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Abstract

We compare tractable classes of constraint satisfaction problems (CSPs). We first give a uniform
presentation of the major structural CSP decomposition methods. We then introduce a new class of
tractable CSPs based on the concept ofhypertree decompositionrecently developed in Database
Theory, and analyze the cost of solving CSPs having bounded hypertree-width. We provide a
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and compare the most relevant methods. We show that the method of hypertree decomposition
dominates the others in the case of general CSPs (i.e., CSPs of unbounded arity). We also
make comparisons for the restricted case of binary CSPs. Finally, we consider the application of
decomposition methods to the dual graph of a hypergraph. In fact, this technique is often used to
exploit binary decomposition methods for nonbinary CSPs. However, even in this case, the hypertree-
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1. Introduction and summary of results

The efficient solution ofConstraint Satisfaction Problems (CSPs)has been for many
years an important goal of AI research. Constraint satisfaction is a central issue of
problem solvingand has an impressive spectrum of applications [23]. A constraint
(Si,Ri) consists of aconstraint scopeSi , i.e., a list of variables and an associated
constraint relationri containing the legal combinations of values. A CSP consists of a set
{(S1, r1), (S2, r2), . . . , (Sq, rq )} of constraints whose variables may overlap (for a precise
definition, see Section 2). A solution to a CSP consists a of an assignment of values to
all variables such that all constraints are simultaneously satisfied. Bysolvinga CSP we
mean determining whether the problem has a solution at all (i.e., checking forconstraint
satisfiability), and, if so, compute one solution.

Constraint satisfiability is equivalent to various database problems [4,7,18,21], e.g.,
to the problem of conjunctive query containment [21], or to the problem of evaluating
Boolean conjunctive queriesover a relational database [22] (for a discussion of this and
other equivalent problems, see [15]). Actually, evaluating Boolean conjunctive queries,
and deciding constraint satisfaction can be also recast as the same fundamental algebraic
problem of deciding whether, given two finite relational structuresA andB, there exists a
homomorphismf :A→B [21].

Constraint satisfiability in its general form is well known to be NP-hard. Much effort
has been spent by both the AI and database communities to identifytractable classes
of CSPs. Both communities have obtained deep and useful results in this direction. The
various successful approaches to obtain tractable CSP classes can be divided into two main
groups [23]:
• Tractability due to restricted structure. This includes all tractable classes of

CSPs that are identified solely on the base of the structure of the constraint scopes
{S1, . . . , Sq }, independently of the actual constraint relationsr1, . . . , rq .
• Tractability due to restricted constraint relations. This includes all classes that are

tractable due to particular properties of the constraint relationsr1, . . . , rq .
This paper deals with tractability due to restricted structure. There are several papers

proposing polynomially tractable classes of constraints based on different structural
properties of the constraint scopes. Usually, these properties can be formalized as graph-
theoretic properties of theconstraint graphin case of binary constraints, or of the
constraint hypergraphin the general case. The constraint hypergraph of a CSP is the
hypergraph whose vertices are the variables of the CSP and whose hyperedges are the
sets of all those variables which occur together in a constraint scope.

It is well known that CSPs withacyclic constraint hypergraphs are polynomially
solvable [7]. The known structural properties that lead to tractable CSP classes are all
(explicitly or implicitly) based on some generalization of acyclicity. In particular, each
method defines some concept ofwidthwhich can be interpreted as a measure of cyclicity of
the underlying constraint (hyper)graph such that, for each fixed widthk, all CSPs of width
bounded byk are solvable in polynomial time. There is a plethora of proposed methods
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based on various different measures of cyclicity, but little was known so far on the relative
strength of the different methods. A comparison of the main methods is called for.

In this paper we establish a framework for uniformly defining and comparing structural
CSP decomposition methods. Within this framework we compare the main methods that
have been published so far. In particular, we deal with the following methods (which are
reviewed in detail in Section 4): Cycle Cutset [7], Tree Clustering [9], Treewidth [24],
Hinge Decomposition [18,19], Hinge Decomposition with Tree Clustering [18], Cycle
Hypercutset, and Hypertree Decomposition [16].

We first point out that every considered CSP-decomposition methodD gives rise to an
infinite hierarchy of CSP classes:

C(D,1)⊂ C(D,2)⊂ · · · ⊂ C(D, i), · · ·

such that the CSPs of each classC(D,k) are solvable in time bounded by a polynomial.
In particular, for each CSPC belonging to classC(D,k) there exists adecompositionof
width6 k, i.e., a data structure witnessing thatC can be transformed in polynomial time
into an equivalent acyclic CSP.

For each CSP-decomposition methodD, the classC(D,k) is a tractable class of CSPs
because the following important tasks are tractable:

(1) Checking membership of a CSPC in C(D,k), and computing a corresponding CSP
decomposition forC.

(2) Solving the CSPC. In turn, this task usually consists of the following two subtasks:
• Transforming C in polynomial time into an equivalent acyclic CSPC′, and
• solvingC′ in polynomial time by using well-known algorithms.

In this paper we compare only those methods that are tractable in the above sense. In fact,
there are methods for solving CSPs, reported in the literature, for which only one of the
two tasks (1) and (2) above is tractable, while the other one is NP-hard. For instance, task
(1) is NP-complete for the method ofbounded query decompositionsdefined by Chekuri
and Rajaraman [6] (see [16] for an NP-completeness proof), while task (2) is intractable
for an early method proposed by Freuder [10,11] (see Section 4 for an NP-completeness
proof).

For a pair of decomposition methodsD1 andD2, we define the following comparison
criteria:
• Generalization.D2 generalizesD1 if there exists a constantδ such that, for each level
k,C(D1, k)⊆ C(D2, k+δ) holds. In practical terms, this means that whenever a class
C of constraints is tractable according to methodD1, it is also tractable according
to D2. Moreover, the worst case runtime upper bound guaranteed by methodD2 is
polynomially bounded by the worst case upper bound guaranteed by methodD1;
more precisely, the overhead ofD2 with respect toD1 is at mostnδ, wheren is the
size of the input CSP. Note that for all pairs of methods compared in this paper,δ

is at most 1. This means thatthere is no significant loss of efficiencywhen replacing
methodD1 with the more general methodD2.
• Beating.D2 beatsD1 if there exists an integerk such thatC(D2, k) is not contained

in classC(D1,m) for anym. Intuitively, this means that some classes of problems are
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tractable according toD2 but not according toD1. For such classes, usingD2 is thus
better than usingD1.
• Strong generalization.D2 strongly generalizesD1 if D2 generalizesD1 andD2

beatsD1. This means thatD2 is really the more powerful method, given that,
wheneverD1 guarantees polynomial runtime for constraint solving, then alsoD2
guarantees tractable constraint solving, but there are classes of constraints that can
be solved in polynomial time by usingD2 but are not tractable according toD1.
• Equivalence.D1 andD2 areequivalentif D1 generalizesD2 andD2 generalizesD1.

Intuitively, this means that the methods are polynomial on the same classes of CSPs
and do not differ significantly from each other.

In this paper we completely classify all above-mentioned decomposition methods
according to these criteria. The result of the classification is given in Fig. 1. This figure,
in addition mentions another method (ω∗) which is known to be equivalent to the tree-
clustering method [9].

An arrow from a methodD1 to a methodD2 in Fig. 1 indicates thatD2 is strongly more
general thanD1. Since this relationship is transitive, also a directed path between two
methods indicates the same relationship. The picture iscompletein the sense that there is
a directed path from methodD1 to methodD2 if and only if D2 strongly generalizesD1.
On the other hand, whenever two methods are not related by a directed path, then they are
incomparablewith respect to the generalization relation, and, moreover, each of the two
methods beats the other.

Fig. 1 shows that the method of Hypertree Decompositions dominates all other methods,
as it is strongly more general than the other decomposition methods. This method
was originally introduced in the database field for identifying a large class of tractable
conjunctive queries [16]. In this paper we adapt this notion to the setting of constraints and
we show that constraints of bounded hypertree-width are polynomially solvable, providing

Fig. 1. Constraint tractability hierarchy.
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a precise complexity analysis. In particular, we show that CSPs of hypertree widthk can
be solved in time O(nk+1× logn).

Hypertree width is a measure of cyclicity specifically designed forhypergraphs. It is
interesting to see how the situation changes in the special case ofgraphs, i.e., of binary
CSPs. To answer this question, we have compared all considered method in the binary case
(in Section 8; see Fig. 25). Again, it turns out that the method of Hypertree Decomposition
dominates the others, but this time in a slightly weaker sense to be explained in Section 8.

It was recently asked1 whether the method of Hypertree Decompositions can be
explained in terms of simpler and well-known graph cyclicity measures. To every
hypergraphH one defines thedual graphof H by taking as vertices the hyperedges ofH
and by connecting two vertices by an edge if their corresponding hyperedges intersect. The
question arose whether the hypertree width of a hypergraph coincides with the treewidth
or TCLUSTER width of the dual graph ofH (See Section 9 for definitions). We study this
interesting question in Section 9 and give a negative answer. More generally, we show that
the method of hypertree decompositionsstrongly generalizesall relevant binary methods
based on the dual graph of a given hypergraph.

This paper is organized as follows. Section 2 contains preliminaries on CSPs. In
Section 3 we discuss tractability of CSPs due to restricted structure. In Section 4 we review
well-known CSP decomposition methods. In Section 5 we describe the new method of
hypertree decompositionsand analyze the cost of solving CSPs having bounded hypertree-
width. In Section 6 we explain our comparison criteria and in Section 7 we present the
comparison results for general CSPs. The case of binary CSPs is briefly discussed in
Section 8. In Section 9 we consider the application of “binary” methods to the dual graph
of a hypergraph. Finally, in Section 10, we draw our conclusions.

2. Constraint satisfaction problems

An instance of aconstraint satisfaction problem (CSP)(alsoconstraint network) is a
triple I = (Var,U,C), whereVar is a finite set of variables,U is a finite domain of values,
andC = {C1,C2, . . . ,Cq } is a finite set of constraints. Each constraintCi is a pair(Si , ri ),
whereSi is a list of variables of lengthmi called theconstraint scope, andri is anmi -
ary relation overU , called theconstraint relation. (The tuples ofri indicate the allowed
combinations of simultaneous values for the variablesSi ). A solution to a CSP instance
is a substitutionϑ : Var→ U , such that for each 16 i 6 q , Siϑ ∈ ri . The problem of
deciding whether a CSP instance has any solution is calledconstraint satisfiability (CS).
(This definition is taken almost verbatim from [20].)

Many well-known problems in Computer Science and Mathematics can be formulated
as CSPs.

Example 1. The famousgraph three-colorability(3COL) problem, i.e., deciding whether
the vertices of a graphG = (Vertices,Edges) can be colored by three colors (say: red,
green, blue) such that no edge links two vertices having the same color, is formulated as

1 Rina Dechter, personal communication at IJCAI-99.
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Fig. 2. The graphG1.

Fig. 3. A crossword puzzle.

follows as a CSP. The setVar contains a variableXv for each vertexv ∈ Vertices. For
each edgee = {v,w} ∈ Edges, wherev < w according to some ordering onVertices, the
setC contains a constraintCe = (Se, re), whereSe = (Xv,Xw) andre is the relationr6=
consisting of all pairs of different colors, i.e.,r6= = {〈red,green〉, 〈red,blue〉, 〈green, red〉,
〈green,blue〉, 〈blue, red〉, 〈blue,green〉}.

For instance, the set of constraints for the graphG1 in Fig. 2 is the followingC =
{((A,B), r6=), ((A,D), r6=), ((A,G), r6=), ((B,C), r6=), . . . , ((G,H), r6=)}.

