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Abstract

We compare tractable classes of constraint satisfaction problems (CSPs). We first give a uniform
presentation of the major structural CSP decomposition methods. We then introduce a new class of

tractable CSPs based on the concephyjiertree decompositiorecently developed in Database

Theory, and analyze the cost of solving CSPs having bounded hypertree-width. We provide a
framework for comparing parametric decomposition-based methods according to tractability criteria
and compare the most relevant methods. We show that the method of hypertree decomposition
dominates the others in the case of general CSPs (i.e., CSPs of unbounded arity). We also
make comparisons for the restricted case of binary CSPs. Finally, we consider the application of
decomposition methods to the dual graph of a hypergraph. In fact, this technique is often used to
exploit binary decomposition methods for nonbinary CSPs. However, even in this case, the hypertree-
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1. Introduction and summary of results

The efficient solution ofConstraint Satisfaction Problems (CSH&s been for many
years an important goal of Al research. Constraint satisfaction is a central issue of
problem solvingand has an impressive spectrum of applications [23]. A constraint
(S;, R;) consists of aconstraint scopeS;, i.e., a list of variables and an associated
constraint relation; containing the legal combinations of values. A CSP consists of a set
{(S1,71), (S2,r2), ..., (S4,rg)} Of constraints whose variables may overlap (for a precise
definition, see Section 2). A solution to a CSP consists a of an assignment of values to
all variables such that all constraints are simultaneously satisfiedoRynga CSP we
mean determining whether the problem has a solution at all (i.e., checkigrfistraint
satisfiability), and, if so, compute one solution.

Constraint satisfiability is equivalent to various database problems [4,7,18,21], e.qg.,
to the problem of conjunctive query containment [21], or to the problem of evaluating
Boolean conjunctive queriesver a relational database [22] (for a discussion of this and
other equivalent problems, see [15]). Actually, evaluating Boolean conjunctive queries,
and deciding constraint satisfaction can be also recast as the same fundamental algebraic
problem of deciding whether, given two finite relational structutesnd B, there exists a
homomorphisny : A — B [21].

Constraint satisfiability in its general form is well known to be NP-hard. Much effort
has been spent by both the Al and database communities to idénatifyable classes
of CSPs. Both communities have obtained deep and useful results in this direction. The
various successful approaches to obtain tractable CSP classes can be divided into two main
groups [23]:

e Tractability due to restricted structure. This includes all tractable classes of
CSPs that are identified solely on the base of the structure of the constraint scopes
{S1,..., 54}, independently of the actual constraint relations . ., r,.

e Tractability due to restricted constraint relations. This includes all classes that are
tractable due to particular properties of the constraint relatigns. , r, .

This paper deals with tractability due to restricted structure. There are several papers
proposing polynomially tractable classes of constraints based on different structural
properties of the constraint scopes. Usually, these properties can be formalized as graph-
theoretic properties of theonstraint graphin case of binary constraints, or of the
constraint hypergraphn the general case. The constraint hypergraph of a CSP is the
hypergraph whose vertices are the variables of the CSP and whose hyperedges are the
sets of all those variables which occur together in a constraint scope.

It is well known that CSPs withacyclic constraint hypergraphs are polynomially
solvable [7]. The known structural properties that lead to tractable CSP classes are all
(explicitly or implicitly) based on some generalization of acyclicity. In particular, each
method defines some conceptwatithwhich can be interpreted as a measure of cyclicity of
the underlying constraint (hyper)graph such that, for each fixed widih CSPs of width
bounded byk are solvable in polynomial time. There is a plethora of proposed methods
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based on various different measures of cyclicity, but little was known so far on the relative
strength of the different methods. A comparison of the main methods is called for.

In this paper we establish a framework for uniformly defining and comparing structural
CSP decomposition methods. Within this framework we compare the main methods that
have been published so far. In particular, we deal with the following methods (which are
reviewed in detail in Section 4): Cycle Cutset [7], Tree Clustering [9], Treewidth [24],
Hinge Decomposition [18,19], Hinge Decomposition with Tree Clustering [18], Cycle
Hypercutset, and Hypertree Decomposition [16].

We first point out that every considered CSP-decomposition methgives rise to an
infinite hierarchy of CSP classes:

cD,)cCD,2yc---CcC(D,i),---

such that the CSPs of each clas&D, k) are solvable in time bounded by a polynomial.
In particular, for each CSE belonging to clas€' (D, k) there exists @ecompositiorof
width < k, i.e., a data structure witnessing tfaican be transformed in polynomial time
into an equivalent acyclic CSP.

For each CSP-decomposition methbgdthe classC (D, k) is a tractable class of CSPs
because the following important tasks are tractable:

(1) Checking membership of a C&Pin C(D, k), and computing a corresponding CSP

decomposition focC.

(2) Solving the CSK. In turn, this task usually consists of the following two subtasks:

e Transforming C in polynomial time into an equivalent acyclic GSPand
e solvingC’ in polynomial time by using well-known algorithms.

In this paper we compare only those methods that are tractable in the above sense. In fact,
there are methods for solving CSPs, reported in the literature, for which only one of the
two tasks (1) and (2) above is tractable, while the other one is NP-hard. For instance, task
(1) is NP-complete for the method bbunded query decompositiodsfined by Chekuri
and Rajaraman [6] (see [16] for an NP-completeness proof), while task (2) is intractable
for an early method proposed by Freuder [10,11] (see Section 4 for an NP-completeness
proof).

For a pair of decomposition methody and D2, we define the following comparison
criteria:

e Generalization. D, generalized1 if there exists a constastsuch that, for each level

k,C(D1,k) C C(D2, k+39) holds. In practical terms, this means that whenever a class
C of constraints is tractable according to methlg, it is also tractable according

to D,. Moreover, the worst case runtime upper bound guaranteed by méhad
polynomially bounded by the worst case upper bound guaranteed by mBthod
more precisely, the overhead Db with respect toD; is at mostn®, wheren is the

size of the input CSP. Note that for all pairs of methods compared in this paper,
is at most 1. This means thtiiere is no significant loss of efficienayen replacing
methodD; with the more general methaddb.

e Beating. D, beatsD; if there exists an integdr such thatC (Do, k) is not contained

in classC (D1, m) for anym. Intuitively, this means that some classes of problems are
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tractable according t®, but not according td1. For such classes, usiny is thus
better than usind;.

e Strong generalization. D, strongly generalize® if Dy generalizesD; and D>
beats D1. This means thatD; is really the more powerful method, given that,
wheneverD; guarantees polynomial runtime for constraint solving, then @so
guarantees tractable constraint solving, but there are classes of constraints that can
be solved in polynomial time by using, but are not tractable according ¥ .

e Equivalence.D1 andD; areequivalenif D1 generalized, and D, generalized;.
Intuitively, this means that the methods are polynomial on the same classes of CSPs
and do not differ significantly from each other.

In this paper we completely classify all above-mentioned decomposition methods
according to these criteria. The result of the classification is given in Fig. 1. This figure,
in addition mentions another metho@d*) which is known to be equivalent to the tree-
clustering method [9].

An arrow from a method; to a methodD> in Fig. 1 indicates thab is strongly more
general thanD1. Since this relationship is transitive, also a directed path between two
methods indicates the same relationship. The pictucenspletan the sense that there is
a directed path from methafl; to methodD> if and only if D2 strongly generalize®;.

On the other hand, whenever two methods are not related by a directed path, then they are
incomparablewith respect to the generalization relation, and, moreover, each of the two
methods beats the other.

Fig. 1 shows that the method of Hypertree Decompositions dominates all other methods,
as it is strongly more general than the other decomposition methods. This method
was originally introduced in the database field for identifying a large class of tractable
conjunctive queries [16]. In this paper we adapt this notion to the setting of constraints and
we show that constraints of bounded hypertree-width are polynomially solvable, providing

[ Hypertree Decomposition }

PN

[ Hinge Decomposmon

Cycle Hypercutset
Tree Clustermg

Tree Clustering =
= treewidth

[ Biconnected Components ] Cycle Cutset

[Hm ge Decomposition

Fig. 1. Constraint tractability hierarchy.
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a precise complexity analysis. In particular, we show that CSPs of hypertree ividth
be solved in time Q@:**1 x logn).

Hypertree width is a measure of cyclicity specifically designedhfigrergraphsit is
interesting to see how the situation changes in the special cagamis i.e., of binary
CSPsTo answer this question, we have compared all considered method in the binary case
(in Section 8; see Fig. 25). Again, it turns out that the method of Hypertree Decomposition
dominates the others, but this time in a slightly weaker sense to be explained in Section 8.

It was recently askel whether the method of Hypertree Decompositions can be
explained in terms of simpler and well-known graph cyclicity measures. To every
hypergrapl one defines thdual graphof H by taking as vertices the hyperedgego6f
and by connecting two vertices by an edge if their corresponding hyperedges intersect. The
guestion arose whether the hypertree width of a hypergraph coincides with the treewidth
or TCLUSTER width of the dual graph @f (See Section 9 for definitions). We study this
interesting question in Section 9 and give a negative answer. More generally, we show that
the method of hypertree decompositiaiongly generalizeall relevant binary methods
based on the dual graph of a given hypergraph.

This paper is organized as follows. Section 2 contains preliminaries on CSPs. In
Section 3 we discuss tractability of CSPs due to restricted structure. In Section 4 we review
well-known CSP decomposition methods. In Section 5 we describe the new method of
hypertree decompositiomsd analyze the cost of solving CSPs having bounded hypertree-
width. In Section 6 we explain our comparison criteria and in Section 7 we present the
comparison results for general CSPs. The case of binary CSPs is briefly discussed in
Section 8. In Section 9 we consider the application of “binary” methods to the dual graph
of a hypergraph. Finally, in Section 10, we draw our conclusions.

2. Constraint satisfaction problems

An instance of aconstraint satisfaction problem (CSRjlso constraint networkis a
triple I = (Var, U, C), whereVar is a finite set of variabled/ is a finite domain of values,
andC = {C1, Co, ..., C,} is afinite set of constraints. Each constraihts a pair(S;, r;),
whereS; is a list of variables of lengtin; called theconstraint scopeandr; is anm;-
ary relation ovetU, called theconstraint relation (The tuples of; indicate the allowed
combinations of simultaneous values for the varialsigs A solutionto a CSP instance
is a substitutiony : Var — U, such that for each £ i < ¢, S;9 € r;. The problem of
deciding whether a CSP instance has any solution is cabledtraint satisfiability (CS)
(This definition is taken almost verbatim from [20].)

Many well-known problems in Computer Science and Mathematics can be formulated
as CSPs.

Example 1. The famougraph three-colorabilitf3COL) problem, i.e., deciding whether
the vertices of a graply = (Vertices Edges can be colored by three colors (say: red,
green, blue) such that no edge links two vertices having the same color, is formulated as

1Rina Dechter, personal communication at IJCAI-99.
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a b [

Fig. 3. A crossword puzzle.

follows as a CSP. The s&far contains a variablel, for each vertexv € Vertices For
each edge = {v, w} € Edges wherev < w according to some ordering drertices the
setC contains a constrair®, = (S, r.), whereS, = (X,, X,) andr. is the relatiornr
consisting of all pairs of different colors, i.e = {(red, green, (red, blue), (green red),
(green blue), (blue red), (blue green}.

For instance, the set of constraints for the gr&phin Fig. 2 is the followingC =
{((A, B), %), (A, D), r2), (A, G), r2), (B, C), r2), ..., (G, H), r)}.

