A),F(B) ⊗ 1F(A) ⊗ 1F(B))

With this in mind, we turn to the functorial passage for substitution morphisms. First
for the lsub morphisms:

F(lsubl
A,B,C) = F(compl

A,B,C ◦ (1A�B ⊗ lswapB,C) ◦ (1A�B ⊗ µC ⊗ 1B)

◦ (1(A�B)�C ⊗ rswapB,C))

= (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (1F(A) ⊗ 1F(B) ⊗ swapF(A),F(B))

◦ (1F(A) ⊗ 1F(B) ⊗ F(µA) ⊗ 1F(B)) ◦ (1F(A) ⊗ 1F(B) ⊗ 1F(C) ⊗ swapF(B),F(C))

F(lsubr
A,B,C) = F(rswapA,C ◦ compl

A,B,C ◦ (1A�B ⊗ lswapB,C) ◦ (1A�B ⊗ µC ⊗ 1B)

◦ (lswapA�B,C ⊗ 1C(B))

= swapF(A),F(C) ◦ (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (1F(A) ⊗ 1F(B) ⊗ F(µC) ⊗ 1F(B))

◦ (swapF(A)⊗F(B),F(C) ⊗ 1F(C) ⊗ 1F(B))

Next, for the rsub morphisms:

F(rsubl
A,B,C) = F(lswapA,C ◦ compr

C,B,A ◦ (rswapC,B ⊗ 1B(A) ◦ (1B ⊗ µC ⊗ 1B(A)

◦ (1B�C ⊗ rswapC,B(A))

= swapF(A),F(C) ◦ (1F(C) ⊗ εF(B) ⊗ 1F(A)) ◦ (swapF(C),F(B) ⊗ 1F(B) ⊗ 1F(A))

◦ (1F(B) ⊗ F(µC) ⊗ 1F(B) ⊗ 1F(A)) ◦ (1F(B) ⊗ 1FC ⊗ swapF(C),F(B)⊗F(A))

F(rsubr
A,B,C) = F(compr

C,B,A ◦ (rswapC,B ⊗ 1B(A) ◦ (1B ⊗ µC ⊗ 1B(A)

◦ (lswapB,C ⊗ 1C((B(A)))

= (1F(C) ⊗ εF(B) ⊗ 1F(A)) ◦ (swapF(C),F(B) ⊗ 1F(B) ⊗ 1F(A))

◦ (1F(B) ⊗ F(µC) ⊗ 1F(B) ⊗ 1F(A)) ◦ (swapF(B),F(C) ⊗ 1F(C) ⊗ 1F(B) ⊗ 1F(A))

The remaining unknown here is now the functorial passage for µ maps. An interpretation
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of such a Frobenius operation is provided in [49], and should suit our needs. In FVect there
are morphisms µA for any object A, defined as follows:

µA : A ⊗ A→ A :: −→v ⊗ −→w 7→ −→v � −→w

So we can define the functorial passage for µ maps in hom(CCG) as follows:

F(µA) = µF(A)

Using this, we can rewrite the functorial passage for lswap morphisms as follows:

F(lsubl
A,B,C) = (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (1F(A) ⊗ 1F(B) ⊗ swapF(A),F(B))

◦ (1F(A) ⊗ 1F(B) ⊗ µF(A) ⊗ 1F(B)) ◦ (1F(A) ⊗ 1F(B) ⊗ 1F(C) ⊗ swapF(B),F(C))

F(lsubr
A,B,C) = swapF(A),F(C) ◦ (1F(A) ⊗ εF(B) ⊗ 1F(C)) ◦ (1F(A) ⊗ 1F(B) ⊗ µF(C) ⊗ 1F(B))

◦ (swapF(A)⊗F(B),F(C) ⊗ 1F(C) ⊗ 1F(B))

And the functorial passage for rswap morphisms as follows:

F(rsubl
A,B,C) = swapF(A),F(C) ◦ (1F(C) ⊗ εF(B) ⊗ 1F(A)) ◦ (swapF(C),F(B) ⊗ 1F(B) ⊗ 1F(A))

◦ (1F(B) ⊗ µF(C) ⊗ 1F(B) ⊗ 1F(A)) ◦ (1F(B) ⊗ 1FC ⊗ swapF(C),F(B)⊗F(A))

F(rsubr
A,B,C) = (1F(C) ⊗ εF(B) ⊗ 1F(A)) ◦ (swapF(C),F(B) ⊗ 1F(B) ⊗ 1F(A))

◦ (1F(B) ⊗ µF(C) ⊗ 1F(B) ⊗ 1F(A)) ◦ (swapF(B),F(C) ⊗ 1F(C) ⊗ 1F(B) ⊗ 1F(A))

This completes the functor definition, and this section.