Example 2. Fig. 3 shows a combinatorial crossword puzzle, which is a typical CSP [7,
23]. A set of legal words is associated to each horizontal or vertical array of white boxes
delimited by black boxes. A solution to the puzzle is an assignment of a letter to each white
box such that to each white array is assigned a word from its set of legal words.

This problem is represented as follows. There is a variableXi for each white
box, and a constraintC for each arrayD of white boxes. (For simplicity, we just
write the index i for variable Xi .) The scope ofC is the list of variables corre-
sponding to the white boxes of the sequenceD; the relation ofC contains the legal
words forD. For the example in Fig. 3, we haveC1H = ((1,2,3,4,5), r1H), C8H =
((8,9,10), r8H), C11H = ((11,12,13), r11H), C20H = ((20,21,22,23,24,25,26), r20H),
C1V = ((1,7,11,16,20), r1V ),C5V = ((5,8,14,18,24), r5V ),C6V = ((6,10,15,19,26),
r6V ), C13V = ((13,17,22), r13V ). SubscriptsH andV stand for “Horizontal” and “Ver-
tical”, respectively, resembling the usual naming of definitions in the crossword puzzles.
A possible instance for the relationr1H is {〈h,o,u, s, e〉, 〈c, o, i, n, s〉, 〈b, l, o, c, k〉}.
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It is well-known and easy to see that Constraint Satisfiability is an NP-complete problem.
Membership in NP is obvious. NP-hardness follows, e.g., immediately from the NP
hardness of 3COL [13].

3. Tractable classes of CSPs

Much effort has been spent by both the AI and database communities to indentify
tractable classesof CSPs. Both communities have obtained deep and useful results in
this direction. The various successful approaches to obtain tractable CSP classes can be
divided into two main groups [23]:

(1) Tractability due to restricted structure. This includes all tractable classes of CSPs
that are identified solely on the base of the structure of the constraint scopes
{S1, . . . , Sq }, independently of the actual constraint relationsr1, . . . , rq .

(2) Tractability due to restricted constraints.This includes all classes that are tractable
due to particular properties of the constraint relationsr1, . . . , rq .

The present paper deals with tractability due to restricted structure.
The structureof a CSP is best represented by its associatedhypergraphand by the

correspondingprimal graph, defined as follows. To any CSP instanceI = (Var,U,C), we
associate a hypergraphHI = (V ,H), whereV = Var, andH = {var(S) | C = (S, r) ∈ C},
wherevar(S) denotes the set of variables in the scopeS of the constraintC. Fig. 4 shows
the hypergraphHcp associated to the crossword puzzle of Example 2.

Since in this paper we always deal with hypergraphs corresponding to CSPs instances,
the vertices of any hypergraphH = (V ,H) can be viewed as the variables of some
constraint satisfaction problem. Thus, we will often use the termvariable as a synonym
for vertex, when referring to elements ofV . Moreover, for the hypergraphH = (V ,H),
var(H) andedges(H) denote the setsV andH , respectively.

LetHI = (V ,H) be the constraint hypergraph of a CSP instanceI . Theprimal graph
of I is a graphG= (V ,E), having the same set of variables (vertices) asHI and an edge
connecting any pair of variablesX,Y ∈ V such that{X,Y } ⊆ h for someh ∈H .

Fig. 4. HypergraphHcp of the crossword puzzle in Example 2.
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Note that if all constraints of a CSP are binary, then its associated hypergraph is identical
to its primal graph.

The most basic and most fundamental structural property considered in the context of
CSPs (and conjunctive database queries) isacyclicity. It was recognized independently in
AI and in database theory thatacyclicCSPs are polynomially solvable. A CSPI is acyclic
if its primal graphG is chordal (i.e., any cycle of length greater than 3 has a chord) and the
set of its maximal cliques coincide withedges(HI ) [2].

A join treeJT (H) for a hypergraphH is a tree whose vertices are the edges ofH such
that, whenever the same variableX ∈ V occurs in two edgesA1 andA2 ofH, thenA1 and
A2 are connected inJT (H), andX occurs in each vertex on the unique path linkingA1 and
A2 in JT (H). In other words, the set of vertices in whichX occurs induces a (connected)
subtree ofJT (H). We will refer to this condition as theConnectedness Conditionof join
trees.

Acyclic hypergraphs can be characterized in terms of join trees: A hypergraphH is
acyclic iff it has a join tree [2,3,22]. There exist various equivalent characterizations of
acyclic hypergraphs [2,14,22]. Checking the satisfiability of acyclic CSPs (or, equivalently,
evaluating acyclic conjunctive queries) is not only tractable but also highly parallelizable.
In fact, as shown in [15], this problem is complete for the complexity class LOGCFL, a
very low class contained in the parallel classes AC1 and NC2.

Many CSPs arising in practice are not acyclic but are in some sense or anotherclose
to acyclic CSPs. In fact, the hypergraphs associated with many naturally arising CSPs
contain either few cycles or small cycles, or can be transformed to acyclic CSPs by simple
operations (such as, e.g., lumping together small groups of vertices). Consequently, CSP
research in AI and in database theory concentrated on identifying, defining, and studying
suitable classes ofnearly acyclicCSPs, or, equivalently, decomposition methods, i.e.,
techniques fordecomposingcyclic CSPs into acyclic CSPs [7,23].

4. Decomposition methods

In order to study and compare various decomposition methods, we find it useful to
introduce a general formal framework for this notion.

Let H be a hypergraph. For any set of edgesH ′ ⊆ edges(H), let var(H ′) =⋃h∈H ′ h.
Without loss of generality, we assume thatvar(H) = var(H), i.e., every variable in
var(H) occurs in at least one edge ofH, and hence, any hypergraph can be simply
represented by the set of its edges. Moreover, we assume without loss of generality that
all hypergraphs under consideration are bothconnected, i.e., their primal graph consists of
a single connected component, andreduced, i.e., no hyperedge is contained in any other
hyperedge. All our definitions and results easily extend to general hypergraphs.

LetHS be the set of all (reduced and connected) hypergraphs. Adecomposition method
(short: DM)D associates to any hypergraphH ∈HS a parameterD-width(H), called the
D widthof H.

The decomposition methodD ensures that, for fixedk, every CSP instanceI whose
hypergraphHI hasD-width6 k is polynomially solvable, i.e., it is solvable inp(‖I‖) =
O(‖I‖O(1)) time, where‖I‖ denotes the size ofI . For any CSP instanceI , the size ofI is
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defined in the standard way, i.e., as the number of bits needed for encodingI by listing, for
each constraint inI , its constraint scope and all tuples occurring in its constraint relation.

For anyk > 0, thek-tractable classC(D,k) of D is defined by

C(D,k)= {H |D-width(H)6 k}.
Thus,C(D,k) collects the set of CSP instances which, for fixedk, are polynomially
solvable by using the strategyD. Typically, the polynomialp(‖I‖) depends on the
parameterk. In particular, for eachD, there exists a functionf such that, for eachk,
each instanceI ∈ C(D,k) can be transformed in time O(‖I‖O(f (k))) into an equivalent
acyclicCSP instance. (It follows that all problems inC(D,k) are polynomially solvable.)

Every DMD is complete with respect toHS, i.e.,HS = ⋃k>1C(D,k). Note that, by
our definitions, it holds thatD-width(H)=min{k |H ∈ C(D,k)}.

All tractable classes based on restricted structure that we have studied in the literature
fit into this framework. We next describe how the notion of width is defined in the
decomposition methods we shall compare in this paper. Detailed descriptions of these
methods can be found in the corresponding reference (see below) and in many surveys
on this subject, e.g., [7,23].

4.1. Biconnected components(short: BICOMP) [11]

LetG= (V ,E) be a graph. A vertexp ∈ V is aseparating vertexforG if, by removing
p fromG, the number of connected components ofG increases. A biconnected component
of G is a maximal set of verticesC ⊆ V such that the subgraph ofG induced byC is
connected and remains connected after any one-vertex removal, i.e., has no separating
vertices.

It is well known that, from any graphG, we can compute in linear time a vertex-labeled
tree 〈T ,χ〉, where the labeling functionχ is a bijective function that associates to each
vertex of the treeT a set of verticesS of G, such thatS is either a biconnected component
of G, or a singleton containing a separating vertex forG. There is an edge{p,q} in the
treeT , if χ(p) is a biconnected component ofG andχ(q) contains a separating vertex for
G belonging to the componentχ(p), i.e.,χ(q)⊆ χ(p), holds. We say that〈T ,χ〉 is the
BICOMPdecomposition ofG.

For a hypergraphH, theBICOMPdecomposition ofH is theBICOMPdecomposition
of its primal graph, and thebiconnected widthofH, denoted byBICOMP-width(H), is the
maximum number of vertices over the biconnected components of the primal graph ofH.

Example 3. Fig. 5(a) shows a hypergraphHb and Fig. 5(b) its primal graph. The vertices
G,C,D, andE are the separating vertices of this primal graph. Note that the maximum
number of vertices over its biconnected components is 3, and thusBICOMP-width(H)= 3.
Fig. 6 shows theBICOMPdecomposition ofHb.

4.2. Tree clustering(short:TCLUSTER) [9]

The tree clusteringmethod is based on a triangulation algorithm which transforms the
primal graphG = (V ,E) of any CSP instanceI into a chordal graphG′. The acyclic
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Fig. 5. (a) The hypergraphHb , and (b) its primal graph.

Fig. 6. TheBICOMPdecomposition of the hypergraphHb in Example 3.

hypergraphH(G′) having the same set of vertices asG′ and the maximal cliques ofG′
as its hyperedges is aTCLUSTERdecomposition ofHI . Intuitively, the hyperedges of
H(G′) are used to build the constraints of an acyclic CSPI ′ equivalent toI . The width of
theTCLUSTERdecompositionH(G′) is the maximum cardinality of its hyperedges. The
tree-clustering width(short:TCLUSTERwidth) ofHI is 1 if HI is an acyclic hypergraph;
otherwise, it is equal to the minimum width over theTCLUSTERdecompositions ofHI .

Example 4. Consider the hypergraphHtc shown in Fig. 7(a). Fig. 7(b) shows its primal
graph.

This graph can be triangulated as shown in Fig. 8(a). If we associate a hyperedge to
each maximal clique of this triangulated graph, we get the acyclic hypergraph shown in
Fig. 8(b). This acyclic hypergraph is aTCLUSTERdecomposition ofHtc of width 3.
Moreover, it is easy to see that there is noTCLUSTERdecomposition forHtc having a
smaller width, and hence theTCLUSTERwidth ofHtc is 3.
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Fig. 7. (a) The hypergraphHtc , and (b) its primal graph.

Fig. 8. (a) A triangulation of the primal graph ofHtc , and (b) aTCLUSTERdecomposition ofHtc .

4.3. Treewidth(TREEWIDTH) [24]

A tree decompositionof a graphG= (V ,E) is a pair〈T ,χ〉, whereT = (N,F ) is a tree,
andχ is a labeling function associating to each vertexp ∈ N a set of verticesχ(p) ⊆ V ,
such that the following conditions are satisfied:

(1) for each vertexb of G, there existsp ∈N such thatb ∈ χ(p);
(2) for each edge{b, d} ∈E, there existsp ∈N such that{b, d} ⊆ χ(p);
(3) for each vertexb of G, the set{p ∈ N | b ∈ χ(p)} induces a (connected) subtree

of T .
Thewidth of the tree decomposition〈T ,χ〉 is maxp∈N |χ(p)− 1|. Thetreewidthof G

is the minimum width over all its tree decompositions. TheTREEWIDTHof a hypergraph
H is 1 if H is an acyclic hypergraph; otherwise, it is equal to the treewidth of its primal
graph. As pointed out below,TREEWIDTHandTCLUSTERare two equivalent methods.