Example 2. Fig. 3 shows a combinatorial crossword puzzle, which is a typical CSP [7,
23]. A set of legal words is associated to each horizontal or vertical array of white boxes
delimited by black boxes. A solution to the puzzle is an assignment of a letter to each white
box such that to each white array is assigned a word from its set of legal words.

This problem is represented as follows. There is a variabjefor each white
box, and a constrainC for each arrayD of white boxes. (For simplicity, we just
write the indexi for variable X;.) The scope ofC is the list of variables corre-
sponding to the white boxes of the sequerggthe relation ofC contains the legal
words for D. For the example in Fig. 3, we havei g = ((1,2,3,4,5),r1p), Csg =
((8,9,10), rsy), C11g = ((11,12,13), r11m), C2o0n = ((20, 21, 22, 23, 24, 25, 26), roon),
Civ = ((1, 7,11, 16, 20), r1y), Csy = ((5, 8, 14, 18, 24), r5v), Cev = ((6, 10, 15, 19, 26),
rev), C13v = ((13,17,22), r13v). Subscriptsd andV stand for “Horizontal” and “Ver-
tical”, respectively, resembling the usual naming of definitions in the crossword puzzles.
A possible instance for the relatieny is {(h, 0, u, s, e), (c,0,i,n,s), (b,l,0,c, k)}.



G. Gottlob et al. / Artificial Intelligence 124 (2000) 243-282 249

Itis well-known and easy to see that Constraint Satisfiability is an NP-complete problem.
Membership in NP is obvious. NP-hardness follows, e.g., immediately from the NP
hardness of 3COL [13].

3. Tractable classes of CSPs

Much effort has been spent by both the Al and database communities to indentify
tractable classe®f CSPs. Both communities have obtained deep and useful results in
this direction. The various successful approaches to obtain tractable CSP classes can be
divided into two main groups [23]:

(1) Tractability due to restricted structurd his includes all tractable classes of CSPs
that are identified solely on the base of the structure of the constraint scopes
{S1,..., 84}, independently of the actual constraint relatiens . ., r,.

(2) Tractability due to restricted constraint$his includes all classes that are tractable
due to particular properties of the constraint relations. ., 7, .

The present paper deals with tractability due to restricted structure.

The structure of a CSP is best represented by its associaguergraphand by the
correspondingrimal graph defined as follows. To any CSP instance: (Var, U, C), we
associate a hypergrapty = (V, H), whereV = Var, andH = {var(S) | C = (S,r) € C},
wherevar(S) denotes the set of variables in the scspef the constrainC. Fig. 4 shows
the hypergrapli(., associated to the crossword puzzle of Example 2.

Since in this paper we always deal with hypergraphs corresponding to CSPs instances,
the vertices of any hypergrapi = (V, H) can be viewed as the variables of some
constraint satisfaction problem. Thus, we will often use the teanable as a synonym
for vertex, when referring to elements &f. Moreover, for the hypergrapk = (V, H),
var(H) andedgesH) denote the set® and H, respectively.

Let H; = (V, H) be the constraint hypergraph of a CSP instahc&he primal graph
of I is a graphG = (V, E), having the same set of variables (verticesqHasand an edge
connecting any pair of variables, Y € V such thaf X, Y} C h for someh € H.

Fig. 4. Hypergraph,, of the crossword puzzle in Example 2.
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Note that if all constraints of a CSP are binary, then its associated hypergraph is identical
to its primal graph.

The most basic and most fundamental structural property considered in the context of
CSPs (and conjunctive database querieagiglicity. It was recognized independently in
Al and in database theory thatyclicCSPs are polynomially solvable. A C3Rs acyclic
if its primal graphG is chordal (i.e., any cycle of length greater than 3 has a chord) and the
set of its maximal cliques coincide witltgesH;) [2].

A join tree JT (H) for a hypergraplH is a tree whose vertices are the edges(afuch
that, whenever the same varialdes V occurs in two edged ; andA» of H, thenA; and
A are connected idT (H), andX occurs in each vertex on the unique path linkingand
A2 in JT (H). In other words, the set of vertices in whighoccurs induces a (connected)
subtree of/T (H). We will refer to this condition as th€onnectedness Conditiarf join
trees.

Acyclic hypergraphs can be characterized in terms of join trees: A hypergtajsh
acycliciff it has a join tree [2,3,22]. There exist various equivalent characterizations of
acyclic hypergraphs[2,14,22]. Checking the satisfiability of acyclic CSPs (or, equivalently,
evaluating acyclic conjunctive queries) is not only tractable but also highly parallelizable.
In fact, as shown in [15], this problem is complete for the complexity class LOGCFL, a
very low class contained in the parallel classeg A&Gd NG.

Many CSPs arising in practice are not acyclic but are in some sense or aolotber
to acyclic CSPs. In fact, the hypergraphs associated with many naturally arising CSPs
contain either few cycles or small cycles, or can be transformed to acyclic CSPs by simple
operations (such as, e.g., lumping together small groups of vertices). Consequently, CSP
research in Al and in database theory concentrated on identifying, defining, and studying
suitable classes afiearly acyclicCSPs, or, equivalently, decomposition methods, i.e.,
techniques fodecomposingyclic CSPs into acyclic CSPs [7,23].

4. Decomposition methods

In order to study and compare various decomposition methods, we find it useful to
introduce a general formal framework for this notion.

Let H be a hypergraph. For any set of edgésc edgesH), letvar(H') = | J,,cp h-
Without loss of generality, we assume thar(H) = var(H), i.e., every variable in
var(H) occurs in at least one edge ®f, and hence, any hypergraph can be simply
represented by the set of its edges. Moreover, we assume without loss of generality that
all hypergraphs under consideration are bmghnectedi.e., their primal graph consists of
a single connected component, arduced i.e., no hyperedge is contained in any other
hyperedge. All our definitions and results easily extend to general hypergraphs.

Let HS be the set of all (reduced and connected) hypergrapdecAmposition method
(short: DM) D associates to any hypergraphe HS a parameteD-width(H), called the
D width of H.

The decomposition method ensures that, for fixed, every CSP instancé whose
hypergrapi{; hasD-width < k is polynomially solvable, i.e., it is solvable (|| 7|]) =
O(||1|°D) time, where| I || denotes the size df. For any CSP instanck the size off is



G. Gottlob et al. / Artificial Intelligence 124 (2000) 243-282 251

defined in the standard way, i.e., as the number of bits needed for enddalritsting, for
each constraint i, its constraint scope and all tuples occurring in its constraint relation.
For anyk > 0, thek-tractable classC (D, k) of D is defined by

C(D, k) = {H | D-width(H) < k}.

Thus, C(D, k) collects the set of CSP instances which, for fixedare polynomially
solvable by using the strategfp. Typically, the polynomialp(||Z|]) depends on the
parameterk. In particular, for eachD, there exists a functiorf such that, for each,

each instancé € C(D, k) can be transformed in time (/|| ®)) into an equivalent
acyclicCSP instance. (It follows that all problemsdr(D, k) are polynomially solvable.)

Every DM D is complete with respect t&(s, i.e., HS = Uk>1C(D, k). Note that, by
our definitions, it holds thab-width(H) = min{k | H € C(D, k)}.

All tractable classes based on restricted structure that we have studied in the literature
fit into this framework. We next describe how the notion of width is defined in the
decomposition methods we shall compare in this paper. Detailed descriptions of these
methods can be found in the corresponding reference (see below) and in many surveys
on this subject, e.g., [7,23].

4.1. Biconnected componerfshort: BICOMBP [11]

LetG = (V, E) be agraph. A vertey € V is aseparating vertexor G if, by removing
p from G, the number of connected componentg§dhcreases. A biconnected component
of G is a maximal set of vertice€ C V such that the subgraph @f induced byC is
connected and remains connected after any one-vertex removal, i.e., has no separating
vertices.

Itis well known that, from any grap&y, we can compute in linear time a vertex-labeled
tree (T, x), where the labeling functiol is a bijective function that associates to each
vertex of the tred” a set of vertices§ of G, such thatS is either a biconnected component
of G, or a singleton containing a separating vertexd@orThere is an edgép, ¢} in the
treeT, if x(p) is a biconnected component6fandy (¢) contains a separating vertex for
G belonging to the component(p), i.e., x(¢) € x(p), holds. We say thatT', x) is the
BICOMPdecomposition of5.

For a hypergrapli{, the BICOMPdecomposition ofH is the BICOMPdecomposition
of its primal graph, and thkeiconnected widtlof 7, denoted byBICOMPwidth(H), is the
maximum number of vertices over the biconnected components of the primal graph of

Example 3. Fig. 5(a) shows a hypergragy, and Fig. 5(b) its primal graph. The vertices
G, C, D, andE are the separating vertices of this primal graph. Note that the maximum
number of vertices over its biconnected components is 3, an@iG@EMPwidth(H) = 3.

Fig. 6 shows th&1COMPdecomposition of+,.

4.2. Tree clusteringshort: TCLUSTER[9]

Thetree clusteringmethod is based on a triangulation algorithm which transforms the
primal graphG = (V, E) of any CSP instancé into a chordal graplG’. The acyclic
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Fig. 5. (a) The hypergraph{;,,, and (b) its primal graph.

{G,H, T} {G} {G,L, M}
{C,G,F}
{A,B,C} {C} {C,D,E} {E}
(D} (E,P,Q}
{D,N, 0}

Fig. 6. TheBICOMPdecomposition of the hypergragti; in Example 3.

hypergraphH(G’) having the same set of vertices @ and the maximal cliques af’

as its hyperedges is BCLUSTERdecomposition ofH;. Intuitively, the hyperedges of
‘H(G") are used to build the constraints of an acyclic @SBquivalent to/. The width of
the TCLUSTERJecompositiort{(G’) is the maximum cardinality of its hyperedges. The
tree-clustering widtl{short: TCLUSTERwidth) of H; is 1 if H; is an acyclic hypergraph;
otherwise, it is equal to the minimum width over th€ELUSTERJecompositions of{; .

Example 4. Consider the hypergraph,. shown in Fig. 7(a). Fig. 7(b) shows its primal
graph.

This graph can be triangulated as shown in Fig. 8(a). If we associate a hyperedge to
each maximal clique of this triangulated graph, we get the acyclic hypergraph shown in
Fig. 8(b). This acyclic hypergraph is BCLUSTERdecomposition ofH,;. of width 3.
Moreover, it is easy to see that there is TGLUSTERdecomposition fofH,. having a
smaller width, and hence tRECLUSTERwidth of H,. is 3.
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X, Xa

X2 X5

(b)

Fig. 7. (a) The hypergrapk;., and (b) its primal graph.

-8

(@ (b)

Fig. 8. (a) A triangulation of the primal graph ®t;., and (b) aT CLUSTERdecomposition of;..

4.3. Treewidt{ TREEWIDTH[24]

A tree decompositioof a graphG = (V, E) isa pair(T, x), whereT = (N, F) is atree,
and y is a labeling function associating to each vertex N a set of verticex (p) C V,
such that the following conditions are satisfied:

(1) for each verte® of G, there existp € N such that € x(p);

(2) foreach edgéb, d} € E, there existp € N such thatb, d} C x (p);

(3) for each vertex of G, the set{p € N | b € x(p)} induces a (connected) subtree

of T.

Thewidth of the tree decompositiofT’, x) is max,en | x (p) — 1|. Thetreewidthof G
is the minimum width over all its tree decompositions. THREEWIDTHf a hypergraph
‘H is 1 if H is an acyclic hypergraph; otherwise, it is equal to the treewidth of its primal
graph. As pointed out beloWw REEWIDTHand TCLUSTERare two equivalent methods.