7.4 Next Steps

Throughout this chapter, we have seen three areas in which further progress has been estab-
lished based on the foundations provided by the earlier parts of this thesis. First, I discussed
the difficulties behind integrating logical aspects of natural language into the framework,
and the problems that arise from our reliance on multilinear maps within the DisCoCat
compositional formalism. Second, I discussed ways in which machine learning methods
could be integrated into the framework to replace or supplement the learning methods I
had initially developed with Mehrnoosh Sardzadeh. Third, I discussed how grammatical
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formalisms with a more complex structure than those previously examined, and with differ-
ent linguistic and grammatical properties, could possibly be integrated into the DisCoCat
formalism. To conclude this chapter, I offer some thoughts on how these three areas can
form the foundations for future work, and what issues other researchers in the field may
wish to examine.

In §7.1, I showed how aspects of formal semantics and predicate logic could be simu-
lated within a tensor-based compositional framework. In some cases, such as logical con-
nectives, the possibility of modelling operations using multilinear maps depended on the
shape of the sentence space. While I showed that some sentence spaces (e.g. S = B2) did
allow multilinear maps to model connectives, it was not obvious how quantification could
be modelled without appealing to non-linear maps. Researchers wishing to develop this
aspect of the DisCoCat framework would therefore do well to consider how this obstacle
may be surpassed using categorical logic, or by changing the semantic model from FVect
to some other form of semantic representation which would naturally allow the integration
of non-linearity into the formalism.

A related problem is that of how to model logical operations in non-truth-theoretic
semantic representations, such as those developed in Chapter 5. While I have no specific
suggestions concerning where to begin addressing this problem, it should be fairly clear
from my attempt to simulate predicate logic that the nature and structure of the sentence
space S will crucially affect the nature of logical operations. It is possible to simulate
predicate logic precisely because we can interpret basis elements of the sentence space as
truth values; therefore when considering how logical connectives and quantification would
operate over other kinds of values, we must first consider how to interpret the elements of
the sentence space in linguistically or logically sensible ways. Arguably, what is lacking in
our current non-truth-theoretic models is such an interpretation, and therefore researchers
interested in further developing this topic may wish to begin by re-thinking what, precisely,
it is that we are representing in our sentence vectors.

In §7.2, I discussed joint work performed with Georgiana Dinu, Yao-Zhong Zhang,
Mehrnoosh Sadrzadeh and Marco Baroni, in which we showed that sophisticated machine
learning methods could be adapted to learn the semantic representations used in the Dis-
CoCat framework from data. As a by-product, this approach also addressed the problem
present in the approach presented in Chapter 5 whereby sentences with verbs of different
valency as their head would reside in different sentence spaces. Continuing to develop a
data-driven machine-learning approach to learning semantic representations should consti-
tute an important future research direction for this formalism, as we move away from the
task of simply evaluating it against simple experiments, and towards the task of applying
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it to concrete problems such as machine translation evaluation and machine translation it-
self, paraphrase detection, information retrieval, sentiment analysis, or any other text-based
problems which would benefit from including deeper semantic knowledge into solutions,
as is being done in a variety of work produced since the writing of this thesis (e.g. [46, 76]).

Finally, in §7.3, I laid down foundations for integrating CCGs into the DisCoCat for-
malism, with the hope that fully integrating variants of CCGs into the formalism will be
taken up as a subject for further work. This is not only useful because of the powerful pars-
ing tools available for this grammatical formalism, but also for the rich linguistic aspects
(cf. [78]) underlying this class of grammars. One of the main benefits of the categorical
approach behind DisCoCat is that it allows information to pass between syntactic and se-
mantic structures. Investigating how to exploit the expressive nature of CCGs to represent
more sophisticated linguistic phenomena in our semantic models should be both interesting
and help give us a better idea about exactly what semantic properties we are modelling, and
how our semantic representations may need to evolve to cater to the linguistic properties
CCGs address.
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Chapter 8

Conclusions

To conclude this thesis, let me begin by summarising the work presented throughout this
document. In Chapter 2, I provided a critical overview of the some attempts, new and old,
to address the problem of compositionality in distributional models of semantics. We ob-
served a tension between the need to produce tractable representations which could easily
be learned and compared, and the need to integrate syntactic, relational, or knowledge-
based information into both our semantic representations and our compositional process.