Example 5. Consider again the hypergraphHtc in Example 4. Fig. 9 show a tree
decomposition ofHtc having width 2. It follows that the treewidth ofHtc is 2 as only
hypergraphs having acyclic primal graphs have treewidth 1.
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Fig. 9. A tree decomposition of hypergraphHtc in Example 4.

4.4. Hinge decompositions(short:HINGE) [18,19]

Let H be a hypergraph,H ⊆ edges(H), andF ⊆ edges(H) − H . ThenF is called
connected with respect to Hif, for any two edgese, f ∈ F , there exists a sequence
e1, . . . , en of edges inF such that

(i) e1= e;
(ii) for i = 1, . . . , n− 1, ei ∩ ei+1 is not contained in

⋃
h∈H h; and

(iii) en = f .
The maximal connected subsets ofedges(H) − H with respect toH are called the
connected components ofH with respect toH . It is easy to see that the connected
components ofH with respect toH form a partition ofedges(H)−H .

Let H ∈HS and letH be eitheredges(H) or a proper subset ofedges(H) containing
at least two edges. LetC1, . . . ,Cm be the connected components ofH with respect
to H . Then,H is a hinge if, for i = 1, . . . ,m, there exists an edgehi ∈ H such that
var(edges(Ci))∩ var(H))⊆ hi . A hinge isminimal if it does not contain any other hinge.

A hinge decompositionofH is a treeT such that all the following conditions hold:
(1) the vertices ofT are minimal hinges ofH;
(2) each edge inedges(H) is contained in at least one vertex ofT ;
(3) two adjacent verticesA and B of T share precisely one edgeL ∈ edges(H);

moreover,L consists exactly of the variables shared byA andB (i.e.,L= var(A)∩
var(B));

(4) the variables ofH shared by two vertices ofT are entirely contained within each
vertex on their connecting path inT .

It was shown in [19] that, for any CSP instanceI , the cardinality of the largest vertex of
any hinge decomposition ofHI is an invariant ofHI , and is equal to the cardinality of the
largest minimal hinge ofHI . This number is called thedegree of cyclicityof HI . We will
also refer to it as theHINGEwidth ofHI .

Example 6. Consider a CSP instanceIhg having the following constraint scopes:

s1(X1,X10,X11); s2(X1,X2,X3); s3(X1,X4); s4(X3,X6); s5(X4,X5,X6);
s6(X4,X7); s7(X5,X8); s8(X6,X9); s9(X2,X3,X10,X11).

Fig. 10 shows the corresponding hypergraphHhg , which is clearly cyclic. The minimal
hinges ofHhg areH1 = {s1, s2, s9}, H2 = {s2, s3, s4, s5}, H3 = {s5, s6}, H4 = {s5, s7},
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Fig. 10. (a) HypergraphHhg , and (b) a hinge-tree decomposition ofHhg .

H5 = {s5, s8}, H6 = {s3, s6}, andH7 = {s4, s8}, where si denotes the set of variables
occurring in the scopesi , for 16 i 6 9.

Since the cardinality of the largest minimal hinge ofHhg (hingeH2) is 4, it follows that
theHINGEwidth ofHhg is 4. Fig. 10(b) shows aHINGEdecomposition ofHhg .

4.5. Hinge decomposition+ tree clustering(short:HINGETCLUSTER) [18]

It has been observed [18] that the minimal hinges of a hypergraph can be further
decomposed by means of the triangulation technique of the above-described tree-clustering
method. This leads to a new decomposition method, that we callHINGETCLUSTER, which
combinesHINGEandTCLUSTERand can be formally defined as follows. LetT = (N,E)
be a hinge tree of a hypergraphH. For any hingeH ∈ N , let w(H) be the minimum
of the cardinality ofH and theTCLUSTERwidth of the hypergraph(var(H),H). The
HINGETCLUSTERwidth of H with respect toT is maxH∈N {w(H)}. A HINGETCLUSTER

decomposition ofH with respect toT is an acyclic hypergraphH′ having the same set
of vertices asH, and whose set of edges is obtained fromT andH as follows. For each
hingeH ∈ N , if w(H) = |H |, thenH′ contains an edgevar(H); otherwise,H′ contains
the edges of anyTCLUSTERdecomposition of the (sub)hypergraph(var(H),H) having
widthw(H).

The HINGETCLUSTERwidth of H is the minimumHINGETCLUSTERwidth over all its
HINGETCLUSTERdecompositions.

Example 7. Consider again the constraint scopes of Example 6 and the hinge-tree
decomposition for the hypergraphHhg shown in Fig. 10(b). From this hinge-tree
decomposition, we construct aHINGETCLUSTERdecompositionH′hg ofHhg .

Consider the sub-hypergraph(var(H1),H1) corresponding to the minimal hinge
H1 occurring in this hinge-tree decomposition. The primal graph of the hypergraph
(var(H1),H1) is a clique containing the verticesX1,X2,X3,X10, andX11, thus it is
easy to see that theTCLUSTERwidth of this hypergraph is 5. However, the hingeH1
contains three edges, hence we getw(H1) = 3, and theHINGETCLUSTERdecomposition
H′hg contains the edge{X1,X2,X3,X10,X11} with all the variables occurring inH1.

A different situation concerns the sub-hypergraph(var(H2),H2) corresponding to the
minimal hingeH2. This hypergraph is identical to hypergraphHtc in Example 4. We
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Fig. 11. AHINGETCLUSTERdecomposition of hypergraphHhg in Example 6.

observed thatHtc hasTCLUSTERwidth 3, which is smaller than|H2| = 4, and hence
w(H2) = 3 holds. This means that, in this case, it is convenient to further decompose
(var(H2),H2) using theTCLUSTERdecomposition method, and theHINGETCLUSTER

decompositionH′hg contains all the edges belonging to theTCLUSTERdecomposition
ofHtc = (var(H2),H2) shown in Fig. 7.

Similarly, for i ∈ {4,5,6}, the sub-hypergraphs(var(Hi),Hi) corresponding to the
other hinges occurring in the hinge-tree decomposition at hand are acyclic hypergraphs.
Therefore,w(Hi)= 1 holds, because theTCLUSTERwidth of acyclic hypergraphs is 1.

The resultingHINGETCLUSTERdecompositionH′hg of Hhg is the acyclic hypergraph
shown in Fig. 11. The thickest edges in this figure come from theTCLUSTERdecompo-
sition of (var(H2),H2). Recall that bothw(H1) andw(H2) are 3, which is the maximum
value over the hinges occurring in the givenHINGEdecomposition ofHhg . Thus, the width
of H′hg is 3, and it is easy to verify that there is no otherHINGETCLUSTERdecomposition

having smaller width. It follows that theHINGETCLUSTERwidth ofHhg is 3.

4.6. Cycle cutset(short:CUTSET) [7]

A cycle cutsetof a hypergraphH is a setS ⊆ var(H) such that the subgraph of the
primal graph ofH (vertex-)induced byvar(H)− S is acyclic. That is, after deleting the
vertices inS, the primal graph ofH becomes acyclic. TheCUTSETwidth ofH is 1 if H
is acyclic; otherwise, it is the minimum cardinality over all its possible cycle cutsets.

Example 8. The hypergraphHb shown in Fig. 5(a) hasCUTSETwidth 4. Indeed,
{G,C,D,E} is a cycle cutset of this hypergraph, and any smaller set of vertices does
not allow to break all the cycles in its primal graph (see Fig. 5(b)). As another example,
consider the hypergraphHtc shown in Fig. 7. TheCUTSETwidth of Htc is 2, because
there is no cycle cutset of cardinality 1, while there are cycle cutsets of cardinality 2, e.g.,
the set{X1,X4}.
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4.7. Cycle hypercutset(short:HYPERCUTSET)

This is a simple modification of theCUTSETmethod where the cutset is composed
of (hyper)edges rather than vertices of the given hypergraph. Acycle hypercutsetof a
hypergraphH is a setĤ ⊆ edges(H) such that the subhypergraph ofH induced by
var(H) − var(Ĥ ) is acyclic. TheHYPERCUTSETwidth of H is 1 if H is acyclic;
otherwise, it is the minimum cardinality over all its possible cycle hypercutsets.

Example 9. The hypergraphHb shown in Fig. 5(a) hasHYPERCUTSETwidth 2. Indeed,
the set containing the two edges{F,G,C} and {C,D,E} is a hypercutset of this
hypergraph, as deleting these edges it becomes acyclic. Moreover, by deleting any single
edge, we cannot achieve acyclicity. Instead, the hypergraphHhg shown in Fig. 10 has
HYPERCUTSETwidth 1. Indeed, e.g., by just deleting fromHhg the edge{X4,X5,X6}
we get an acyclic hypergraph.

4.8. Solving CSPs using decomposition methods

For each of the above decomposition methodsD, it was shown (or it is easy to see)
that, for any fixedk, given a CSP instanceI , deciding whether a hypergraphHI hasD-
width(HI ) at mostk is feasible in polynomial time and that solving CSPs whose associated
hypergraph is of width at mostk can be done in polynomial time. In particular,D consists
of two phases. Given a CSP instanceI ,

(1) the (k-bounded)D width w of HI along with a corresponding decomposition is
computed;

(2) exploiting this decomposition,I is then solved in time O(nw+1 logn), wheren is
the size ofI plus the size of the given decomposition (for most methods this phase
consists of the solution of an acyclic CSP instance equivalent toI ).

Actually, for these methods it is always possible to give the decompositions in suitable
forms without redundancies. Thus, the cost above reduces to O(‖I‖w+1 log‖I‖), i.e., it
depends only on the CSP instance, and does not depend on the size of the decomposition.
For a detailed analysis, see Section 5, where we study the complexity of evaluating
bounded-width CSPs according to a new decomposition method, based on hypertree
decompositions [16].

The cost of the first phase is independent on the constraint relations ofI ; in fact, it is
O(‖HI‖c1k+c2), where‖HI ‖ is the size of the hypergraphHI , andc1, c2 are two constants
relative to the methodD (06 c1, c2 6 3 for the methods above). As usual, the size of
hypergraphHI is defined as the number of bits needed for encoding all the edges ofHI as
lists of variables. Clearly, the size ofHI is always smaller than than‖I‖, because the
encoding ofI includes the encoding of its constraint relations, too. Observe also that
computing theD-width w of a hypergraph in general (i.e., without the constant bound
w 6 k) is NP-hard for most methods, while it is feasible in polynomial time forHINGE,
and even in linear time forBICOMP.

Remark 10. The above complexity bounds, given as functions of the total size of the
CSP instance, are appropriate for all considered decomposition methods forgeneralCSP
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instances. Of course, if one considers some restricted cases, e.g., CSP instances with a fixed
constant domain size, some finer analysis may be useful. In fact, by exploiting additional
information, more accurate complexity bounds may be found in order to choose a method
that is better tailored for such a special case.

4.9. Freuder width and adaptive width

Further interesting methods, that do not explicitly generalize acyclic hypergraphs, are
based on a different notion of width, that we callFreuder width[10,11]. If < is a total
ordering of the vertices of a graphG = (V ,E), then the<-width of G is defined by
w<(G)=maxv∈V |{{v,w} ∈E such thatw< v}|. The Freuder width ofG is the minimum
of all <-widths over all possible total orderings< of V . For each fixed constantk, it can
be determined in polynomial time whether a graph is of Freuder widthk. The graphG1

shown in Fig. 2 has Freuder width 3. This width can be obtained taking the ordering
b < d < e < a < g < h < c < f . Freuder observed that many naturally arising CSPs
have a very low width [10]. He showed that a CSP of widthk whose relations enjoy the
property ofk′-consistency, wherek′ > k, can be solved in a backtrack-free manner, and
thus in polynomial time [10,11]. Clearly, since the consistency condition on the constraint
relations must be satisfied, we cannot define a purely structural decomposition method
based on Freuder width. In fact, the following theorem pinpoints that the structural property
of bounded Freuder width does not make the CSP problem any easier.