Example 5. Consider again the hypergrapti,. in Example 4. Fig. 9 show a tree
decomposition ofH,;. having width 2. It follows that the treewidth ¢f,. is 2 as only
hypergraphs having acyclic primal graphs have treewidth 1.
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{X1, X4, X6}

{X4, X5, X6}

Fig. 9. A tree decomposition of hypergrapt}. in Example 4.

{X1, X2, X3}

4.4, Hinge decompositiorfshort: HINGE) [18,19]

Let H be a hypergraphH{ < edgesH), and F C edge$H) — H. Then F is called
connected with respect to H, for any two edges, f € F, there exists a sequence
e1,...,e, of edges inF such that

(i) er=e¢;
(i) fori=1,...,n—1,e; Ne;11is not contained ity J,, . h; and
(i) e, =f.

The maximal connected subsets edge$H) — H with respect toH are called the
connected components & with respect toH. It is easy to see that the connected
components oH with respect taH form a partition ofedgesH) — H.

Let H € HS and letH be eitheredge$H) or a proper subset efdgeg§H) containing
at least two edges. Lef,...,C, be the connected components Hf with respect
to H. Then, H is ahingeif, for i = 1,...,m, there exists an edgk; € H such that
var(edgesC;)) Nvar(H)) C h;. A hinge isminimalif it does not contain any other hinge.

A hinge decompositioaf H is a treeT such that all the following conditions hold:

(1) the vertices of” are minimal hinges oft;

(2) each edge iedgegH) is contained in at least one vertexDf

(3) two adjacent vertices\ and B of T share precisely one edge € edgesH);

moreoverL consists exactly of the variables sharedbgndB (i.e.,L = var(A) N
var(B)),

(4) the variables of+ shared by two vertices df are entirely contained within each

vertex on their connecting path .

It was shown in [19] that, for any CSP instankehe cardinality of the largest vertex of
any hinge decomposition @{; is an invariant of/{;, and is equal to the cardinality of the
largest minimal hinge of{;. This number is called theegree of cyclicityf H;. We will
also refer to it as thelINGE width of ;.

Example 6. Consider a CSP instandg, having the following constraint scopes:
s1(X1, X10, X11); 52(X1, X2, X3); 53(X1, Xa); 54(X3, X6); 55(X4, X5, X6);
s6(Xa, X7); s7(Xs, Xsg); s8(Xe6, X9); s9(X2, X3, X10, X11).

Fig. 10 shows the corresponding hypergraipfy, which is clearly cyclic. The minimal
hinges ofHy, are Hy = {s1, 52, so}, H2 = {s2, 53,54, 55}, H3 = {s5, 56}, H4 = {s5, 57},
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{s5,56}

{s1,52,50}  {s2,53,54,55 {s5,s7}

{s5,s8}

(b)

Fig. 10. (a) Hypergraplit;,, and (b) a hinge-tree decomposition7dfg .

Hs = {s5, sg}, Hg = {s3,s6}, and H7 = {s4, sg}, wheres; denotes the set of variables
occurring in the scope, for 1 <i <9.

Since the cardinality of the largest minimal hingefof, (hinge Hy) is 4, it follows that
the HINGEwidth of Hy, is 4. Fig. 10(b) shows BINGE decomposition 0.

4.5. Hinge decomposition- tree clusteringshort: HINGETCLUSTER [18]

It has been observed [18] that the minimal hinges of a hypergraph can be further
decomposed by means of the triangulation technique of the above-described tree-clustering
method. This leads to a new decomposition method, that weHtsIGE  C-USTER which
combineHINGEandTCLUSTERand can be formally defined as follows. Let= (N, E)
be a hinge tree of a hypergraft. For any hingeH € N, let w(H) be the minimum
of the cardinality ofH and theTCLUSTERwidth of the hypergraplivar(H), H). The
HINGETCLUSTERyidth of H with respect tol' is maxgey {w(H)}. A HINGE CLUSTER
decomposition ofH{ with respect tol" is an acyclic hypergraph{’ having the same set
of vertices agH, and whose set of edges is obtained frénandH as follows. For each
hingeH € N, if w(H) = |H|, thenH’ contains an edgear(H); otherwise,H’ contains
the edges of anf CLUSTERdecomposition of the (sub)hypergrapar(H), H) having
width w(H).

The HINGETCLYSTERidth of H is the minimumHINGETCLUSTERyidth over all its
HINGE'CLUSTERGecompositions.

Example 7. Consider again the constraint scopes of Example 6 and the hinge-tree
decomposition for the hypergrapK;, shown in Fig. 10(b). From this hinge-tree
decomposition, we constructHiNGE'© USTERdecompositioﬂi;,g of Hig.

Consider the sub-hypergrapivar(Hy), H1) corresponding to the minimal hinge
Hi occurring in this hinge-tree decomposition. The primal graph of the hypergraph
(var(Hiy), H1) is a clique containing the vertice¥1, X2, X3, X10, and X11, thus it is
easy to see that theCLUSTERwidth of this hypergraph is 5. However, the hingg
contains three edges, hence we g¢f;) = 3, and theHINGE'CLUSTERgecomposition
H;lg contains the edggX1, X», X3, X10, X11} with all the variables occurring iff;.

A different situation concerns the sub-hypergrapar(H>), H») corresponding to the
minimal hinge H,. This hypergraph is identical to hypergraph. in Example 4. We
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Fig. 11. AHINGE' ®LUSTERgecomposition of hypergraph;,, in Example 6.

observed that{;. hasTCLUSTERwidth 3, which is smaller thanH>| = 4, and hence
w(H2) = 3 holds. This means that, in this case, it is convenient to further decompose
(var(H»), Ho) using theTCLUSTERdecomposition method, and théINGETCLUSTER
decompositiort; , contains all the edges belonging to thEeLUSTERdecomposition

of H;. = (var(H2), H2) shown in Fig. 7.

Similarly, for i € {4,5, 6}, the sub-hypergraph&rar(H;), H;) corresponding to the
other hinges occurring in the hinge-tree decomposition at hand are acyclic hypergraphs.
Thereforew(H;) = 1 holds, because theCLUSTERwidth of acyclic hypergraphsis 1.

The resultingHINGETC'-USTERdecompositiorﬁ;lg of Hy, is the acyclic hypergraph
shown in Fig. 11. The thickest edges in this figure come froni@eUSTERJecompo-
sition of (var(H>), H2). Recall that bothw(H1) andw(H>2) are 3, which is the maximum
value over the hinges occurring in the giveiNGEdecomposition of{;,,. Thus, the width
of H,,, is 3, and it is easy to verify that there is no otihﬁNGETCLUSﬁERdecomposition

having smaller width. It follows that thEINGE' “LYUSTERwidth of H,,, is 3.
4.6. Cycle cutsefshort: CUTSET [7]

A cycle cutseof a hypergrapl# is a setS C var() such that the subgraph of the
primal graph ofH (vertex-)induced byar(H) — S is acyclic. That is, after deleting the
vertices inS, the primal graph of{ becomes acyclic. ThREUTSETwidth of H is 1 if H
is acyclic; otherwise, it is the minimum cardinality over all its possible cycle cutsets.

Example 8. The hypergrapth, shown in Fig. 5(a) haCUTSETwidth 4. Indeed,
{G,C, D, E} is a cycle cutset of this hypergraph, and any smaller set of vertices does
not allow to break all the cycles in its primal graph (see Fig. 5(b)). As another example,
consider the hypergrapH,. shown in Fig. 7. TheCUTSETwidth of H,. is 2, because
there is no cycle cutset of cardinality 1, while there are cycle cutsets of cardinality 2, e.g.,
the setf{ X1, X4}.
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4.7. Cycle hypercutséshort: HYPERCUTSBT

This is a simple modification of th€UTSETmethod where the cutset is composed
of (hyper)edges rather than vertices of the given hypergraptyode hypercutsedf a
hypergraphH is a setH C edge$H) such that the subhypergraph ®f induced by
var(H) — var(H) is acyclic. TheHYPERCUTSEWidth of H is 1 if H is acyclic;
otherwise, it is the minimum cardinality over all its possible cycle hypercutsets.

Example 9. The hypergrapft, shown in Fig. 5(a) haslYPERCUTSEWidth 2. Indeed,

the set containing the two edgé#,G,C} and {C, D, E} is a hypercutset of this
hypergraph, as deleting these edges it becomes acyclic. Moreover, by deleting any single
edge, we cannot achieve acyclicity. Instead, the hypergtgphshown in Fig. 10 has
HYPERCUTSEWidth 1. Indeed, e.g., by just deleting frohd,, the edge{X4, X5, X6}

we get an acyclic hypergraph.

4.8. Solving CSPs using decomposition methods

For each of the above decomposition methd@gsit was shown (or it is easy to see)
that, for any fixedk, given a CSP instanck deciding whether a hypergragf; hasD-
width(H) at mostk is feasible in polynomial time and that solving CSPs whose associated
hypergraph is of width at motcan be done in polynomial time. In particul&r,consists
of two phases. Given a CSP instarice

(1) the &-bounded)D width w of H; along with a corresponding decomposition is

computed;

(2) exploiting this decompositiord, is then solved in time G:**1logn), wheren is

the size ofl plus the size of the given decomposition (for most methods this phase

consists of the solution of an acyclic CSP instance equivalent to
Actually, for these methods it is always possible to give the decompositions in suitable
forms without redundancies. Thus, the cost above reduces|tb|®tlog||I]), i.e., it
depends only on the CSP instance, and does not depend on the size of the decomposition.
For a detailed analysis, see Section 5, where we study the complexity of evaluating
bounded-width CSPs according to a new decomposition method, based on hypertree
decompositions [16].

The cost of the first phase is independent on the constraint relatiohsofact, it is
O(|I'H ||*F+e2), where||H; || is the size of the hypergragi;, andcy, c» are two constants
relative to the method (0 < c¢1, c2 < 3 for the methods above). As usual, the size of
hypergrapl#; is defined as the number of bits needed for encoding all the edgés a$
lists of variables. Clearly, the size @{; is always smaller than thaj/||, because the
encoding of/ includes the encoding of its constraint relations, too. Observe also that
computing theD-width w of a hypergraph in general (i.e., without the constant bound
w < k) is NP-hard for most methods, while it is feasible in polynomial timeHdKGE,
and even in linear time faBICOMPR

Remark 10. The above complexity bounds, given as functions of the total size of the
CSP instance, are appropriate for all considered decomposition methagsnfmal CSP
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instances. Of course, if one considers some restricted cases, e.g., CSP instances with a fixed
constant domain size, some finer analysis may be useful. In fact, by exploiting additional
information, more accurate complexity bounds may be found in order to choose a method
that is better tailored for such a special case.

4.9. Freuder width and adaptive width

Further interesting methods, that do not explicitly generalize acyclic hypergraphs, are
based on a different notion of width, that we clteuder width[10,11]. If C is a total
ordering of the vertices of a grapti = (V, E), then theC-width of G is defined by
we (G) = maxev |{{v, w} € E such thatw C v}|. The Freuder width of; is the minimum
of all C-widths over all possible total orderingsof V. For each fixed consta#t it can
be determined in polynomial time whether a graph is of Freuder widirhe graphG1
shown in Fig. 2 has Freuder width 3. This width can be obtained taking the ordering
bCdCeCalC gL hCcLC f. Freuder observed that many naturally arising CSPs
have a very low width [10]. He showed that a CSP of widttvhose relations enjoy the
property ofk’-consistencywherek’ > k, can be solved in a backtrack-free manner, and
thus in polynomial time [10,11]. Clearly, since the consistency condition on the constraint
relations must be satisfied, we cannot define a purely structural decomposition method
based on Freuder width. In fact, the following theorem pinpoints that the structural property
of bounded Freuder width does not make the CSP problem any easier.