In Chapter 3, I reported a recent effort to produce a general framework, DisCoCat,
within which syntax and semantics are put into relation in order to produce compositional
distributional models of semantics that would take grammatical structure into account both
in the semantic representation of words, and into how they are composed to produce rep-
resentations of sentences. This established the foundation on which the rest of the thesis
was built, with the goal of showing that this framework could indeed produce high quality,
learnable models of compositional distributional semantics.

In Chapter 4, I presented various syntactic extensions to the DisCoCat framework, al-
lowing us to use a wider variety of grammatical formalisms as part of the creation of com-
positional distributional models of semantics. I also described a procedure by which gram-
matical formalisms not described in this document could be integrated into the framework,
by giving them a categorical representation and defining a functorial passage between such
a representation and the categorical representation of whichever semantic model we choose
to use.

In Chapter 5, I presented a learning procedure for the production of semantic represen-
tations to be used within the DisCoCat formalism. This procedure allows us to develop
concrete models from the abstract framework. I also discussed a reduced representation
for semantic objects used in such models, which allows us to efficiently compute sentence
representations. Finally, I introduced a variant on this learning procedure for reduced rep-
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resentations, based on the Kronecker product of lexical vectors, and showed that reduced
representations can generally be viewed as embedded within the full representation of se-
mantic relations, leading to a reduction in computational complexity without modifying the
mathematical nature of composition operations.

In Chapter 6, I evaluated the concrete models from the previous chapter in the context
of three phrase similarity detection experiments, against other leading models discussed
earlier in the thesis. I showed that the models produced by the DisCoCat framework match
or outperform competing models, and that the difference between DisCoCat models and
rivals grows with the complexity of the sentences used in the experiments.

In Chapter 7, I presented three further extensions to the work done in the rest of the
thesis. I discussed options for integrating logical operations into distributional composi-
tional semantic models, and outlined the difficulties and obstacles faced by the DisCoCat
framework in trying to accommodate such operations. I presented a new machine learning
algorithm developed with colleagues, which improved upon certain aspects of the learning
procedures presented earlier in this thesis. I also discussed foundations for the inclusion
of Combinatory Categorial Grammars into the DisCoCat framework, and surveyed some
of the difficulties faced by trying to fully integrate all variants of such grammars into our
categorical formalism. I concluded the chapter by providing suggestions as to future direc-
tions research on the topic of categorical compositional distributional models of semantics
might take.

Throughout this thesis, I have shown that the DisCoCat framework is not a theoretical
toy example of how category theory can be applied to problems in linguistics. Indeed, not
only can learning procedures be developed to generate concrete models from it, but the cat-
egory theoretic aspects themselves provide powerful tools when it comes to the expansion
of the framework itself. I discussed how such expansions could take place in the form of
integrating new syntactic formalisms into the framework, but also suggested that the cat-
egorical properties of the framework may provide ways to surpass the limitations of our
semantic representations when it comes to modelling logical aspects of language. In dis-
cussing both its potential for expansion and showing its ability to admit machine-learning-
inspired learning algorithms, I hope to have demonstrated that the categorical approach to
linguistics walks the path between theory and practice. On these grounds, I am convinced
that it will constitute an important and fascinating area for future research, as others have
already noted [47].
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[18] B. Coecke and É.O. Paquette. Categories for the practising physicist. Arxiv preprint
arXiv:0905.3010, 2009.

[19] B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical Foundations for a Composi-
tional Distributional Model of Meaning. March 2010.

[20] J. Curran, S. Clark, and J. Bos. Linguistically motivated large-scale nlp with c&c and
boxer. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
pages 33–36, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[21] J. R. Curran. From distributional to semantic similarity. PhD thesis, 2004.

[22] J.R. Curran, S. Clark, and J. Bos. Linguistically motivated large-scale nlp with c&c
and boxer. In Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, pages 33–36. Association for Computational Lin-
guistics, 2007.

[23] J. Dean and S. Ghemawat. MapReduce:simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[24] G. Dinu and M. Lapata. Measuring distributional similarity in context. In Proceedings
of EMNLP, pages 1162–1172, Cambridge, MA, 2010.

[25] J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

154
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