Theorem 11. Constraint solvability remains NP-complete even if restricted to CSPs whose
primal graph has Freuder width bounded by4.

Proof. 3COL remains NP-complete even for graphs of degree 4 (cf. [13]). Such graphs,
however, have width at most 4. By the encoding of 3COL as a CSP, as given in Section 2,
the theorem follows. 2

One can try to enforce a suitable level of consistency on the constraint relations of a
given CSP instance. However, the algorithms used to increase the level of consistency in
the data also increase the Freuder width of the instance [8,25]. Of course, one can think
of devising a more powerful procedure to find an equivalent CSP instance whose Freuder
width stays below a fixed bound. However, from the above theorem, if P6= NP, such a
procedure cannot run in polynomial time.

Dechter and Pearl subsequently introduced the notion ofinduced widthw∗ [8], which
is—roughly—the smallest Freuder widthk of any graphG′ obtained by triangulation
methods from the primal graphG of a CSP such thatG′ ensuresk + 1-consistency.
Graphs having induced width at mostk can be also characterized aspartial k-trees[12] or,
equivalently, as graphs having treewidth at mostk [1]. It follows that, for fixedk, checking
whetherw∗ 6 k is feasible in linear time [5]. Ifw∗ is bounded by a constant, a CSP is
solvable in polynomial time. The approach to CSPs based onw∗ is referred to as thew∗-
Tractability method [7]. Note that this method is implicitly based on hypergraph acyclicity,
given that the used triangulation methods enforce chordality of the resulting graphG′ and
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thus acyclicity of the corresponding hypergraph. It was noted [7,9] that, for any cyclic CSP
instanceI , TCLUSTERwidth(HI )=w∗(HI )+ 1.

5. Hypertree decompositions of CSPs

A new class of tractable conjunctive database queries, which generalizes the class of
acyclic queries, has recently been identified [16]. This is the class of queries having a
bounded-width hypertree decomposition [16]. Deciding whether a given query has this
property is feasible in polynomial time and even highly parallelizable. In this section
we first adapt the notion of hypertree decomposition, previously defined in the database
context, to the general framework of hypergraphs. Then, we show how to employ
this notion in order to define a new CSP decomposition method we will refer to as
HYPERTREE.

A hypertree for a hypergraphH is a triple 〈T ,χ,λ〉, whereT = (N,E) is a rooted
tree, andχ andλ are labeling functions which associate to each vertexp ∈ N two sets
χ(p) ⊆ var(H) and λ(p) ⊆ edges(H). If T ′ = (N ′,E′) is a subtree ofT , we define
χ(T ′)=⋃v∈N ′ χ(v). We denote the set of verticesN of T by vertices(T ), and the root of
T by root(T ). Moreover, for anyp ∈N , Tp denotes the subtree ofT rooted atp.

Definition 12. A hypertree decompositionof a hypergraphH is a hypertreeHD =
〈T ,χ,λ〉 forH which satisfies all the following conditions:

(1) for each edgeh ∈ edges(H), there existsp ∈ vertices(T ) such thatvar(h)⊆ χ(p)
(we say thatp coversh);

(2) for each variableY ∈ var(H), the set{p ∈ vertices(T ) | Y ∈ χ(p)} induces a
(connected) subtree ofT ;

(3) for eachp ∈ vertices(T ), χ(p)⊆ var(λ(p));
(4) for eachp ∈ vertices(T ), var(λ(p)) ∩ χ(Tp)⊆ χ(p).
Note that the inclusion in condition (4) is actually an equality, because condition (3)

implies the reverse inclusion.
An edgeh ∈ edges(H) is strongly coveredin HD if there existsp ∈ vertices(T ) such

thatvar(h)⊆ χ(p) andh ∈ λ(p). In this case, we say thatp strongly coversh.
A hypertree decompositionHD of hypergraphH is acomplete decompositionof H if

every edge ofH is strongly covered inHD.
The width of a hypertree decomposition〈T ,χ,λ〉 is maxp∈vertices(T ) |λ(p)|. The

HYPERTREEwidth hw(H) of H is the minimum width over all its hypertree decomposi-
tions. Ac-width hypertree decomposition ofH is optimalif c= hw(H).

The acyclic hypergraphs are precisely those hypergraphs having hypertree width one.
Indeed, any join tree of an acyclic hypergraphH trivially corresponds to a hypertree
decomposition ofH of width one. Furthermore, if a hypergraphH′ has a hypertree
decomposition of width one, then, from this decomposition, we can easily compute a join
tree ofH′, which is therefore acyclic [16].

Remark 13. From any hypertree decompositionHD of H, we can easily compute a
complete hypertree decomposition ofH having the same width. For any “missing” edgeh,
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choose a vertexq of T such thatvar(h)⊆ χ(q) (such a vertex must exist by condition (1)),
and create a new vertexp as a child ofq with λ(p)= h andχ(p)= var(h). Assuming the
use of suitable data structures, this computation can be done in O(‖H‖·‖HD‖) time, where
‖HD‖ denotes the size of a hypertree decomposition, i.e., the number of bits needed for
encodingHD (that is, for encoding the rooted tree ofHD and, for each vertexv of this
tree, the labelingsχ andλ for v, encoded as a list of variables and a list of edge identifiers,
respectively).

Intuitively, if H is a cyclic hypergraph, theχ labeling selects the set of variables to be
fixed in order to split the cycles and achieve acyclicity;λ(p) “covers” the variables ofχ(p)
by a set of edges.

Example 14. Fig. 12 shows a hypertree decomposition of width 2 of the hypergraphHcp
of the crossword puzzle in Example 2 (see Fig. 4). Each boxb in this figure represents a
vertexv of the hypertree decomposition ofHcp . The two sets depicted in the boxb are the
labelingsχ(v) andλ(v). The hypergraphHcp is clearly cyclic, thereforehw(Hcp) > 1 (as
only acyclic hypergraphs have hypertree width 1). Thus, it follows that theHYPERTREE
width ofHcp is 2.

Example 15. Consider the following constraint scopes:

j (J,X,Y,X′, Y ′);a(S,X,X′,C,F );b(S,Y,Y ′,C′,F ′);
c(C,C′,Z);d(X,Z); e(Y,Z);f(F,F ′,Z′);g(X′,Z′);h(Y ′,Z′).

LetH1 be their corresponding hypergraph. SinceH1 is cyclic,hw(H1) > 1 holds. Fig. 13
shows a (complete) hypertree decomposition ofH1 having width 2, hencehw(H1)= 2.

In order to help the intuition of what a hypertree decomposition is, we also present an
alternative representation, calledhyperedge representation. (Also, “atom representation”,
in the conjunctive-queries framework.) Fig. 14 shows the hyperedge representation of
the hypertree decompositionHD1 of H1. Each nodep in the tree is labeled by a set
of hyperedges representingλ(p); χ(p) is the set of all variables, distinct from ‘_’,

Fig. 12. A hypertree decomposition of width 2 of hypergraphHcp in Example 2.
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Fig. 13. A 2-width hypertree decomposition ofH1.

Fig. 14. Hyperedge representation of hypertree decompositionHD5.

appearing in these hyperedges. Thus, the anonymous variable ‘_’ replaces the variables
in var(λ(p))− χ(p).

Using this representation, we can easily observe an important feature of hypertree
decompositions. Once an hyperedge has been covered by some vertex of the decomposition
tree, any subset of its variables can be used freely in order to decompose the remaining
cycles in the hypergraph. For instance, the variables in the hyperedge corresponding to
constraintj in H1 are jointly included only in the root of the decomposition. If we were
forced to take all the variables in every vertex wherej occurs, it would not be possible
to find a decomposition of width 2. Indeed, in this case, any choice of two hyperedges
per vertex yields a hypertree which violates the connectedness condition for variables (i.e.,
condition (2) of Definition 12).

Let k be a fixed positive integer. We say that a CSP instanceI has k-bounded
HYPERTREEwidth if hw(HI ) 6 k, whereHI is the hypergraph associated toI . From
the results in [16], it follows thatk-bounded hypertree width is efficiently decidable, and
that a hypertree decomposition of widthk can be efficiently computed (if any).
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Fig. 15. A hypertree decomposition of hypergraphHhg in Example 6.

Example 16. Consider again the CSP instanceIhg in Example 6. Fig. 15 shows the
hyperedge representation of a width 2 hypertree decomposition of its hypergraphHhg . It
follows thathw(Hhg)= 2, becauseHhg is cyclic. Thus,Ihg has 2-boundedHYPERTREE
width and, more generally,k-boundedHYPERTREEwidth for any integerk > 1.

Let H be a hypergraph, and letV ⊆ var(H) be a set of variables andX,Y ∈ var(H).
ThenX is [V ]-adjacent toY if there exists an edgeh ∈ edges(H) such that{X,Y } ⊆ h−V .
A [V ]-pathπ from X to Y is a sequenceX = X0, . . . ,X` = Y of variables such that
Xi is [V ]-adjacent toXi+1, for eachi ∈ [0, . . . , `-1]. A setW ⊆ var(H) of variables is
[V ]-connected if, for allX,Y ∈ W , there is a[V ]-path fromX to Y . A [V ]-component
is a maximal[V ]-connected non-empty set of variablesW ⊆ var(H)− V . For any[V ]-
componentC, let edges(C)= {h ∈ edges(H) | h ∩C 6= ∅}.

Let HD = 〈T ,χ,λ〉 be a hypertree forH. For any vertexv of T , we will often usev
as a synonym ofχ(v). In particular,[v]-componentdenotes[χ(v)]-component; the term
[v]-path is a synonym of[χ(v)]-path; and so on. We introduce a normal form for hypertree
decompositions.

Definition 17 [16]. A hypertree decompositionHD = 〈T ,χ,λ〉 of a hypergraphH is in
normal form(NF) if, for each vertexr ∈ vertices(T ), and for each childs of r, all the
following conditions hold:

(1) there is (exactly) one[r]-componentCr such thatχ(Ts)= Cr ∪ (χ(s)∩ χ(r));
(2) χ(s)∩Cr 6= ∅, whereCr is the[r]-component satisfying condition (1);
(3) var(λ(s)) ∩ χ(r)⊆ χ(s).

Intuitively, each subtree rooted at a child nodes of some noder of a normal form
decomposition tree serves to decompose precisely one[r]-component.

Proposition 18 [16]. For eachk-width hypertree decomposition of a hypergraphH there
exists ak-width hypertree decomposition ofH in normal form.

This normal form theorem immediately entails that, for each optimal hypertree
decomposition of a hypergraphH, there exists an optimal hypertree decomposition ofH
in normal form.
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The fact that no redundancies occur in hypertree decompositions in normal form allows
us to give a precise bound on the number of vertices in such hypertree decompositions.

Lemma 19. Let HD = (T ,χ,λ) be a hypertree decomposition in normal form of a
hypergraphH. Moreover, letn be the number of vertices of the decomposition treeT ,
andm the number of strongly covered edges ofH in HD. Then,n6m holds.