Theorem 11. Constraint solvability remains NP-complete even if restricted to CSPs whose
primal graph has Freuder width bounded 8By

Proof. 3COL remains NP-complete even for graphs of degree 4 (cf. [13]). Such graphs,
however, have width at most 4. By the encoding of 3COL as a CSP, as given in Section 2,
the theorem follows. O

One can try to enforce a suitable level of consistency on the constraint relations of a
given CSP instance. However, the algorithms used to increase the level of consistency in
the data also increase the Freuder width of the instance [8,25]. Of course, one can think
of devising a more powerful procedure to find an equivalent CSP instance whose Freuder
width stays below a fixed bound. However, from the above theorem;AfNP, such a
procedure cannot run in polynomial time.

Dechter and Pearl subsequently introduced the notidndafced widthw* [8], which
is—roughly—the smallest Freuder width of any graphG’ obtained by triangulation
methods from the primal graptq of a CSP such tha6G’ ensuresk + 1-consistency.
Graphs having induced width at mastan be also characterizedgzestial k-trees[12] or,
equivalently, as graphs having treewidth at nioft]. It follows that, for fixedk, checking
whetherw* < k is feasible in linear time [5]. Ifw* is bounded by a constant, a CSP is
solvable in polynomial time. The approach to CSPs basedis referred to as the*-
Tractability method [7]. Note that this method is implicitly based on hypergraph acyclicity,
given that the used triangulation methods enforce chordality of the resulting Greqoid
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thus acyclicity of the corresponding hypergraph. It was noted [7,9] that, for any cyclic CSP
instancel, TCLUSTERwidth(H;) = w*(H;) + 1.

5. Hypertree decompositions of CSPs

A new class of tractable conjunctive database queries, which generalizes the class of
acyclic queries, has recently been identified [16]. This is the class of queries having a
bounded-width hypertree decomposition [16]. Deciding whether a given query has this
property is feasible in polynomial time and even highly parallelizable. In this section
we first adapt the notion of hypertree decomposition, previously defined in the database
context, to the general framework of hypergraphs. Then, we show how to employ
this notion in order to define a new CSP decomposition method we will refer to as
HYPERTREE

A hypertree for a hypergrapf is a triple (T, x, A), whereT = (N, E) is a rooted
tree, andy anda are labeling functions which associate to each veptexN two sets
x(p) C var(H) and A(p) C edgesH). If T’ = (N’, E') is a subtree ofl’, we define
x(T") =U,en x (v). We denote the set of verticésof T by verticeg7'), and the root of
T by root(T). Moreover, for anyp € N, T, denotes the subtree dfrooted atp.

Definition 12. A hypertree decompositionf a hypergraphH is a hypertreeHD =
(T, x, 1) for H which satisfies all the following conditions:
(1) for each edgé < edgesH), there existy € verticesT) such thatwar (h) C x (p)
(we say thafp coversh);
(2) for each variableY € var(H), the set{p € verticesT) | Y € x(p)} induces a
(connected) subtree @f;
(3) for eachp e verticesT), x (p) C var(r(p));
(4) for eachp e verticesT), var(A(p)) N x(T,) < x(p).
Note that the inclusion in condition (4) is actually an equality, because condition (3)
implies the reverse inclusion.
An edgeh € edgesH) is strongly coveredn HD if there existsp € verticegT) such
thatvar(h) € x (p) andh € A(p). In this case, we say thatstrongly coverg:.
A hypertree decompositioA D of hypergraph is acomplete decompositiasf H if
every edge of+ is strongly covered irHD.
The width of a hypertree decompositiofT’, x, 1) iS mMaX,cverticest) [2(p)|. The
HYPERTRERvidth hw(H) of H is the minimum width over all its hypertree decomposi-
tions. Ac-width hypertree decomposition &f is optimalif ¢ = hw(H).

The acyclic hypergraphs are precisely those hypergraphs having hypertree width one.
Indeed, any join tree of an acyclic hypergraphtrivially corresponds to a hypertree
decomposition ofH of width one. Furthermore, if a hypergragf’ has a hypertree
decomposition of width one, then, from this decomposition, we can easily compute a join
tree of H', which is therefore acyclic [16].

Remark 13. From any hypertree decompositidiiD of H, we can easily compute a
complete hypertree decompositionf@thaving the same width. For any “missing” edge
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choose a vertex of T such thawvar (h) C x (¢) (such a vertex must exist by condition (1)),

and create a new vertgxas a child ofy with A(p) = h andx (p) = var(h). Assuming the

use of suitable data structures, this computation can be dong#i|O| HD||) time, where

|HD| denotes the size of a hypertree decomposition, i.e., the number of bits needed for
encodingHD (that is, for encoding the rooted tree HfD and, for each vertex of this

tree, the labelingg anda for v, encoded as a list of variables and a list of edge identifiers,
respectively).

Intuitively, if H is a cyclic hypergraph, thg labeling selects the set of variables to be
fixed in order to split the cycles and achieve acyclicityp) “covers” the variables of (p)
by a set of edges.

Example 14. Fig. 12 shows a hypertree decomposition of width 2 of the hypergkaph
of the crossword puzzle in Example 2 (see Fig. 4). Eachiboxthis figure represents a
vertexv of the hypertree decomposition ®f,. The two sets depicted in the béyare the
labelingsy (v) andi(v). The hypergrapli,, is clearly cyclic, thereforew(H.,) > 1 (as
only acyclic hypergraphs have hypertree width 1). Thus, it follows thaHWiEERTREE
width of H,,, is 2.

Example 15. Consider the following constraint scopes:

JULX Y, X, Y a8, X, X',C,F);b(S,Y,Y,C',F'),
c(C,C',2);d(X,Z2);e(Y,2); f(F,F',Z";g(X',Z"); h(Y', Z").

Let H1 be their corresponding hypergraph. Siri¢eis cyclic,hw(#1) > 1 holds. Fig. 13
shows a (complete) hypertree decompositiofit@thaving width 2, hencaw(H;) = 2.

In order to help the intuition of what a hypertree decomposition is, we also present an
alternative representation, callbgiperedge representatiofAlso, “atom representation”,
in the conjunctive-queries framework.) Fig. 14 shows the hyperedge representation of
the hypertree decompositioiD, of Hi. Each nodep in the tree is labeled by a set

of hyperedges representinig p); x(p) is the set of all variables, distinct from * ',

{1,2,3,4,5,20,21,22,23,24,25,26}  {1H, 20H}
{1,7,11,16,20,22} {1V, 20H} | | {5,8,14,18,24,26} {5V, 20H}
{11,12,13,17,22}  {11H, 13V} {8,9,10,6,15,19,26} {8H,6V}

Fig. 12. A hypertree decomposition of width 2 of hypergrapl), in Example 2.
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{7, X7, X", Y'} {i}

{X,X',Y,Y',S,C,C',F,F'} {a,b}

{X,v,c,C’,z} {j,c} {X".)Y',F,F',Z'} {jf}

x 2 @) vz 0 [ixozy @ [z m

Fig. 13. A 2-width hypertree decomposition&f; .

i, XY, X" Y')

a(S, X, X',C,F), b(S,Y,Y',C', F')

j(—7X7Y7—7—)7 C(C,C',Z) -7.(-7-7-7X’7Y,)7 f(F,F',Z')

‘ d(X, Z) ‘ | e(Y,Z) | 9(X',Z") h(Y',Z")

Fig. 14. Hyperedge representation of hypertree decompoditiog.

appearing in these hyperedges. Thus, the anonymous variable * ' replaces the variables
invar(i(p)) — x(p)-

Using this representation, we can easily observe an important feature of hypertree
decompositions. Once an hyperedge has been covered by some vertex of the decompaosition
tree, any subset of its variables can be used freely in order to decompose the remaining
cycles in the hypergraph. For instance, the variables in the hyperedge corresponding to
constraintj in H1 are jointly included only in the root of the decomposition. If we were
forced to take all the variables in every vertex whegreccurs, it would not be possible
to find a decomposition of width 2. Indeed, in this case, any choice of two hyperedges
per vertex yields a hypertree which violates the connectedness condition for variables (i.e.,
condition (2) of Definition 12).

Let £k be a fixed positive integer. We say that a CSP instahdeas k-bounded
HYPERTRERvidth if hw(H;) < k, whereH; is the hypergraph associated to From
the results in [16], it follows that-bounded hypertree width is efficiently decidable, and
that a hypertree decomposition of widtltan be efficiently computed (if any).
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s2(X1, X2, X3), s4(X3, X¢) ‘

s1(X1, X10, X11), s9(X2, X3, X10, X11) ‘

s3(X1, X4), s5(X4, X5, Xe) ‘

s6(Xy4, X7) ‘

s7(X5, X3g) ‘ s8(Xg, X9)

Fig. 15. A hypertree decomposition of hypergral, in Example 6.

Example 16. Consider again the CSP instangg in Example 6. Fig. 15 shows the
hyperedge representation of a width 2 hypertree decomposition of its hypefgyaptt
follows thathw(He) = 2, becausé,, is cyclic. Thus,l;, has 2-boundet#YPERTREE
width and, more generall¥-boundedHYPERTRERvidth for any integek > 1.

Let H be a hypergraph, and 1&t C var(H) be a set of variables anl, Y € var(H).
ThenX is[V]-adjacenttd if there exists an edgec edgeg¢H) suchtha{X,Y} Ch—V.
A [V]-pathz from X to Y is a sequenc& = Xy, ..., X¢; = Y of variables such that
X; is [V]-adjacent toX;,1, for eachi € [0, ..., ¢-1]. A setW C var(H) of variables is
[V]-connected if, for allX, Y € W, there is aV]-path fromX to Y. A [V]-component
is a maximal[V]-connected non-empty set of variablé¢sC var(H) — V. For any[V]-
componentC, letedgesC) = {h € edges$H) | h N C # ¢}.

Let HD = (T, x, A) be a hypertree foH. For any vertexw of T, we will often usev
as a synonym of (v). In particular,[v]-componentienoteq x (v)]-componentthe term
[v]-path is a synonym dfy (v)]-path; and so on. We introduce a normal form for hypertree
decompositions.

Definition 17 [16]. A hypertree decompositioAD = (T, x, A) of a hypergrapl is in
normal form (NF) if, for each vertex- € verticegT), and for each child of r, all the
following conditions hold:

(1) there is (exactly) onp-]-component, such thaty (75) = C- U (x (s) N x (r));

(2) x(s)NC, #0, whereC, is the[r]-component satisfying condition (1);

(3) var(i(s)) N x(r) < x(s).

Intuitively, each subtree rooted at a child nad®f some node- of a normal form
decomposition tree serves to decompose preciselyrgreomponent

Proposition 18 [16]. For eachk-width hypertree decomposition of a hypergréigtthere
exists ak-width hypertree decomposition Bf in normal form.

This normal form theorem immediately entails that, for each optimal hypertree
decomposition of a hypergraps, there exists an optimal hypertree decompositiof{of
in normal form.
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The fact that no redundancies occur in hypertree decompositions in normal form allows
us to give a precise bound on the number of vertices in such hypertree decompositions.

Lemma 19. Let HD = (T, x, A) be a hypertree decomposition in normal form of a
hypergraphH. Moreover, letn be the number of vertices of the decomposition #ee
andm the number of strongly covered edgesbin HD. Thenn < m holds.