Proof. Let s be some vertex inT . We say that a variableX ∈ χ(s) (respectively, an edge
H ⊆ χ(s)) is “first covered” ins if X /∈ χ(vertices(T )− vertices(Tp)) (respectively,H 6⊆
χ(vertices(T ) − vertices(Tp))); otherwise,X (respectively,H ) is said to be “previously
covered”. By condition (2) of Definition 17 and by condition (2) of Definition 12, it follows
that, for any vertexp of T , there exists at least a variableX in var(H) which is “first
covered” inp. SinceX ∈ χ(p), from condition (3) of Definition 12, it follows that there
is an edgeH of H such thatX ∈ H andH ∈ λ(p). Moreover, from condition (4) of
Definition 12, it follows that every variable belonging toH and not covered in some vertex
in vertices(T )− vertices(Tp) must be first covered inp, and belongs toχ(p).

Moreover, sinceHD is in normal form, it satisfies condition (3) of Definition 17 (i.e.,
var(λ(s)) ∩ χ(r) ⊆ χ(s)). It follows that, in fact, any previously-covered variableY
belonging toH must belong toχ(p). Indeed, since the variableX was not previously
covered, the edgeH cannot be previously covered, and thus there exists some vertexp′
in the subtreeTp such thatH ⊆ χ(p′), in order to fulfill condition (1) of Definition 12.
Assume that the variableY ∈ H does not belong toχ(p). SinceH is strongly covered
by p′, Y ∈ χ(p′). Moreover, by the choice ofY , this variable is previously covered with
respect top. It follows thatY violates the connectedness condition, a contradiction.

Thus, all the variables inH belong toχ(p). Recall thatH ∈ λ(p), too. It follows that
at least one edge ofH is first covered in vertexp and strongly covered byp, and, in
general, that each vertex inT first and strongly covers some edge ofH. This entails that
the cardinality of the set of vertices in the decomposition treeT ofHD is less than or equal
to the numberm of the strongly covered edges in the normal form hypertree decomposition
HD ofH. 2

A polynomial time algorithmopt -k-decomp which, for a fixedk, decides whether a
hypergraphhask-bounded hypertree width and, in this case, computes an optimal hypertree
decomposition in normal form is described in [17]. As for many other decomposition
methods, the running time of this algorithm to find the hypergraph decomposition is
exponential in the parameterk. More precisely,opt -k-decomp runs in O(m2kv2) time,
wherem andv are the number of edges and the number of vertices ofH, respectively.

We next show that any CSP instanceI is efficiently solvable, given ak-bounded
complete hypertree-decompositionHD of HI . To this end, we define an acyclic CSP
instance which is equivalent toI and whose size is polynomially bounded by the size
of I .

For each vertexp of the decompositionHD, we define a new constraint scope whose
associated constraint relation is the projection onχ(p) of the join of the relations inλ(p).
This way, we obtain a join-treeJT of an acyclic hypergraphH∗.H∗ corresponds to a new
CSP instanceI∗ over a set of constraint relations of size O(nk), wheren is the input size
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(i.e.,n= ‖I‖) andk is the width of the hypertree decompositionHD. By construction,I∗
is an acyclic CSP, and we can easily show that it is equivalent to the input CSP instance
I . Thus, all the efficient techniques available for acyclic CSP instances [7,9], or for any
problem equivalent to CSP [15,21,26], can be employed for the evaluation ofI∗, and hence
of I .

Remark 20. According to our definition, any hypertree is a labeledrooted tree.
The rooting is necessary for technical reasons concerning the notion of hypertree
decomposition only, but has no impact on the actual evaluation of the given CSP instance.
In fact, the above discussion describes how to compute from a hypertree decomposition
and a CSP instanceI a join treeJT of an acyclic instanceI∗ that is equivalent toI . This
construction does not use the fact that the hypertree is rooted. Moreover, note that the
acyclic instanceI∗ can be evaluated rooting the join treeJT at any vertex.

The following theorem provides a detailed analysis of the complexity of evaluating a
CSP given a hypertree decomposition for it.

Theorem 21. Given a CSPI and ak-width hypertree decompositionHD′ ofHI in normal
form,I is solvable inO(‖I‖k+1 log‖I‖) time.

Proof. Let I be a CSP instance andHD′ = (T ′, χ ′, λ′) ak-width hypertree decomposition
ofHI in normal form. We proceed as follows.

Step 1. We compute fromHD′ a complete hypertree decompositionHD = (T ,χ,λ) of
HI .

Step 2. We compute fromHD andI an acyclic instanceI∗ equivalent toI , as described
above.

Step 3. We evaluate the acyclic instanceI∗ employing any efficient technique for solving
acyclic CSPs.

Letm be the number of edges ofHI . The following statements hold:

Claim 1. The decomposition tree of the complete hypertree decompositionHD has at most
m vertices.

Proof. This immediately follows from the construction ofHD and from Lemma 19, since
in Step 1 above we just add to the decomposition treeT those edges ofHI that are not
strongly covered inHD′. 2
Claim 2. Step1 is feasible inO(‖HI‖2).

Proof. As observed in Remark 13, this computation takes O(‖HD′‖ · ‖HI‖) time. From
Lemma 19, it easily follows that‖HD′‖ is O(k‖HI‖)=O(‖HI‖), because the number of
vertices inT ′ is at most the number of edges ofHI , and the number of edge-labels of each
vertex ofT ′ is bounded by the constantk. 2
Claim 3. ‖I∗‖ =O(‖I‖k), and computingI∗ from I takes timeO(‖I‖k).
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Proof. Consider a constraintC = (Sc, rc) in the acyclic instanceI∗. As described above,
the relationrc is obtained as the natural join of at mostk relations occurring in the input
instanceI . One of these input relations, sayri , – in fact, its constraint scopeSi – is
covered by some vertexp in the decomposition tree ofHD which corresponds toC in the
acyclic instanceI∗. (In particular, its scopeSi corresponds to some edgehi ∈ edges(HI )
such thathi ∈ λ(p), and hi ⊆ χ(p).) Let rmax be the constraint relation having the
maximum size‖rmax‖ over all the constraint relations occurring in the input instanceI .
Then,‖rc‖ 6 (‖rmax‖k−1 · ‖ri‖). Recall that the instanceI∗ has at mostm constraints.
Considering all the constraints inI , we get the following upper bound for the size of the
whole CSPI∗:

‖I∗‖6 (‖rmax‖k−1 · ‖r1‖+ · · · + ‖rmax‖k−1 · ‖rm‖
)

and hence

‖I∗‖6 ‖rmax‖k−1 · (‖r1‖+ · · · + ‖rm‖)6 ‖rmax‖k−1 · ‖I‖.
It follows that ‖I∗‖ 6 ‖I‖k . Moreover, the effectivecomputationof I∗ from I takes
time O(‖I‖k). Indeed, computing the natural join of two relationsr1 and r2 takes time
O(‖r1‖·‖r2‖), which is exactly the same bound that we have for the size of the result of this
join operation. Thus, by applying the same line of reasoning as used for the space bound,
we get that the computation of the acyclic instanceI∗ is feasible in O(‖I‖k) time. 2

From Claims 1–3 and from the well-known O(m · ‖I∗‖ · log‖I∗‖) complexity of
evaluating the acyclic CSPI∗ (see, e.g., [7,9]), it follows that the overall cost of this
evaluation procedure is O(‖I‖ · ‖I‖k · log‖I‖k) + O(‖HI‖2) = O(‖I‖k+1 · log‖I‖),
becausek is fixed,‖HI‖6 ‖I‖, andk > 1. 2

It is worthwhile noting that the crucial difference between theHYPERTREEmethod
and theTCLUSTERmethod is the objective function to be minimized in order to obtain
the most convenient acyclic decomposition of a given CSP instance. TheHYPERTREE
method minimizes the number of hyperedges ofHI associated to any vertex of the acyclic
equivalent instance, thus exploiting the fact that one hyperedge “covers” many variables at
once. TheTCLUSTERmethod minimizes the number of variables occurring in any vertex
of the equivalent acyclic instance, as evidenced by the following example.

Example 22. For anym > 0, let T (m) be the hypergraph having them + 3 hyperedges
{h1, h2, h3, e1, e2, . . . , em} defined as follows:
• h1= {X1, . . . ,Xm,Y1, . . . , Ym,A};
• h2= {Y1, . . . , Ym,Z1, . . . ,Zm,B};
• h3= {Z1, . . . ,Zm,X1, . . . ,Xm,C};
• ei = {Xi,Yi,Zi}, ∀16 i 6m.
The TCLUSTERwidth of T (m) is 3m, because its primal graph is chordal and its

maximal cliqueC = {X1, . . . ,Xm,Y1, . . . , Ym,Z1, . . . ,Zm} has cardinality 3m. In fact,
according to theTCLUSTERmethod, we have to solve a subproblem involving every
hyperedgeei (16 i 6m).
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On the other hand, for anym> 0, theHYPERTREEwidth of T (m) is 2. It is worthwhile
noting that the number of variables occurring in the largest vertex of this decomposition is
3m+ 2. Hence, the equivalent acyclic instance we obtain according toHYPERTREEis not
“optimal” according to theTCLUSTERmethod, because its associated primal graph has a
clique of cardinality 3m+ 2. Nevertheless, the constraint relation associated to this vertex
is computable very easily as the join of the constraint relationsr1 andr2 corresponding to
h1 andh2, respectively.

A simple way to get decomposition methods which in some way exploit the power of
hyperedges is using the dual graph associated to a CSP. We give a detailed analysis of these
approaches and of their relationships with theHYPERTREEmethod in Section 9. It turns
out that even such methods do not exploit the full power of hyperedges, and are less general
thenHYPERTREE, according to a strong notion of generalization, formally defined in the
next section.

6. Comparison criteria

For comparing decomposition methods we introduce the relations�,�, and≺≺ defined
as follows:
D1 �D2 (in words,D2 generalizesD1) if there existsδ > 0 such that, for everyk > 0,

C(D1, k)⊆ C(D2, k+ δ). Thus,D1�D2 implies that every class of CSP instances which
is tractable according toD1 is also tractable according toD2.

Note that the constantδ above allows us to get rid of small differences among tractability
classes that should be irrelevant in the comparison. E.g., it is known (see discussion in
Section 4.9) thatTCLUSTERand TREEWIDTHare equivalent methods and one would
expectTCLUSTERto generalizeTREEWIDTH(as well as vice versa). However, for
any k > 1, C(TREEWIDTH, k) 6⊆ C(TCLUSTER, k), because the treewidth is defined
through the cardinality of the vertex-labeling minus one. Rather,C(TREEWIDTH, k) ⊆
C(TCLUSTER, k + 1) holds. Thus, by takingδ = 1, we easily getTREEWIDTH�
TCLUSTER.
D1�D2 (D1 beatsD2) if there exists an integerk such that, for everym, C(D1, k) 6⊆

C(D2,m). To prove thatD1�D2, it is sufficient to exhibit a class of hypergraphs contained
in someC(D1, k) but in noC(D2, j) for everyj > 0.

Intuitively,D1�D2 means that, at least on some class of CSP instances,D1 outperforms
D2 with respect to tractability, because these instances are tractable according toD1, but
not according toD2. For such classes, usingD1 is thus better than usingD2.
D1 ≺≺D2 if D1 �D2 andD2 �D1. In this case we say thatD2 strongly generalizes

D1.
This means thatD2 is really the more powerful method, given that, wheneverD1

guarantees polynomial runtime for constraint solving, then alsoD2 guarantees tractable
constraint solving, but there are classes of constraints that can be solved in polynomial
time by usingD2 but are not tractable according toD1.

Mathematically,� is apreorder, i.e., it is reflexive, transitive, but not antisymmetric. We
say thatD1 is�-equivalent toD2, denotedD1≡D2, if bothD1�D2 andD2 �D1 hold.
Note that, on the other hand,≺≺ is transitive and antisymmetric, but not reflexive.
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The decomposition methodsD1 andD2 arestrongly incomparableif bothD1�D2 and
D2�D1. Note that, ifD1 andD2 are strongly incomparable, then they are incomparable
with respect to the relations� and≺≺, too.