Proof. Lets be some vertex ifl. We say that a variabl¥ € x (s) (respectively, an edge
H C x(s)) is "first covered” ins if X ¢ x (verticegT) — vertices7),)) (respectivelyH &

x (verticegT) — verticegT,))); otherwise,X (respectively,H) is said to be “previously
covered”. By condition (2) of Definition 17 and by condition (2) of Definition 12, it follows
that, for any vertexp of T, there exists at least a variahle in var(#) which is “first
covered” inp. SinceX € x(p), from condition (3) of Definition 12, it follows that there
is an edgeH of H such thatX € H and H € A(p). Moreover, from condition (4) of
Definition 12, it follows that every variable belongingtband not covered in some vertex
in verticegT') — verticeg7,) must be first covered ip, and belongs tg (p).

Moreover, sinceHD is in normal form, it satisfies condition (3) of Definition 17 (i.e.,
var(r(s)) N x(r) € x(s)). It follows that, in fact, any previously-covered variable
belonging toH must belong tox (p). Indeed, since the variablg€ was not previously
covered, the edg® cannot be previously covered, and thus there exists some vertex
in the subtree’, such thatd < x(p’), in order to fulfill condition (1) of Definition 12.
Assume that the variablgé € H does not belong tg (p). Since H is strongly covered
by p’, Y € x(p’). Moreover, by the choice df, this variable is previously covered with
respect tgp. It follows thatY violates the connectedness condition, a contradiction.

Thus, all the variables it/ belong toy (p). Recall thatH € A(p), too. It follows that
at least one edge df is first covered in vertexy and strongly covered by, and, in
general, that each vertex if first and strongly covers some edge’®f This entails that
the cardinality of the set of vertices in the decomposition fred HD is less than or equal
to the numbem of the strongly covered edges in the normal form hypertree decomposition
HDof H. O

A polynomial time algorithnopt -k-decomp which, for a fixedk, decides whether a
hypergraph hak-bounded hypertree width and, in this case, computes an optimal hypertree
decomposition in normal form is described in [17]. As for many other decomposition
methods, the running time of this algorithm to find the hypergraph decomposition is
exponential in the parametér More preciselyppt -k-decomp runs in Qm%v?) time,
wherem andv are the number of edges and the number of vertic&s,aespectively.

We next show that any CSP instangeis efficiently solvable, given &-bounded
complete hypertree-decompositiéhD of H;. To this end, we define an acyclic CSP
instance which is equivalent tb and whose size is polynomially bounded by the size
of I.

For each vertexy of the decompositiolID, we define a new constraint scope whose
associated constraint relation is the projectiory@p) of the join of the relations in(p).

This way, we obtain a join-tre€T” of an acyclic hypergraph*. H* corresponds to a new
CSP instancé* over a set of constraint relations of siz¢®), wheren is the input size
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(i.e.,n = ||I])) andk is the width of the hypertree decompositiéiD. By construction/*

is an acyclic CSP, and we can easily show that it is equivalent to the input CSP instance
I. Thus, all the efficient techniques available for acyclic CSP instances [7,9], or for any
problem equivalentto CSP [15,21,26], can be employed for the evaluatidnand hence

of I.

Remark 20. According to our definition, any hypertree is a labelembted tree.

The rooting is necessary for technical reasons concerning the notion of hypertree
decomposition only, but has no impact on the actual evaluation of the given CSP instance.
In fact, the above discussion describes how to compute from a hypertree decomposition
and a CSP instancka join treeJT of an acyclic instancé* that is equivalent td. This
construction does not use the fact that the hypertree is rooted. Moreover, note that the
acyclic instancd * can be evaluated rooting the join trég at any vertex.

The following theorem provides a detailed analysis of the complexity of evaluating a
CSP given a hypertree decomposition for it.

Theorem 21. Given a CSH and ak-width hypertree decompositidiiD’ of ; in normal
form, I is solvable inO(||7||**1log| /]]) time.

Proof. Let be a CSP instance aiflD’ = (T’, x’, ") ak-width hypertree decomposition
of H; in normal form. We proceed as follows.

Step 1. We compute frolHD’ a complete hypertree decompositifiid = (T, x, A) of
Hy.

Step 2. We compute frolHD andl an acyclic instancé™ equivalent tol, as described
above.

Step 3. We evaluate the acyclic instadéeemploying any efficient technique for solving
acyclic CSPs.

Letm be the number of edges &f;. The following statements hold:

Claim 1. The decomposition tree of the complete hypertree decompo&ifioimas at most
m vertices.

Proof. This immediately follows from the construction &fD and from Lemma 19, since
in Step 1 above we just add to the decomposition ffethose edges of{; that are not
strongly covered irHD’. O

Claim 2. Stepl is feasible inO(||H;2).

Proof. As observed in Remark 13, this computation také$ D’ || - ||H,||) time. From
Lemma 19, it easily follows thatHD'|| is Ok||H,||) = O(|/H; ), because the number of
vertices inT’ is at most the number of edgesf, and the number of edge-labels of each
vertex of 7’ is bounded by the constabt O

Claim 3. ||7*|| = O(||1|*), and computing* from I takes timeO(|| 7).
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Proof. Consider a constrair@ = (S, r.) in the acyclic instancé*. As described above,
the relationr, is obtained as the natural join of at mdstelations occurring in the input
instancel. One of these input relations, say, — in fact, its constraint scop§ — is
covered by some vertegxin the decomposition tree di D which corresponds t@' in the
acyclic instancd *. (In particular, its scopd; corresponds to some edfgee edgesH )
such thath; € A(p), and h; C x(p).) Let rmax be the constraint relation having the
maximum siz€]|rmax|| over all the constraint relations occurring in the input instahce
Then, ||re]l < (Irmaxll* =2 - |Iri])). Recall that the instancg* has at mosin constraints.
Considering all the constraints i we get the following upper bound for the size of the
whole CSPI*:

k-1 k—1
NN < (rmaxdl ™ - rall 4 -+ 4 lrmaxd ™ < rm Il
and hence
k—1 k-1
17N < Mrmaxll ™™= (Irall 4 -+ 4 e ) < Dlrmaxdl - 1211

It follows that ||7*|| < ||/||¥. Moreover, the effectiveomputationof I* from I takes

time O(||Z||%). Indeed, computing the natural join of two relationsand r» takes time
O(lir1ll - lIr21l), which is exactly the same bound that we have for the size of the result of this
join operation. Thus, by applying the same line of reasoning as used for the space bound,
we get that the computation of the acyclic instaités feasible in @ 7[/¥) time. O

From Claims 1-3 and from the well-known(®@ - ||7*| - log||/*|)) complexity of
evaluating the acyclic CSP* (see, e.g., [7,9]), it follows that the overall cost of this
evaluation procedure is @/| - [1]|* - log[[1II*) + OC(IH/ (1) = O(I1[*** - logllZ 1),
becausé is fixed,||H;|| < |||, andk > 1. O

It is worthwhile noting that the crucial difference between HhéPERTREHnethod
and theTCLUSTERmMethod is the objective function to be minimized in order to obtain
the most convenient acyclic decomposition of a given CSP instanceHYRERTREE
method minimizes the number of hyperedgegigfassociated to any vertex of the acyclic
equivalent instance, thus exploiting the fact that one hyperedge “covers” many variables at
once. TheTCLUSTERmethod minimizes the number of variables occurring in any vertex
of the equivalent acyclic instance, as evidenced by the following example.

Example 22. For anym > 0, let T (m) be the hypergraph having the + 3 hyperedges
{h1, ho, h3,e1,e2,...,e,} defined as follows:

e h1={X1,....Xu,Y1,.... Y, A};

o ho={Y1,....Y,Z1,...,Zy, B};

o h3={Z1,...,Zy,X1,..., Xm,C};

o ¢, ={X;, Y, Z;},V1<i <m.

The TCLUSTERwidth of T(m) is 3m, because its primal graph is chordal and its
maximal cliqueC = {X1,..., Xy, Y1,...,Yn, Z1, ..., Z,y} has cardinality &. In fact,
according to theTCLUSTERmethod, we have to solve a subproblem involving every
hyperedge; (1 <i <m).
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On the other hand, for any > 0, theHYPERTRERvidth of 7 (i) is 2. It is worthwhile
noting that the number of variables occurring in the largest vertex of this decomposition is
3m + 2. Hence, the equivalent acyclic instance we obtain accordify®ERTREES not
“optimal” according to thef CLUSTERmMethod, because its associated primal graph has a
clique of cardinality 3: + 2. Nevertheless, the constraint relation associated to this vertex
is computable very easily as the join of the constraint relatigrasdr, corresponding to
h1 andhy, respectively.

A simple way to get decomposition methods which in some way exploit the power of
hyperedges is using the dual graph associated to a CSP. We give a detailed analysis of these
approaches and of their relationships with HNPERTREHMEnethod in Section 9. It turns
out that even such methods do not exploit the full power of hyperedges, and are less general
thenHYPERTREEaccording to a strong notion of generalization, formally defined in the
next section.

6. Comparison criteria

For comparing decomposition methods we introduce the relations and<< defined
as follows:

D1 < D2 (in words, D2 generalizesD,) if there existss > 0 such that, for every > 0,
C(D1,k) € C(D2,k+6). Thus,D1 < D, implies that every class of CSP instances which
is tractable according tf®; is also tractable according 10;.

Note that the constaitabove allows us to get rid of small differences among tractability
classes that should be irrelevant in the comparison. E.g., it is known (see discussion in
Section 4.9) that CLUSTERand TREEWIDTHare equivalent methods and one would
expect TCLUSTERto generalizeTREEWIDTH(as well as vice versa). However, for
any k > 1, C(TREEWIDTHk) £ C(TCLUSTERk), because the treewidth is defined
through the cardinality of the vertex-labeling minus one. Ratbéf,REEWIDTHk) C
C(TCLUSTERk + 1) holds. Thus, by takingd = 1, we easily getTREEWIDTH<
TCLUSTER

D1 > D2 (D1 beatsD») if there exists an integer such that, for every:, C(D1,k)
C(D, m). To prove thatD1 > Do, itis sufficient to exhibit a class of hypergraphs contained
in someC (D1, k) butin noC(Dy, j) for everyj > 0.

Intuitively, D1 > D> means that, at least on some class of CSP instafbgesjtperforms
D> with respect to tractability, because these instances are tractable accordingtiot
not according taD». For such classes, usiigy is thus better than usind.

D1 << Dy if D1 < D and D > D1. In this case we say thdd, strongly generalizes
D1.

This means thatD; is really the more powerful method, given that, whenefar
guarantees polynomial runtime for constraint solving, then @lsqguarantees tractable
constraint solving, but there are classes of constraints that can be solved in polynomial
time by usingD» but are not tractable according iy

Mathematically< is apreorder i.e., it is reflexive, transitive, but not antisymmetric. We
say thatD; is <-equivalent toD,, denotedD1 = Dy, if both D1 < D, and D2 < D1 hold.
Note that, on the other haneéx is transitive and antisymmetric, but not reflexive.
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The decomposition method® and D2 arestrongly incomparabléd both Dy > D, and
D> > Dj. Note that, if D1 and D, are strongly incomparable, then they are incomparable
with respect to the relations and <<, too.

7. Comparison results

In this section we present a complete comparison of the decomposition methods
described in Section 4, according to the above criteria. Fig. 1 (reproduced here as Fig. 16
with the acronyms of decomposition methods for the reader’'s convenience) shows a
representation of the hierarchy of decomposition methods determined by tredation.

Each element of the hierarchy represents one decomposition method, apart from that
containingTree Clusteringw™, and Treewidthwhich are grouped together because they
are=<-equivalent as easily follows from the observations in Section 4.