7. Comparison results

In this section we present a complete comparison of the decomposition methods
described in Section 4, according to the above criteria. Fig. 1 (reproduced here as Fig. 16
with the acronyms of decomposition methods for the reader’s convenience) shows a
representation of the hierarchy of decomposition methods determined by the≺≺ relation.
Each element of the hierarchy represents one decomposition method, apart from that
containingTree Clustering, w∗, andTreewidthwhich are grouped together because they
are�-equivalent as easily follows from the observations in Section 4.

Theorem 23. For each pairD1 andD2 of decompositions methods represented in Fig.16,
the following holds:
• There is a directed path fromD1 toD2 if and only ifD1≺≺D2, i.e., if and only ifD2

strongly generalizesD1.
• D1 and D2 are not linked by any directed path if and only if they are strongly

incomparable.

Hence, Fig. 16 gives a complete picture of the relationships holding among the different
methods.

The following lemmas, together with the transitivity of the relations defined in Section 6,
prove Theorem 23.

For anyn > 2 andm> 0, letCircle(n,m) be the hypergraphhavingn edges{h1, . . . , hn}
defined as follows:
• hi = {X1

i , . . . ,X
m
i ,X

1
i+1, . . . ,X

m
i+1} ∀16 i 6 n− 1;

• hn = {X1
n, . . . ,X

m
n ,X

1
1, . . . ,X

m
1 }.

Fig. 16. Constraint tractability hierarchy.
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Fig. 17 shows the hypergraphCircle(n,2), for somen > 8. Form = 1, Circle(n,1)
is a graph consisting of a simple cycle withn edges (like a circle). Note that, for any
n > 2 andm> 0, Circle(n,m) has hypertree width 2. A width 2 hypertree decomposition
of Circle(n,m) is shown in Fig. 18. It follows that the (infinite) class of hypergraphs⋃
n>2,m>0{Circle(n,m)} is included in the tractability classC(HYPERTREE,2).
For anyn > 0, let triangles(n) be the graph(V ,E) defined as follows. The set of

verticesV contains 2n + 1 verticesp1, . . . , p2n+1. For each even indexi, 26 i 6 2n,
{pi,pi−1}, {pi,pi+1}, and {pi−1,pi+1} are edges inE. No other edge belongs toE.
Fig. 19 shows the graphtriangles(n). TheHYPERTREEwidth of triangles(n) is 2. Indeed,
a hypertree〈T ,χ,λ〉, whereT is a simple chain ofn verticesv1, . . . , vn and, for eachvi
(16 i 6 n), χ(vi)= {p2i−1,p2i , p2i+1} andλ(vi) contains the two edges{p2i−1,p2i} and
{p2i, p2i+1}, is a width 2HYPERTREEdecomposition oftriangles(n).

For anyn > 0, letbook(n) be a graph having 2n+2 vertices and 3n+1 edges that form
n squares (pages of the book) having exactly one common edge{X,Y }. It is easy to see
that theHYPERTREEwidth of book(n) is 2. Fig. 20 shows the graphbook(4).

Fig. 17. The hypergraphCircle(n,2).

Fig. 18. 2-width hypertree decomposition ofCircle(n,m).
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Fig. 19. The graphtriangles(n).

Fig. 20. The graphbook(4).

Lemma 24. CUTSET≺≺HYPERCUTSET.

Proof. HYPERCUTSETclearly generalizesCUTSET. Moreover, HYPERCUTSET�
CUTSET. Indeed,

⋃
n>2,m>0 {Circle(n,m)} 6⊆ C(CUTSET, k) holds for anyk > 0; while,⋃

n>2,m>0{Circle(n,m)} ⊆ C(HYPERCUTSET,1), as deleting any edge ofCircle(n,m)
yields an acyclic hypergraph.2
Lemma 25. BICOMP�HYPERCUTSET.

Proof. Consider the graphtriangles(n) for some n > 0. It is easy to see that the
HYPERCUTSETwidth of triangles(n) is dn/3e, while its BICOMPwidth is 3. Hence,⋃
n>1{triangles(n)} ⊆ C(BICOMP,3), while,

⋃
n>1{triangles(n)} 6⊆ C(HYPERCUTSET,

k) holds for everyk > 0. 2
Lemma 26. BICOMPandCUTSETare strongly incomparable.

Proof. (BICOMP�CUTSET.) Follows from Lemma 25 and Lemma 24.
(CUTSET� BICOMP.) Consider the graphbook(n) for somen > 0. The whole graph

book(n) is biconnected. Thus, itsBICOMPwidth is 2n + 2. On the other hand, the set
{X,Y } is a cycle cutset ofbook(n). Thus,

⋃
n>1{book(n)} ⊆ C(CUTSET,2) holds. 2

Lemma 27. BICOMP≺≺HINGE.

Proof. In [18], it was shown thatBICOMP� HINGE. Thus, it suffices to prove that
HINGE� BICOMP: Consider the graphbook(n) defined above, for somen > 0. As
observed above, theBICOMPwidth of book(n) is 2n + 2, while its HINGE width is 4.
Indeed, the minimal hinges ofbook(n) correspond to the pages of the book, and each of
them has cardinality 4.2
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Lemma 28. BICOMP≺≺ TCLUSTER.

Proof. In [7], it was observed thatBICOMP� TCLUSTER. (In fact, BICOMP was
compared withw∗, which is�-equivalent toTCLUSTER.) Furthermore,TCLUSTER�
BICOMP follows from CUTSET� BICOMPand from the fact, observed in [7], that
TCLUSTERgeneralizesCUTSET, i.e.,CUTSET� TCLUSTER. 2
Lemma 29. CUTSET≺≺ TCLUSTER.

Proof. As mentioned above,CUTSET� TCLUSTER [7]. Moreover, TCLUSTER�
CUTSETfollows fromBICOMP�CUTSETandBICOMP� TCLUSTER. 2
Lemma 30. CUTSET�HINGE.

Proof. Every graph in
⋃
n>2{Circle(n,1)} hasCUTSETwidth 1, because deleting any

vertex of the graph we get an acyclic graph. However, for anyn > 2, the degree of cyclicity
of Circle(n,1) is n [18]. 2
Lemma 31. HINGEandTCLUSTERare strongly incomparable.

Proof. (HINGE � TCLUSTER). Let S = {Circle(3,m) | m > 1}. For anym > 1, the
primal graphG of Circle(3,m) is a clique of 3m variables. Thus,G does not need any
triangulation, because it is a chordal graph. TheTCLUSTERwidth of Circle(3,m) is
clearly 3m; while its HINGE width is 3, because every hypergraph inS has only three
(hyper)edges.

(TCLUSTER� HINGE). Follows from CUTSET� HINGE and CUTSET�
TCLUSTER. 2
Lemma 32. HINGE≺≺HINGETCLUSTERandTCLUSTER≺≺HINGETCLUSTER.

Proof. It is easy to see that bothHINGE � HINGETCLUSTER and TCLUSTER�
HINGETCLUSTERhold. Furthermore,HINGETCLUSTER� HINGEfollows fromTCLUSTER
� HINGETCLUSTERandTCLUSTER� HINGE; andHINGETCLUSTER� TCLUSTERfol-
lows fromHINGE�HINGETCLUSTERandHINGE� TCLUSTER. 2
Lemma 33. HINGETCLUSTER�HYPERTREE.

Proof. Let H be a hypergraph, andH′ be a HINGETCLUSTERdecomposition ofH of
width k. We show that there exists a hypertree decomposition forH of width k. We will
use as a running example the hypergraphHhg in Example 6. Fig. 11 shows the width 3
HINGETCLUSTERdecompositionH′hg of Hhg , described in Example 7.

Recall that, by construction, theHINGETCLUSTER decompositionH′ is an acyclic
hypergraph. Note that, in general,H′ is not a reduced hypergraph. For instance,H′hg is
not reduced, as the edge{X1,X2,X3}, coming from theTCLUSTERdecomposition of the
hingeH2, is a subset of{X1,X2,X3,X10,X11}, which comes from the hingeH1.
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Let H′′ be the reduced and acyclic hypergraph obtained fromH′ deleting each edge
that is a subset of some other edge of the hypergraph. Therefore, e.g.,H′′hg contains all the
edges ofH′hg , but the edge{X1,X2,X3}.

We partition the edges ofH′′ into three setsAE,HE, andTE defined as follows.
• The setAE contains all edges ofH′′ that come from theTCLUSTERdecomposition

of some hingeHi ofH such that the subgraph(var(Hi),Hi) is acyclic. In the running
example, this property holds for hingesH4, H5, andH6. Recall that, in this case,
w(Hi)= 1 holds, and the decomposition of this hinge is just the acyclic hypergraph
(var(Hi),Hi). For example, forH′′hg , AE contains the edges corresponding to the
constraint scopess5, s6, s7, and s8, i.e., {X4,X5,X6}, {X4,X7}, {X5,X8}, and
{X6,X9}, respectively.
• The setTE contains all edges inedges(H′′)− AE that come from theTCLUSTER

decomposition of some hingeHi of H such that the subgraph(var(Hi),Hi) is
cyclic. Since theTCLUSTERdecomposition of this hypergraph is bounded byk, it
follows that each edge inTE contains at mostk variables. In our running example,
TE contains two edges{X1,X3,X6} and {X1,X4,X6} that we call te1 and te2,
respectively.
• The setHE contains all those edges inedges(H′′)−AE − TE that come from some

hinge ofH. Thus, any edgeh in HE is the union of at mostk edges belonging to
some hingeHi ofH. We denote the hingeHi corresponding toh by hinge(h). In our
running example,HE contains one edge{X1,X2,X3,X10,X11} that we callhe1 and
comes from the hingeH1= {s1, s2, s9} of Hhg . Therefore,hinge(he1)= {s1, s2, s9}.

Let JT be a jointree of the acyclic hypergraphH′′. Recall that each vertex of the tree
JT is an edge ofH′′ and vice versa, and that the connectedness condition holds, i.e., the
subgraph ofJT induced by any variable ofH′ is connected. Fig. 21 shows a jointree of
H′′hg .

FromJT , we define a hypertree decompositionHD = 〈T ,χ,λ〉, where the treeT has the
same shape asJT , and the labelingsχ andλ are defined through the following procedure.
For each vertexh of JT , denote byph the corresponding vertex in the treeT ofH.

(1) for each edgeh of AE, label the corresponding vertexph as follows:χ(ph)= h and
λ(ph)= {h}.

(2) for each edgeh of HE, label the corresponding vertexph as follows:χ(ph) = h
andλ(ph)= hinge(h).

Fig. 21. A jointree of the hypergraphH′′hg .
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Fig. 22. The hypertree for the running example in the proof of Lemma 33 after steps (1), (2), and (3).

Fig. 23. The hypertree for the running example in the proof of Lemma 33 after step (4).

(4) for each edgeh of TE, label the corresponding vertexph as follows:χ(ph) = h
andλ(ph)= ∅. For the running example, Fig. 22 shows the hypertree obtained after
these three steps.

(4) for each edgēh of the hypergraphH such that there is no vertexq in T with
h̄ ∈ λ(q), choose a vertexh of JT such thath̄ ⊆ h andh ∈ TE, and addh̄ to the
λ labeling of the corresponding vertexph in T (i.e.,λ(ph) := λ(ph) ∪ {h̄}). In our
running example, we add the edges3, whose variables areX1 andX4, to theλ
labeling of the hypertree’s root, and the edges4, whose variables areX4 andX6, to
theλ labeling of the left child of the root, as shown in Fig. 23.