Theorem 23. For each pairD; and D, of decompositions methods represented in Fgy.
the following holds
e There is a directed path from; to D2 if and only if D1 << D>, i.e., if and only ifD;
strongly generalize®;.
e D3 and D2 are not linked by any directed path if and only if they are strongly
incomparable.

Hence, Fig. 16 gives a complete picture of the relationships holding among the different
methods.

The following lemmas, together with the transitivity of the relations defined in Section 6,
prove Theorem 23.

Foranyn > 2 andm > 0, letCircle(n, m) be the hypergraph havingedgedhs, ..., h,}
defined as follows:

o hi={X}, ... X' X, . . . Xr)Vi<i<n-1;

o hy={XL ... X" X} ... XU}

HYPERTREE

HINGETCLUSTER HYPERCUTSET

TCLUSTER =
w* = TREEWIDTH

BICOMP CUTSET

Fig. 16. Constraint tractability hierarchy.
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Fig. 17 shows the hypergragircle(n, 2), for somen > 8. Form = 1, Circle(n, 1)
is a graph consisting of a simple cycle withedges (like a circle). Note that, for any
n > 2 andm > 0, Circle(n, m) has hypertree width 2. A width 2 hypertree decomposition
of Circle(n, m) is shown in Fig. 18. It follows that the (infinite) class of hypergraphs
U= 2.m=0lCircle(n, m)} is included in the tractability clasS(HYPERTRER).

For anyn > 0, let trianglegn) be the graph(V, E) defined as follows. The set of
verticesV contains 2 + 1 verticespi, ..., p2,+1. For each even indek 2 <i < 2n,
{pi, pi-1}, {pi, pi+1}, and{p;_1, pi+1} are edges inE. No other edge belongs tf.
Fig. 19 shows the graphangledn). TheHYPERTRERvidth of triangleqn) is 2. Indeed,
a hypertredT, x, A), whereT is a simple chain ofi verticesvs, ..., v, and, for eachy;
(1<i<n), x(vi) ={p2i-1, p2i, p2i+1} andi(v;) contains the two edgdpz;—1, p2;} and
{p2i, p2i+1}, is a width 2HYPERTREBecomposition ofriangleqn).

For anyn > 0, letbookn) be a graph havingi?+ 2 vertices and3+ 1 edges that form
n squares (pages of the book) having exactly one common gxige}. It is easy to see
that theHYPERTRERvidth of bookn) is 2. Fig. 20 shows the grafiook4).

T B

- '(o’ . C.

h; h,

Fig. 17. The hypergrap@ircle(n, 2).

Xt XX X Xy, XY {ha ha)
{X3,. ., X, X3,..., X", X,..., X7} {hz,ha}
{lel—27"'7X7T—27Xi—17'"7XT—17Xi7"'7X;n} {hn—27hn}
{X . XM, X, ., X"} {ha_1}

Fig. 18. 2-width hypertree decomposition@ircle(n, m).
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P1 D3 Ds P2n—1 Pon+1

Fig. 19. The graplriangles(n).

Y

Fig. 20. The grapibook(4).

Lemma 24. CUTSET<< HYPERCUTSET

Proof. HYPERCUTSETclearly generalizesCUTSET Moreover, HYPERCUTSE®
CUTSETIndeedU,»Zm>0 {Circle(n,m)} € C(CUTSETk) holds for anyk > 0; while,
Un>2’m>0{CircIe(n,m)} C C(HYPERCUTSET), as deleting any edge @ircle(n, m)
yields an acyclic hypergraph.o

Lemma 25. BICOMP> HYPERCUTSET

Proof. Consider the graptrrianglegn) for somen > 0. It is easy to see that the
HYPERCUTSEWidth of trianglesn) is [n/3], while its BICOMPwidth is 3. Hence,
U,,~1{trianglesn)} <€ C(BICOMR 3), while, |, ;{trianglesn)} € C(HYPERCUTSET
k) holds for everyk > 0. O

Lemma 26. BICOMPand CUTSETare strongly incomparable.

Proof. (BICOMP> CUTSET) Follows from Lemma 25 and Lemma 24.

(CUTSET> BICOMP) Consider the graphook(n) for somen > 0. The whole graph
bookn) is biconnected. Thus, itBICOMPwidth is 22 4+ 2. On the other hand, the set
{X, Y} is acycle cutset dbookin). Thus,| J,. 1{bookn)} € C(CUTSET2) holds. O

Lemma 27. BICOMP=< HINGE

Proof. In [18], it was shown thaBICOMP= HINGE Thus, it suffices to prove that
HINGE > BICOMP Consider the graptookn) defined above, for some > 0. As
observed above, thBICOMPwidth of book(n) is 2n + 2, while its HINGE width is 4.
Indeed, the minimal hinges @ook(n) correspond to the pages of the book, and each of
them has cardinality 4. O
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Lemma 28. BICOMP~<< TCLUSTER

Proof. In [7], it was observed thaBICOMP=< TCLUSTER (In fact, BICOMP was
compared withw*, which is <-equivalent toTCLUSTER FurthermoreTCLUSTER>
BICOMP follows from CUTSET> BICOMPand from the fact, observed in [7], that
TCLUSTERyeneralize€UTSETi.e., CUTSET< TCLUSTER O

Lemma 29. CUTSET<< TCLUSTER

Proof. As mentioned aboveCUTSET=< TCLUSTER[7]. Moreover, TCLUSTER>
CUTSETollows from BICOMP> CUTSETandBICOMP< TCLUSTER 0O

Lemma 30. CUTSET> HINGE

Proof. Every graph inlJ,.,{Circle(n, 1)} hasCUTSETwidth 1, because deleting any
vertex of the graph we get an acyclic graph. However, forrany2, the degree of cyclicity
of Circle(n, 1) isn [18]. O

Lemma 31. HINGEand TCLUSTERare strongly incomparable.

Proof. (HINGE > TCLUSTER Let S = {Circle(3,m) | m > 1}. For anym > 1, the
primal graphG of Circle(3, m) is a clique of 3 variables. ThusG does not need any
triangulation, because it is a chordal graph. THeLUSTERwidth of Circle(3,m) is
clearly 3n; while its HINGE width is 3, because every hypergraphSrhas only three
(hyper)edges.

(TCLUSTER > HINGE). Follows from CUTSET> HINGE and CUTSET =<
TCLUSTER O

Lemma 32. HINGE << HINGE'“tVUSTERgnd TCLUSTER<< HINGE'CLUSTER

Proof. It is easy to see that bottINGE < HINGE'CLUSTER and TCLUSTER=<
HINGE'CLUSTERhg|d. FurthermoreHINGE'CLUSTER, HINGEfollows from TCLUSTER
< HINGETCLUSTERGNd TCLUSTER> HINGE, and HINGE'CLUSTER . TCLUSTERfol-
lows fromHINGE < HINGE'CLUSTERGNdHINGE > TCLUSTER O

Lemma 33. HINGE'CLUSTERL HYPERTREE

Proof. Let H be a hypergraph, an#’ be aHINGE “-USTERdecomposition ofH of
width k. We show that there exists a hypertree decompositioftfaf width k. We will
use as a running example the hypergraph in Example 6. Fig. 11 shows the width 3
HINGETC'-USTERdecompositioﬂi;lg of Hy,, described in Example 7.

Recall that, by construction, thelINGECLUSTER decomposition’ is an acyclic
hypergraph. Note that, in gener&l;, is not a reduced hypergraph. For instarg, is
not reduced, as the ed¢¥1, X2, X3}, coming from theT CLUSTERJecomposition of the
hinge H», is a subset of X1, X2, X3, X10, X11}, which comes from the hingH;.
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Let H” be the reduced and acyclic hypergraph obtained ffghdeleting each edge
that is a subset of some other edge of the hypergraph. Thereford,{ﬁ,\g@ontains all the
edges ofH’g, but the edgé X1, X2, X3}.

We partition the edges 6f!” into three setsiE, HE, andTE defined as follows.

e The setAE contains all edges dff” that come from th@ CLUSTERdecomposition
of some hingeH; of H such that the subgragkar(H;), H;) is acyclic. In the running
example, this property holds for hingé#, Hs, and Hs. Recall that, in this case,
w(H;) = 1 holds, and the decomposition of this hinge is just the acyclic hypergraph
(var(H;), H;). For example, fo ;l’g, AE contains the edges corresponding to the
constraint scopess, sg, s7, andsg, i.e., {X4, X5, X6}, {X4, X7}, {X5, Xg}, and
{Xe, Xo}, respectively.

e The setTE contains all edges iedgesH”) — AE that come from th& CLUSTER
decomposition of some hing#; of H such that the subgraptvar(H;), H;) is
cyclic. Since theTCLUSTERdecomposition of this hypergraph is boundedihyt
follows that each edge i"E contains at most variables. In our running example,
TE contains two edge$X1, X3, Xe} and {X1, X4, X6} that we callte; and tey,
respectively.

e The setHE contains all those edges @uige$H”) — AE — TE that come from some
hinge of H. Thus, any edgé in HE is the union of at most edges belonging to
some hingeH; of H. We denote the hing#; corresponding t@ by hinggh). In our
running exampleHE contains one edgX1, X2, X3, X10, X11} that we callhe; and
comes from the hingély = {s1, s2, so} of Hy,e. Thereforehingghey) = {s1, 52, so}.

Let JT be a jointree of the acyclic hypergrapti’. Recall that each vertex of the tree
JT is an edge of{” and vice versa, and that the connectedness condition holds, i.e., the
subgraph of/T induced by any variable df{’ is connected. Fig. 21 shows a jointree of
H .

hérom JT, we define a hypertree decompositid® = (T, x, A), where the tre& has the
same shape a&", and the labelingg anda are defined through the following procedure.
For each vertex of JT, denote byp, the corresponding vertex in the tr&eof H.

(1) foreach edgé of AE, label the corresponding vertey as follows:x (p,) = h and

A(pn) = {h}.

(2) for each edgé of HE, label the corresponding vertegy, as follows: x (py) = h

andi(py) = hinggh).

| teg (X1, X4, X¢) ‘

‘ te1 (X1, X3, X¢) ‘ ‘ s5(X4, X5, X¢) |

s7(X5, Xg) ‘ sg(Xg, Xog)

Fig. 21. A jointree of the hypergrapﬁ}[g.

hey(X71, X2, X3, X10, X11) ‘ s6(X4q, X7) ‘
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‘ {X1, X4, X6} {} ‘

‘ {X1,X3,Xe} {} ‘ ‘ {X4, X5, X6} {s5} ‘

|

|{X11X21X31X101X11} {s1.s2,s9}

I{X4,X7} {Se}l I{X5,Xg} {57}||{X6vX9} {58}‘

Fig. 22. The hypertree for the running example in the proof of Lemma 33 after steps (1), (2), and (3).

‘ {X1, X4, X6} {s3} ‘

‘ {X1, X3, X6} {sa} ‘ ‘ {X4, X5, X6} {s5} ‘

|

I{X1,X2,X3xX10,X11} {s1.s2.59}

I{X4,X7} {SG}I I{Xsyxs} {57}H{X5,X9} {Ss}‘

Fig. 23. The hypertree for the running example in the proof of Lemma 33 after step (4).

(4) for each edgé of TE, label the corresponding vertgy, as follows: x (py) = h
andi(pp) = @. For the running example, Fig. 22 shows the hypertree obtained after
these three steps.

(4) for each edgé: of the hypergrapt such that there is no vertax in 7 with
h € A(g), choose a vertek of JT such that: C h andh € TE, and add: to the
A labeling of the corresponding vertey, in T (i.e., A(pp) := A(pp) U {h}). In our
running example, we add the edge whose variables ar&; and X4, to thei
labeling of the hypertree’s root, and the edgewhose variables arg4 and Xg, to
the x labeling of the left child of the root, as shown in Fig. 23.

(5) While there is a vertex in T such thaty (p) contains a variablé& not covered by
A(p) (i.e., X € x(p) — var(,(p))), proceed as follows.

(A) Find a pathr in T linking p to a vertexg such that
(i) X evar(ir(q)) and,
(i) X ¢ var(Ar(s)) for every vertexs in T — {q}.
(B) Choose an edge e A(g) such thatX € .
(C) Addh to bothi(s) andy (s), for every vertex € m —{q} (i.e.,x (s) :== x (s)Uh,
andi(s) := A(s) U {h}).
In the running example, the root contains the variatdehat is not covered by the
edgess (see Fig. 23). Then, we choose the path connecting the root and its right
child, because&(s occurs in some edge belonging to itdabeling, namely in the
edgess. Thus, we adds to the A labeling of the root, and the covering &fs is
done. Similarly, the variabl&1 occurring in the left child of the root is covered by
adding to its: labeling the edge;, which occurs in its child. Fig. 24 shows the final
hypertree obtained for the running example.
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‘ {X1,X4, X6} {sg.s5} ‘

‘ {X1,X3, X6} {sa,s1} ‘ ‘ {X4, X5, X6} {sp} ‘

|{X11X21X31X101X11} {s1.s2,s9}

I{X4,X7} {Se}l I{X5,Xg} {57}||{X6vX9} {58}‘

Fig. 24. The final hypertree for the running example in the proof of Lemma 33.

Note that, after steps (1), (2), and (3), the connectedness condition (i.e., condition (2)
of Definition 12) clearly holds inrHD because it holds in the jointre&’. However, for
any vertexpy, of T corresponding to a vertgxe TE of JT, step (3) only provides thg
labeling forpy,. Thus, in step (4), we select the edgegtthat cover these variables in the
vertexpy, of the decompositio#/D, i.e., we define thé labeling for pj,.

Since the connectedness condition is preserved in step (3) above, it is easy to verify
that, at the end of the procedut®p is a hypertree decomposition &f. Moreover, its
HYPERTRERvidth is at mosk. Indeed, by the above construction, it follows that for each
vertexh € HE, |A(pp)| = |hinggh)| < k, and, for each vertei’ € TE, |A(pp)| < || <
k. O

Lemma 34. HINGE'CLUSTER . HYPERTREE

Proof. From Lemma 33 HINGE CLUSTER< HYPERTREEholds. We next show that
HYPERTREE> HINGETCLUSTER Consider the cyclic hypergragbircle(n, m), for any

n > 2,m > 0. This hypergraph has a unique hinge containing all its edges, and
therefore itsHINGE width is n. Moreover, its primal graph contains maximal cliques
of cardinality at least 2, and thus itsSTCLUSTERwidth is at least &. It follows that
Un=2.m=0 {Circle(n,m)} ¢ C(HINGET®'YSTER k) holds for anyk > 0. However, for
HYPERTREEJ,,. 5 - o{Circle(n, m)} € C(HYPERTRER2) holds. (See Fig. 18 for a
hypertree decomposition @ircle(n, m) of width 2.) O

Lemma 35. HINGE' CLUSTERgndHYPERCUTSEre strongly incomparable.

Proof. HINGE'CLUSTER, HYPERCUTSEMllows from BICOMP> HYPERCUTSEand
BICOMP=< HINGETCLUSTER
HYPERCUTSEF HINGETCLUSTER |ndeed,

|J (Circle(n.m)} ¢ C(HINGET-VSTER )

n>2,m>0

holds for anyk > 0; while,

U (Circle(n, m)} € C(HYPERCUTSET). O

n>2,m>0

Lemma 36. HYPERCUTSE®< HYPERTREE
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Proof. We have thaHYPERTREE HYPERCUTSEBecause, from Lemma 2BJCOMP
> HYPERCUTSE®=NdBICOMP< HYPERTREE

We next prove thaHYPERCUTSEK HYPERTREELet H be a hypergraph and
H C edgesH) a cycle hypercutset df{. Let k be the cardinality offf. Let H' be the
subhypergraph ot induced byvar(H) — var(H), i.e., the hypergraph having an edge
h'(h) = h — var(H) for each edgé: € edge$H) such thath — var(H) # @. Note that,
in general,H’ is not connected. By definition of cycle hypercutskt,is acyclic. Thus,
there exists a join forest fd’, i.e., a set of jointreegTy, ..., JT; corresponding to the
connected components &f .

We show that there exists a hypertree decompositigh = (T, x, ) of H having
width k 4+ 1. The rootr of T is labeled by the cycle hypercutsst, i.e., A(r) = H, and
x(r) =var(H). The rootr has¢ children{p1, ..., p¢} corresponding to thé jointrees
JT1, ..., JT;. In particular, each subtre®,, rooted at a chilgp; (1 <i < £) has the same
tree shape as the jointrdd&;. Moreover, lety be a vertex of the jointreéT;, andh be an
edge ofH such that:'(h) is the edge ofH’ associated to the vertexof JT;. We label the
corresponding vertex in T, as follows:A(g) = {h} U H, andy (g) = h Uvar(H).

It is easy to see that the hypertrB® is a hypertree decomposition &f, and its width
isk + 1. It follows thatHYPERCUTSEX HYPERTREE O

8. Binary CSPs

In this section, we focus on binary constraints satisfaction problems, i.e., on CSPs where
the constraints relations have arity at most two.

On binary constraint networks, the differences among the decomposition strategies,
highlighted in Section 7, become less evident. Indeed, bounding the arities of the constraint
relations, thek-tractable classes of some decomposition strategies collapse, while some
generalizations are no longer strong generalizations.

Let <<pin, <bin, >bin, @aNd=pin the relations on the decompositions strategies induced
by <<, <, >, and=, respectively, when only binary CSPs are considered.

In Fig. 25, full arcs (and paths containing full arcs) represeny, relationships, while a
dashed arc from a methd®; to a methodD, means thaD; <pin D2 and D2 Zpin D1, but
atthe same tim®; #4<pin D2. From the latter relationship, it follows that every clésthat
is tractable according t®1 is also tractable according 0, i.e., the D, width of every
graph belonging to the clag3is bounded by some constant- 0. However,D> Zpin D1
entails thatD, decompositions are more “efficient”, in the sense that solvibg-¢éractable
class byD»-solution methods is feasible by augmenting the worst-case complexity by at
most an additive constant in the exponent, while this is not possible in the other direction.

Theorem 37. For each pairD; and D, of decompositions methods represented in Fy.
the following holds
e There is a directed path fror1 to D> if and only if D1 <pin D>.
e There is a directed path containing at least one full arrow frdmto D» if and only
if D1 <<pin D>.
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[ Hypertree Decomposition J

Hinge+Tree Clustering =p;p,

Tree Clustering =p;,

w* =p;p treewidth

et

Hinge Decomposition

t Biconnected Components

Cycle Cutset

Fig. 25. Tractability hierarchy for binary CSPs.

e D1 and D3 are not linked by any directed path if and only if they are incomparable
with respect to thepi, relationship, i.e., if bothD1 Z£pin D2 and D2 Z£pin D1 hold.

The following lemmas provide the proof of this theorem.
Lemma 38. HINGE << TCLUSTER

Proof. First note thatTCLUSTER>pi, HINGE follows from the proof showing that
TCLUSTER>HINGE Indeed, for any: > 2, the graplCircle(n, 1) has degree of cyclicity
n, while it hasTCLUSTERwidth 3.

To prove thaHINGE <pjn TCLUSTERwe show that for any grapti = (V, E) HINGE
width(G) > TCLUSTERwidth(G). If G is an acyclic graph, then its degree of cyclicity is
2 and itsTCLUSTERwidth is 1, by definition. Now, assumg is a cyclic graph and Ief
be a hinge decomposition 6f. From the definition of hinge decomposition, it follows that
T represents a join tree of an acyclic hypergraph.

We recall from [19] that, given a hingd of G, H' C H is a hinge ofG if and only
if H' is a hinge of the grapkvar(H), H). It follows that any minimal hinge oG must
be a connected set of edges. Moreover, it is easy to see tHaisfa minimal hinge and
(var(H), H) is acyclic, then H| = 2.

Let 7’ be a new join tree initially set equal #. As long as there exists some vertex of
T’ corresponding to a 2-edges hinge®fmodify T’ as follows:

(1) select avertep of T’ containing two edges daf e1 andey;

(2) add toT’ two verticesp1 and p, containing edges; andey, respectively;

(3) add an edge connectipg andp’ for any vertexp’ of T’ connected tg» and sharing

e1 with p;
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(4) add an edge connectipg andp’ for any vertexp’ of T’ connected tg and sharing
e2 With p;

(5) removep and all its incident edges froff .

It is easy to verify that the final tre&’ obtained when the procedure above terminates
satisfies the connectedness condition of join trees. In fact, it represents an acyclic
hypergraph, sag{'.

Let G’ be the primal graph of’. The graphG’ is clearly chordal and& < E’, thus it can
be obtained by some suitable triangulatiorfofLet k be the number of variables occurring
in the largest cliqu& of G’. SinceG is a cyclic graphk > 2. By construction ofG’, the
cligue C corresponds to some minimal hingeof G such that the graptvar(H), H) is
both connected and cyclic. This entails thdt > var(H) = k.

It follows that £ < HINGEwidth(G), becauseHINGE-width(G) is equal to the
cardinality of the largest minimal hinge &f. Thus the lemma holds, becauB8LUSTER
width(G) < k, asG’ witnesses that there exists a graph obtained by some triangulation of
G whose maximal clique has cardinalty O

Lemma 39. The following relationships hold betweetY PERTREBNdTCLUSTER
e TCLUSTER<pin HYPERTREE
e HYPERTREE: i, TCLUSTERand
e HYPERTRERpin TCLUSTER

Proof. (TCLUSTER=pin HYPERTRERE Easily follows from the same construction
described in Lemma 33 to prove tHAINGE' CLUSTER< HYPERTREE

(HYPERTRERE»hin TCLUSTER) Follows from the fact that, for any grapld,
TCLUSTERWIdth(G) < 2 - HYPERTREHRvidth(G). Let HD be anyk-width hypertree
decomposition of a grap&y. The hypergraph corresponding to the acyclic instance built
according tdHD has a primal grapty’ whose largest clique containsi2variables at most.
Indeed, at most edges can be associated to any vepef the hypertree decomposition
and hencear(p) < 2-k.

(HYPERTREEpin TCLUSTER) Observe that, for every > 3, the complete graph
K, has HYPERTREEwidth [n/2], while it has TCLUSTERwidth n. Thus, K, €
C(HYPERTRERY), for eachn’ > [n/2], while K, ¢ C(TCLUSTER~»"), for eachn” <
n. It follows that there is no fixed such that, for every > 0, C(HYPERTREEK) C
C(TCLUSTERk +46). O

Lemma 40. The following relationships hold betweetY PERCUTSEandCUTSET
e CUTSET=pin HYPERCUTSET
e HYPERCUTSER i CUTSET and
e HYPERCUTSEZpin CUTSET

Proof. The proofs of the first two points above are straightforward. We next show that
HYPERCUTSERpin CUTSET Consider the graplrianglegn) for somen > 0. It is

easy to see that thdYPERCUTSEWidth of triangleqn) is [n/3], while its CUTSET
width is [rn/2]. Thus,trianglegn) € C(HYPERCUTSET'), for eachn’ > [n/3], while
trianglesn) ¢ C(CUTSET#"), for eachn” < [n/2]. It follows that there is no fixed

such that, for every > 0, C(HYPERCUTSEL) C C(CUTSETk +6). O
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All the other relationships follow from transitivity, or from the corresponding proofs
given in the general case of hypergraphs, which carry over to the binary case.