(5) While there is a vertexp in T such thatχ(p) contains a variableX not covered by
λ(p) (i.e.,X ∈ χ(p)− var(λ(p))), proceed as follows.
(A) Find a pathπ in T linking p to a vertexq such that

(i) X ∈ var(λ(q)) and,
(ii) X /∈ var(λ(s)) for every vertexs in π − {q}.

(B) Choose an edgeh ∈ λ(q) such thatX ∈ h.
(C) Addh to bothλ(s) andχ(s), for every vertexs ∈ π−{q} (i.e.,χ(s) := χ(s)∪h,

andλ(s) := λ(s) ∪ {h}).
In the running example, the root contains the variableX6 that is not covered by the
edges3 (see Fig. 23). Then, we choose the path connecting the root and its right
child, becauseX6 occurs in some edge belonging to itsλ labeling, namely in the
edges5. Thus, we adds5 to theλ labeling of the root, and the covering ofX6 is
done. Similarly, the variableX1 occurring in the left child of the root is covered by
adding to itsλ labeling the edges1, which occurs in its child. Fig. 24 shows the final
hypertree obtained for the running example.
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Fig. 24. The final hypertree for the running example in the proof of Lemma 33.

Note that, after steps (1), (2), and (3), the connectedness condition (i.e., condition (2)
of Definition 12) clearly holds inHD because it holds in the jointreeJT . However, for
any vertexph of T corresponding to a vertexh ∈ TE of JT , step (3) only provides theχ
labeling forph. Thus, in step (4), we select the edges ofH that cover these variables in the
vertexph of the decompositionHD, i.e., we define theλ labeling forph.

Since the connectedness condition is preserved in step (3) above, it is easy to verify
that, at the end of the procedure,HD is a hypertree decomposition ofH. Moreover, its
HYPERTREEwidth is at mostk. Indeed, by the above construction, it follows that for each
vertexh ∈ HE, |λ(ph)| = |hinge(h)| 6 k, and, for each vertexh′ ∈ TE, |λ(ph)| 6 |h| 6
k. 2
Lemma 34. HINGETCLUSTER≺≺HYPERTREE.

Proof. From Lemma 33,HINGETCLUSTER� HYPERTREEholds. We next show that
HYPERTREE� HINGETCLUSTER. Consider the cyclic hypergraphCircle(n,m), for any
n > 2,m > 0. This hypergraph has a unique hinge containing all its edges, and
therefore itsHINGE width is n. Moreover, its primal graph contains maximal cliques
of cardinality at least 2m, and thus itsTCLUSTERwidth is at least 2m. It follows that⋃
n>2,m>0 {Circle(n,m)} 6⊆ C(HINGETCLUSTER, k) holds for anyk > 0. However, for

HYPERTREE,
⋃
n>2,m>0{Circle(n,m)} ⊆ C(HYPERTREE,2) holds. (See Fig. 18 for a

hypertree decomposition ofCircle(n,m) of width 2.) 2
Lemma 35. HINGETCLUSTERandHYPERCUTSETare strongly incomparable.

Proof. HINGETCLUSTER�HYPERCUTSETfollows fromBICOMP�HYPERCUTSETand
BICOMP�HINGETCLUSTER.

HYPERCUTSET�HINGETCLUSTER. Indeed,⋃
n>2,m>0

{Circle(n,m)} 6⊆ C(HINGETCLUSTER, k)

holds for anyk > 0; while,⋃
n>2,m>0

{Circle(n,m)} ⊆ C(HYPERCUTSET,1). 2

Lemma 36. HYPERCUTSET≺≺HYPERTREE.
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Proof. We have thatHYPERTREE�HYPERCUTSETbecause, from Lemma 25,BICOMP�HYPERCUTSET, andBICOMP�HYPERTREE.
We next prove thatHYPERCUTSET� HYPERTREE. Let H be a hypergraph and

H ⊆ edges(H) a cycle hypercutset ofH. Let k be the cardinality ofH . Let H′ be the
subhypergraph ofH induced byvar(H) − var(H), i.e., the hypergraph having an edge
h′(h) = h − var(H) for each edgeh ∈ edges(H) such thath − var(H) 6= ∅. Note that,
in general,H′ is not connected. By definition of cycle hypercutset,H′ is acyclic. Thus,
there exists a join forest forH′, i.e., a set of jointreesJT1, . . . , JT` corresponding to thes
connected components ofH′.

We show that there exists a hypertree decompositionHD = 〈T ,χ,λ〉 of H having
width k + 1. The rootr of T is labeled by the cycle hypercutsetH , i.e.,λ(r) = H , and
χ(r) = var(H). The rootr has` children {p1, . . . , p`} corresponding to thè jointrees
JT1, . . . , JT`. In particular, each subtreeTpi rooted at a childpi (16 i 6 `) has the same
tree shape as the jointreeJTi . Moreover, letq be a vertex of the jointreeJTi , andh be an
edge ofH such thath′(h) is the edge ofH′ associated to the vertexq of JTi . We label the
corresponding vertex̄q in Tpi as follows:λ(q̄)= {h} ∪H , andχ(q̄)= h∪ var(H).

It is easy to see that the hypertreeHD is a hypertree decomposition ofH, and its width
is k + 1. It follows thatHYPERCUTSET�HYPERTREE. 2

8. Binary CSPs

In this section, we focus on binary constraints satisfaction problems, i.e., on CSPs where
the constraints relations have arity at most two.

On binary constraint networks, the differences among the decomposition strategies,
highlighted in Section 7, become less evident. Indeed, bounding the arities of the constraint
relations, thek-tractable classes of some decomposition strategies collapse, while some
generalizations are no longer strong generalizations.

Let ≺≺bin,�bin, �bin, and≡bin the relations on the decompositions strategies induced
by≺≺,�,�, and≡, respectively, when only binary CSPs are considered.

In Fig. 25, full arcs (and paths containing full arcs) represent≺≺bin relationships, while a
dashed arc from a methodD1 to a methodD2 means thatD1�binD2 andD2 6�binD1, but
at the same timeD1 6≺≺binD2. From the latter relationship, it follows that every classC that
is tractable according toD1 is also tractable according toD2, i.e., theD2 width of every
graph belonging to the classC is bounded by some constantk > 0. However,D2 6�binD1

entails thatD2 decompositions are more “efficient”, in the sense that solving aD1-tractable
class byD2-solution methods is feasible by augmenting the worst-case complexity by at
most an additive constant in the exponent, while this is not possible in the other direction.

Theorem 37. For each pairD1 andD2 of decompositions methods represented in Fig.25,
the following holds:
• There is a directed path fromD1 toD2 if and only ifD1�binD2.
• There is a directed path containing at least one full arrow fromD1 toD2 if and only

if D1≺≺binD2.
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Fig. 25. Tractability hierarchy for binary CSPs.

• D1 andD2 are not linked by any directed path if and only if they are incomparable
with respect to the�bin relationship, i.e., if bothD1 6�binD2 andD2 6�binD1 hold.

The following lemmas provide the proof of this theorem.

Lemma 38. HINGE≺≺bin TCLUSTER.

Proof. First note thatTCLUSTER�bin HINGE follows from the proof showing that
TCLUSTER�HINGE. Indeed, for anyn > 2, the graphCircle(n,1) has degree of cyclicity
n, while it hasTCLUSTERwidth 3.

To prove thatHINGE�bin TCLUSTER, we show that for any graphG= (V ,E) HINGE-
width(G)> TCLUSTER-width(G). If G is an acyclic graph, then its degree of cyclicity is
2 and itsTCLUSTERwidth is 1, by definition. Now, assumeG is a cyclic graph and letT
be a hinge decomposition ofG. From the definition of hinge decomposition, it follows that
T represents a join tree of an acyclic hypergraph.

We recall from [19] that, given a hingeH of G, H ′ ⊆ H is a hinge ofG if and only
if H ′ is a hinge of the graph(var(H),H). It follows that any minimal hinge ofG must
be a connected set of edges. Moreover, it is easy to see that ifH is a minimal hinge and
(var(H),H) is acyclic, then|H | = 2.

Let T ′ be a new join tree initially set equal toT . As long as there exists some vertex of
T ′ corresponding to a 2-edges hinge ofG, modifyT ′ as follows:

(1) select a vertexp of T ′ containing two edges ofG e1 ande2;
(2) add toT ′ two verticesp1 andp2 containing edgese1 ande2, respectively;
(3) add an edge connectingp1 andp′ for any vertexp′ of T ′ connected top and sharing

e1 with p;
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(4) add an edge connectingp2 andp′ for any vertexp′ of T ′ connected top and sharing
e2 with p;

(5) removep and all its incident edges fromT ′.
It is easy to verify that the final treeT ′ obtained when the procedure above terminates
satisfies the connectedness condition of join trees. In fact, it represents an acyclic
hypergraph, sayH′.

LetG′ be the primal graph ofH′. The graphG′ is clearly chordal andE ⊆E′, thus it can
be obtained by some suitable triangulation ofG. Letk be the number of variables occurring
in the largest cliqueC of G′. SinceG is a cyclic graph,k > 2. By construction ofG′, the
cliqueC corresponds to some minimal hingeH of G such that the graph(var(H),H) is
both connected and cyclic. This entails that|H |> var(H)= k.

It follows that k 6 HINGE-width(G), becauseHINGE-width(G) is equal to the
cardinality of the largest minimal hinge ofG. Thus the lemma holds, becauseTCLUSTER-
width(G)6 k, asG′ witnesses that there exists a graph obtained by some triangulation of
G whose maximal clique has cardinalityk. 2
Lemma 39. The following relationships hold betweenHYPERTREEandTCLUSTER:
• TCLUSTER�bin HYPERTREE;
• HYPERTREE6�binTCLUSTER; and
• HYPERTREE6�bin TCLUSTER.

Proof. (TCLUSTER�bin HYPERTREE.) Easily follows from the same construction
described in Lemma 33 to prove thatHINGETCLUSTER�HYPERTREE.

(HYPERTREE6�bin TCLUSTER.) Follows from the fact that, for any graphG,
TCLUSTER-width(G) 6 2 · HYPERTREE-width(G). Let HD be anyk-width hypertree
decomposition of a graphG. The hypergraph corresponding to the acyclic instance built
according toHD has a primal graphG′ whose largest clique contains 2·k variables at most.
Indeed, at mostk edges can be associated to any vertexp of the hypertree decomposition
and hencevar(p)6 2 · k.

(HYPERTREE6�bin TCLUSTER.) Observe that, for everyn > 3, the complete graph
Kn has HYPERTREEwidth dn/2e, while it has TCLUSTERwidth n. Thus, Kn ∈
C(HYPERTREE, n′), for eachn′ > dn/2e, whileKn /∈ C(TCLUSTER, n′′), for eachn′′ <
n. It follows that there is no fixedδ such that, for everyk > 0, C(HYPERTREE, k) ⊆
C(TCLUSTER, k + δ). 2
Lemma 40. The following relationships hold betweenHYPERCUTSETandCUTSET:
• CUTSET�bin HYPERCUTSET;
• HYPERCUTSET6�bin CUTSET; and
• HYPERCUTSET6�bin CUTSET.

Proof. The proofs of the first two points above are straightforward. We next show that
HYPERCUTSET6�bin CUTSET. Consider the graphtriangles(n) for somen > 0. It is
easy to see that theHYPERCUTSETwidth of triangles(n) is dn/3e, while its CUTSET
width is dn/2e. Thus,triangles(n) ∈ C(HYPERCUTSET, n′), for eachn′ > dn/3e, while
triangles(n) /∈ C(CUTSET, n′′), for eachn′′ < dn/2e. It follows that there is no fixedδ
such that, for everyk > 0,C(HYPERCUTSET, k)⊆ C(CUTSET, k + δ). 2
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All the other relationships follow from transitivity, or from the corresponding proofs
given in the general case of hypergraphs, which carry over to the binary case.