9. Solving nonbinary CSPs by dualization

Many structural decomposition methods have been designed to identify “easy” graph
structures, rather than “easy” hypergraph structures. In Section 4, we described binary
decomposition methods (i.e., decomposition methods designed for graphs, but not for
hypergraphs) acting on the primal graph of the hypergraph associated to the given CSP
instance. As we showed in the previous section, for binary CSPs some methods become
closer to the hypertree-decomposition method.

An alternative approach to the solution of nonbinary CSPs is to exploit binary methods
on the dual graph of a hypergraph. (See, e.g., [7].) Given a CSP instaritbe dual
graph[7,9,22] of the hypergraph; is a graprG‘j = (V, E) defined as follows: the set of
verticesV coincides with the set of (hyper)edges7df, and the sef contains an edge
{h, 1’} for each pair of verticeg, i’ € V such that: N 1’ # (. That is, there is an edge
between any pair of vertices corresponding to hyperedges atharing some variable.

The dual graph often looks very intricate even for simple CSPs. For instance, in general,
acyclic CSPs do not have acyclic dual graphs. However, it is well known that the dual graph
G? can be suitably simplified in order to obtain a “better” graghwhich can still be used
to solve the given CSP instanéeln particular, if/ is an acyclic CSR;}‘,’ can be reduced
to an acyclic graph that represents a jointre@of In this case, the reduction is feasible
in polynomial (actually, linear) time. (See, e.g., [22].)

Definition 41. Let G = (V, E) be the dual graph of some hypergrdghFor any pair of
verticesh, ' € V, lete({h,h'}) =hNk'. A reductG’ of G is a graph(V’, E’) satisfying
the following conditions:
@i vi=v;
(i) E'CE;and
(iii) foreach edge; = {h, 1’} belonging to(E — E’), there exists irG’ a pathP from &
to /', such that the variables i{g) are included irf(¢") for each edge’ occurring
in the pathP. Thatis, if all the variables shared by two vertices occur in some other
path between these vertices, the edge connecting them can be safely deleted from
the dual graph.

We denote byred(G) the set of all theminimal reductsof a graphgG, i.e., the set
containing every grapts’ which is a reduct of5 and whose set of edges is minimal (with
respect to set inclusion) over all the reductsifClearly, computing a graph belonging to
red(G) is feasible in polynomial time, because one can just repeatedly delete an edge as
long as possible.

Itis thus natural to try to solve a nonbinary C&RBsing any decompaosition meth&iu
on its dual graph:

(1) compute fronG¢ a suitable reduct € red(G¢);

(2) compute &M decomposition of the grapti;
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(3) solve the instancé using this decomposition.

For instanceBICOMPcan easily be modified to be used on the dual graph of a given
hypergraph [11]. Call this dual versiddlCOMP. The relationship betweeBICOMP
andHINGEhas already been discussed in [18]: it was provedHhIGE is more general
thanBICOMP. However, Gyssens et al. observed that a fine comparison between the two
methods is quite difficult because the performancBi&OMP strongly depends on the
simplification applied th?, i.e., depends on the particular graphémi(G?) selected to
solve the given CSP instande They also argued that there is no obvious way to find a
suitable simplification good enough to keep small the biconnected width of the reduct to
be used for solving the problem.

SinceHYPERTREBtrongly generalizeslINGE, it follows thatHYPERTREBtrongly
generalizeBICOMP. However, as suggested by Dechter (personal communication), it
would be interesting to compakeY PERTRERvith the dual version of CLUSTERshort:
TCLUSTER), defined as follows. Let{ be a hypergraph, and its dual graph. An
acyclic hypergrapt* is a TCLUSTER decomposition ofH of width w if H* is a
TCLUSTERdecomposition ofG’ of width w, for some reductG’ € red(G). The dual
tree-clustering widtt{short: TCLUSTER width) of 7 is equal to the minimum width over
the TCLUSTER decompositions of{.

We next show thatlYPERTREBtrongly generalizes tiECLUSTER method, too. To
this end, we introduce a new class of hypergraphs. Fomanyl let D-Clique(n) be the
hypergraph having + 2 edgedhy, hp, h1, ho, ..., h,} defined as follows:

o ha={X{|1<i<j<n);

o hy={X};|1<i<j<n);

o for1<i<m, hy =(X§;, X4, ..., X" ;. X% 0., X0 U

(X5, X5 X0 X0 X
We denote byG¢(n) the dual graph oD-Clique(n).

Example 42. Consider the hypergraph-Clique(4). Its edges are

h1 = {X{p X1 X1, X13, X1, X74);

ha = (X1 X1, X33, X33, X354, X5);

hs = {X{3 X33, X33, X33, X5, X34);

ha = {X14, Xl174v X4 X1274’ X34, XI§4}§

he = (X§11<i < j <4}

hy = {X};11<i<j<4).
Fig. 26 shows the dual grapt“(4). Note that this graph cannot be reduced, and
hencered(G%(4)) = {G%(4)}. For instance, consider the vertidesand’4. Their shared
variables arex§, and X%,. For anyt ¢ {1,4,a,b}, h, N h1 = {X4,, X2}, which clearly
does notincludé¢Xxy,, Xll’4}. MoreoverX’{4 ¢ h1Nhg andX§, ¢ h1Nhy. Thus, we cannot
delete the edgghs, h4}, and in fact no edge can be deleted frai(4).

Apply TCLUSTERto G%(4). It is already a chordal graph, therefore we can directly
identify the maximal cliques, that form the edges of th€eLUSTERdecomposition
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h1 h2

hs hy

Fig. 26. The dual graph ab-Clique(4).

{X8, X} 11<i<j<n} {hahp}

a a a a b a 3 a b
| {X127X{z2’X13’X;’37X14‘Xi’él} {h:} |{X14’X14’X24vX24:Xaq’xu} {ha}

[0, X, X8y X X0 XEa} {02} | [ G0, X X, X, X XEa) (ho} |

Fig. 27. A hypertree decomposition &f-Clique(4).

of G%(4). The resulting acyclic hypergraph has the two ed@es i1, ho, ha, hs}, and
{hy, h1, h2, h3, ha}. Thus, theTCLUSTER width of D-Clique(4) is 5.

The HYPERTREBwidth of D-Clique(4) is 2. Fig. 27 shows a complete hypertree
decomposition(7, x, ») of D-Clique(4) having width 2. Observe that, exploiting the two
edgedi; andhy, even the root of” alone covers all the variables occurringClique(4),
and is in fact a hypertree decomposition of this hypergraph. To obtain the complete
hypertree decomposition shown in Fig. 27, the remaining edges are simply “attached” as
singletons to the root.

Theorem 43. TCLUSTER << HYPERTREE

Proof. (HYPERTREE- TCLUSTER.) Consider the hypergraph clag®-Cliquen) |

n > 1}. Generalizing the above example, it is easily seen that, forapy 3, the
setred(G%(n)) is a singleton containing only the dual gragif (n) of D-Clique(n).

This graph is chordal, its maximal cliques afk,, i1, ..., h,} and {hp, h1, ..., hy,},

and hence theTCLUSTER width of D-Clique(n) is n + 1. Thus, for anyk > 0,
U,~o{D-Clique(n)} & C(TCLUSTER, k), whereas the hypertree width of all these
hypergraphsis 2, i.el,J,. o{ D-Clique(n)} € C(hypertree2). Indeed, a tree with a single
vertex r with A(r) = {hg, hp} and x(r) = h, U hp is a hypertree decomposition
of D-Clique(n), though not complete. Fig. 27 shows what a complete hypertree
decomposition for such hypergraphs looks like.

(TCLUSTER < HYPERTREE Let # be aTCLUSTER decomposition of a hyper-
graph’H of width k. Then,H’ is an acyclic hypergraph whose edges are sets containing
at mostk edges fromH. Any join treeJT of H’ can be mapped straightforwardly to a
hypertree decompositiof’, x, 1) of H with the same tree-shape 3. Every vertexp



280 G. Gottlob et al. / Artificial Intelligence 124 (2000) 243-282

in T corresponds to a vertex' in JT. The vertexp’ of the join tree ofH’ corresponds
to a maximal clique of (some reduct of) the dual grapigfand hence contains a set
of edges occurring ift{. Then, the vertey in the hypertree decomposition is labeled by
A(p) =S andy (p) = var(S). Clearly the hypertree decompositiGh, x, A) has the same
width as theTCLUSTER decompositiort{’. O

Note that theTCLUSTER width of H does not depend on the choice of the reduct
of the dual graph. The width is in fact computed using an optimal redu¢t,afe., a
reduct leading to a lowest-widthCLUSTERdecomposition of{. However, as observed
in [18], it is not clear how to choose the right reduct in order to obtainTiBe USTER
decomposition having the smallest width. In fact, it is currently not known whether, for a
fixedk, deciding whether thECLUSTER width of a hypergraph is at mokts feasible in
polynomial time. Thus, compared CLUSTER, HYPERTRERS strongly more general
andk-bounded hypertree decompositions are efficiently computable.

Clearly, the above result holds fOREEWIDTHandw*, too, given the equivalence of
these methods (see Section 4).

10. Conclusion

In this paper we have established a framewaork for systematically comparing structural
CSP decomposition methods with regard to their power of identifying large tractable
classes of constraints. We have compared the main decomposition methods published in
the Al literature. Moreover, we have adapted the method of hypertree decompositions,
previously defined in the database context, to the CSP setting. We compared all methods
both for CSPs of arbitrary arity and for binary CSPs. In both cases it turned out that the
hypertree decomposition method is more general than the others; in the case of general
CSPs this holds even in a very strong sense. We have also shown that the method of
hypertree decompositions is more general than any dualization method which applies a
standard decomposition method to the dual graph of the constraint hypergraph of a CSP. We
have derived the upper time bound|@|**1log|Z||) for the solution of a CSP instance
I having ak-width hypertree decomposition. Note that this bound is not worse than the
bound for any other considered method of CSP decompositions. Thus, it appears that the
method of hypertree decompositions is currently the most powerful CSP decomposition
method.

The comparison results and complexity bounds presented in this paper are valid for
general CSP instances whose domain size is unrestricted. Further work is needed both on
suitable extensions or modifications of decomposition methods and on the comparison of
the various methods for some relevant special cases, in particular, for CSPs fixithl a
domain size Moreover, as already remarked, both tHINGE and theBICOMPwidth
of a hypergraph can be computed in polynomial time even if no fixed bound is given.
Thus, these methods may be useful for providing in polynomial time a “measure of the
cyclicity” of any arbitrary CSP instance. For some practical applications where the given
CSP instances have large hypertree witHiNGE and BICOMPdecompositions may be
used for the fast identification of “easy” and “hard” modules (or clusters) of the constraint
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hypergraph. Moreover, the algorithm for computing hypertree decompositions itself may
suitably be modified to identify and output clusters of low hypertree-width in case the
entire hypergraph has a high width.

We believe that our comparison results provide insight into the relationship of various
standard methods of constraint decomposition. Constraint satisfaction is a very lively field
and several new methods and techniques for decomposing and solving CSPs are expected
to be proposed in the years to come. We hope that the results of this paper, our comparison
framework, and our proof techniques will be useful to other authors for assessing the
relative strength of their methods, and for comparing them to existing methods.
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