9. Solving nonbinary CSPs by dualization

Many structural decomposition methods have been designed to identify “easy” graph
structures, rather than “easy” hypergraph structures. In Section 4, we described binary
decomposition methods (i.e., decomposition methods designed for graphs, but not for
hypergraphs) acting on the primal graph of the hypergraph associated to the given CSP
instance. As we showed in the previous section, for binary CSPs some methods become
closer to the hypertree-decomposition method.

An alternative approach to the solution of nonbinary CSPs is to exploit binary methods
on the dual graph of a hypergraph. (See, e.g., [7].) Given a CSP instanceI , the dual
graph[7,9,22] of the hypergraphHI is a graphGdI = (V ,E) defined as follows: the set of
verticesV coincides with the set of (hyper)edges ofHI , and the setE contains an edge
{h,h′} for each pair of verticesh,h′ ∈ V such thath ∩ h′ 6= ∅. That is, there is an edge
between any pair of vertices corresponding to hyperedges ofHI sharing some variable.

The dual graph often looks very intricate even for simple CSPs. For instance, in general,
acyclic CSPs do not have acyclic dual graphs. However, it is well known that the dual graph
GdI can be suitably simplified in order to obtain a “better” graphG′ which can still be used
to solve the given CSP instanceI . In particular, ifI is an acyclic CSP,GdI can be reduced
to an acyclic graph that represents a jointree ofHI . In this case, the reduction is feasible
in polynomial (actually, linear) time. (See, e.g., [22].)

Definition 41. LetG= (V ,E) be the dual graph of some hypergraphH. For any pair of
verticesh,h′ ∈ V , let `({h,h′})= h ∩ h′. A reductG′ of G is a graph(V ′,E′) satisfying
the following conditions:

(i) V ′ = V ;
(ii) E′ ⊆E; and
(iii) for each edgeq = {h,h′} belonging to(E−E′), there exists inG′ a pathP fromh

toh′, such that the variables iǹ(q) are included iǹ (q ′) for each edgeq ′ occurring
in the pathP . That is, if all the variables shared by two vertices occur in some other
path between these vertices, the edge connecting them can be safely deleted from
the dual graph.

We denote byred(G) the set of all theminimal reductsof a graphG, i.e., the set
containing every graphG′ which is a reduct ofG and whose set of edges is minimal (with
respect to set inclusion) over all the reducts ofG. Clearly, computing a graph belonging to
red(G) is feasible in polynomial time, because one can just repeatedly delete an edge as
long as possible.

It is thus natural to try to solve a nonbinary CSPI using any decomposition methodDM
on its dual graph:

(1) compute fromGdI a suitable reductG ∈ red(GdI );
(2) compute aDM decomposition of the graphG;
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(3) solve the instanceI using this decomposition.
For instance,BICOMPcan easily be modified to be used on the dual graph of a given

hypergraph [11]. Call this dual versionBICOMPd . The relationship betweenBICOMPd

andHINGEhas already been discussed in [18]: it was proved thatHINGE is more general
thanBICOMPd . However, Gyssens et al. observed that a fine comparison between the two
methods is quite difficult because the performance ofBICOMPd strongly depends on the
simplification applied toGdI , i.e., depends on the particular graph inred(GdI ) selected to
solve the given CSP instanceI . They also argued that there is no obvious way to find a
suitable simplification good enough to keep small the biconnected width of the reduct to
be used for solving the problem.

SinceHYPERTREEstrongly generalizesHINGE, it follows thatHYPERTREEstrongly
generalizesBICOMPd . However, as suggested by Dechter (personal communication), it
would be interesting to compareHYPERTREEwith the dual version ofTCLUSTER(short:
TCLUSTERd ), defined as follows. LetH be a hypergraph, andG its dual graph. An
acyclic hypergraphH∗ is a TCLUSTERd decomposition ofH of width w if H∗ is a
TCLUSTERdecomposition ofG′ of width w, for some reductG′ ∈ red(G). The dual
tree-clustering width(short:TCLUSTERd width) ofH is equal to the minimum width over
theTCLUSTERd decompositions ofH.

We next show thatHYPERTREEstrongly generalizes theTCLUSTERd method, too. To
this end, we introduce a new class of hypergraphs. For anyn > 1 letD-Clique(n) be the
hypergraph havingn+ 2 edges{ha,hb,h1, h2, . . . , hn} defined as follows:
• ha = {Xaij | 16 i < j 6 n};
• hb = {Xbij | 16 i < j 6 n};
• for 16 i 6 n, hi = {Xa1i ,Xa2i , . . . ,Xai−1i ,X

a
ii+1, . . . ,X

a
in}∪

{Xb1i ,Xb2i , . . . ,Xbi−1i ,X
b
ii+1, . . . ,X

b
in}.

We denote byGd(n) the dual graph ofD-Clique(n).

Example 42. Consider the hypergraphD-Clique(4). Its edges are

h1 = {Xa12,X
b
12,X

a
13,X

b
13,X

a
14,X

b
14};

h2 = {Xa12,X
b
12,X

a
23,X

b
23,X

a
24,X

b
24};

h3 = {Xa13,X
b
13,X

a
23,X

b
23,X

a
34,X

b
34};

h4 = {Xa14,X
b
14,X

a
24,X

b
24,X

a
34,X

b
34};

ha = {Xaij | 16 i < j 6 4};
hb = {Xbij | 16 i < j 6 4}.

Fig. 26 shows the dual graphGd(4). Note that this graph cannot be reduced, and
hencered(Gd(4))= {Gd(4)}. For instance, consider the verticesh1 andh4. Their shared
variables areXa14 andXb14. For anyt /∈ {1,4, a, b}, ht ∩ h1 = {Xa1t ,Xb1t }, which clearly
does not include{Xa14,X

b
14}. Moreover,Xb14 /∈ h1∩ha andXa14 /∈ h1∩hb . Thus, we cannot

delete the edge{h1, h4}, and in fact no edge can be deleted fromGd(4).
Apply TCLUSTERto Gd(4). It is already a chordal graph, therefore we can directly

identify the maximal cliques, that form the edges of theTCLUSTERdecomposition
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Fig. 26. The dual graph ofD-Clique(4).

Fig. 27. A hypertree decomposition ofD-Clique(4).

of Gd(4). The resulting acyclic hypergraph has the two edges{ha,h1, h2, h3, h4}, and
{hb,h1, h2, h3, h4}. Thus, theTCLUSTERd width ofD-Clique(4) is 5.

The HYPERTREEwidth of D-Clique(4) is 2. Fig. 27 shows a complete hypertree
decomposition(T ,χ,λ) of D-Clique(4) having width 2. Observe that, exploiting the two
edgesh1 andh2, even the root ofT alone covers all the variables occurring inD-Clique(4),
and is in fact a hypertree decomposition of this hypergraph. To obtain the complete
hypertree decomposition shown in Fig. 27, the remaining edges are simply “attached” as
singletons to the root.

Theorem 43. TCLUSTERd ≺≺HYPERTREE.

Proof. (HYPERTREE� TCLUSTERd .) Consider the hypergraph class{D-Clique(n) |
n > 1}. Generalizing the above example, it is easily seen that, for anyn > 3, the
set red(Gd(n)) is a singleton containing only the dual graphGd(n) of D-Clique(n).
This graph is chordal, its maximal cliques are{ha,h1, . . . , hn} and {hb,h1, . . . , hn},
and hence theTCLUSTERd width of D-Clique(n) is n + 1. Thus, for anyk > 0,⋃
n>0{D-Clique(n)} 6⊆ C(TCLUSTERd , k), whereas the hypertree width of all these

hypergraphs is 2, i.e.,
⋃
n>0{D-Clique(n)} ⊆ C(hypertree,2). Indeed, a tree with a single

vertex r with λ(r) = {ha,hb} and χ(r) = ha ∪ hb is a hypertree decomposition
of D-Clique(n), though not complete. Fig. 27 shows what a complete hypertree
decomposition for such hypergraphs looks like.

(TCLUSTERd � HYPERTREE.) Let H′ be aTCLUSTERd decomposition of a hyper-
graphH of width k. Then,H′ is an acyclic hypergraph whose edges are sets containing
at mostk edges fromH. Any join treeJT of H′ can be mapped straightforwardly to a
hypertree decomposition(T ,χ,λ) of H with the same tree-shape asJT. Every vertexp
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in T corresponds to a vertexp′ in JT. The vertexp′ of the join tree ofH′ corresponds
to a maximal clique of (some reduct of) the dual graph ofH, and hence contains a setS
of edges occurring inH. Then, the vertexp in the hypertree decomposition is labeled by
λ(p)= S andχ(p)= var(S). Clearly the hypertree decomposition(T ,χ,λ) has the same
width as theTCLUSTERd decompositionH′. 2

Note that theTCLUSTERd width of H does not depend on the choice of the reduct
of the dual graph. The width is in fact computed using an optimal reduct ofG, i.e., a
reduct leading to a lowest-widthTCLUSTERdecomposition ofH. However, as observed
in [18], it is not clear how to choose the right reduct in order to obtain theTCLUSTERd

decomposition having the smallest width. In fact, it is currently not known whether, for a
fixedk, deciding whether theTCLUSTERd width of a hypergraph is at mostk is feasible in
polynomial time. Thus, compared toTCLUSTERd , HYPERTREEis strongly more general
andk-bounded hypertree decompositions are efficiently computable.

Clearly, the above result holds forTREEWIDTHandw∗, too, given the equivalence of
these methods (see Section 4).

10. Conclusion

In this paper we have established a framework for systematically comparing structural
CSP decomposition methods with regard to their power of identifying large tractable
classes of constraints. We have compared the main decomposition methods published in
the AI literature. Moreover, we have adapted the method of hypertree decompositions,
previously defined in the database context, to the CSP setting. We compared all methods
both for CSPs of arbitrary arity and for binary CSPs. In both cases it turned out that the
hypertree decomposition method is more general than the others; in the case of general
CSPs this holds even in a very strong sense. We have also shown that the method of
hypertree decompositions is more general than any dualization method which applies a
standard decomposition method to the dual graph of the constraint hypergraphof a CSP. We
have derived the upper time bound O(‖I‖k+1 log‖I‖) for the solution of a CSP instance
I having ak-width hypertree decomposition. Note that this bound is not worse than the
bound for any other considered method of CSP decompositions. Thus, it appears that the
method of hypertree decompositions is currently the most powerful CSP decomposition
method.

The comparison results and complexity bounds presented in this paper are valid for
general CSP instances whose domain size is unrestricted. Further work is needed both on
suitable extensions or modifications of decomposition methods and on the comparison of
the various methods for some relevant special cases, in particular, for CSPs with afixed
domain size. Moreover, as already remarked, both theHINGE and theBICOMPwidth
of a hypergraph can be computed in polynomial time even if no fixed bound is given.
Thus, these methods may be useful for providing in polynomial time a “measure of the
cyclicity” of any arbitrary CSP instance. For some practical applications where the given
CSP instances have large hypertree width,HINGE andBICOMPdecompositions may be
used for the fast identification of “easy” and “hard” modules (or clusters) of the constraint
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hypergraph. Moreover, the algorithm for computing hypertree decompositions itself may
suitably be modified to identify and output clusters of low hypertree-width in case the
entire hypergraph has a high width.

We believe that our comparison results provide insight into the relationship of various
standard methods of constraint decomposition. Constraint satisfaction is a very lively field
and several new methods and techniques for decomposing and solving CSPs are expected
to be proposed in the years to come. We hope that the results of this paper, our comparison
framework, and our proof techniques will be useful to other authors for assessing the
relative strength of their methods, and for comparing them to existing methods.
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