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Several important decision problems on conjunctive queries (CQs) are
NP-complete in general but become tractable, and actually highly paralleliz-
able, if restricted to acyclic or nearly acyclic queries. Examples are the
evaluation of Boolean CQs and query containment. These problems were
shown tractable for conjunctive queries of bounded treewidth (Ch. Chekuri
and A. Rajaraman, Theoret. Comput. Sci. 239 (2000), 211–229), and of
bounded degree of cyclicity (M. Gyssens et al., Artif. Intell. 66 (1994), 57–89;
M. Gyssens and J. Paredaens, in ‘‘Advances in Database Theory,’’ Vol. 2,
pp. 85–122, Plenum Press, New York, 1984). The so far most general concept
of nearly acyclic queries was the notion of queries of bounded query-width
introduced by Chekuri and Rajaraman (2000). While CQs of bounded query-
width are tractable, it remained unclear whether such queries are efficiently
recognizable. Chekuri and Rajaraman (2000) stated as an open problem
whether for each constant k it can be determined in polynomial time if
a query has query-width at most k. We give a negative answer by proving
the NP-completeness of this problem (specifically, for k=4). In order to



circumvent this difficulty, we introduce the new concept of hypertree decom-
position of a query and the corresponding notion of hypertree-width. We prove:
(a) for each k, the class of queries with query-width bounded by k is properly
contained in the class of queries whose hypertree-width is bounded by k; (b)
unlike query-width, constant hypertree-width is efficiently recognizable; and
(c) Boolean queries of bounded hypertree-width can be efficiently evaluated.
© 2002 Elsevier Science (USA)

1. INTRODUCTION AND OVERVIEW OF RESULTS

1.1. Conjunctive Queries and Join Trees

One of the simplest but also one of the most important classes of database
queries is the class of conjunctive queries (CQs). In this paper we adopt the logical
representation of a relational database [40, 1], where data tuples are identified with
logical ground atoms, and conjunctive queries are represented as datalog rules. We
will, in the first place, deal with Boolean conjunctive queries (BCQs) represented by
rules whose heads are variable-free, i.e., propositional (see Example 1.1 below).
From our results on Boolean queries, we are able to derive complexity results on
important database problems concerning general (not necessarily Boolean)
conjunctive queries.

Example 1.1. Consider a relational database with the following relation
schemas:

enrolled(Pers#,Course#,Reg–Date)
teaches(Pers#,Course#,Assigned)
parent(Pers1, Pers2)

The BCQ Q1 below checks whether some student is enrolled in a course taught
by his/her parent.

Q1: ansP enrolled(S, C, R)Nteaches(P, C, A)N parent(P, S).

The following query Q2 asks: Is there a professor who has a child enrolled in
some course?

Q2: ansP teaches(P, C, A)Nenrolled(S, CŒ, R)N parent(P, S).

Decision problems such as the evaluation problem of Boolean CQs, the tuple-of-
query problem (i.e., checking whether a given tuple belongs to a CQ), and the con-
tainment problem for CQs have been studied intensively. (For recent references, see
[29, 9].) These problems—which are all equivalent via simple logspace transforma-
tions (see [19])—are NP-complete in the general setting but are polynomially
solvable for a number of syntactically restricted subclasses.

Most prominent among the polynomial cases is the class of acyclic queries or tree
queries [44, 4, 18, 45, 10, 13, 14, 31]. These queries can be characterized in terms of
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FIG. 1. A join tree of Q2 .

join trees: A query Q is acyclic iff it has a join tree [4, 3]. A join tree JT(Q) for a
conjunctive query Q is a tree whose vertices are the atoms in the body of Q such
that whenever the same variable X occurs in two atoms A1 and A2, then A1 and A2
are connected in JT(Q), and X occurs in each atom on the unique path linking A1
and A2. In other words, the set of nodes in which X occurs induces a (connected)
subtree of JT(Q). We will refer to this condition as the Connectedness Condition of
join trees.

Example 1.2. While query Q1 of example 1.1 is cyclic and admits no join tree,
query Q2 is acyclic. A join tree for Q2 is shown in Fig. 1 (note that predicate names
are abbreviated by their first letter in the figure).

Acyclic Boolean queries can be efficiently evaluated. Intuitively, this is due to the
fact that they can be evaluated by processing the join tree bottom-up by performing
upward semijoins, thus keeping small the size of the intermediate relations (that
could become exponential if regular joins were performed). This method is the
Boolean version of Yannakakis’ evaluation algorithm for general conjunctive
queries [44]. Actually, this evaluation can be also performed in a highly parallel
fashion, independently of the join tree shape [19].

1.2. Queries of Bounded Width

The tremendous speed-up obtainable in the evaluation of acyclic queries
stimulated several research efforts towards the identification of wider classes of
queries having the same desirable properties as acyclic queries. These studies iden-
tified a number of relevant classes of cyclic queries which are close to acyclic
queries, because they can be decomposed via low width decompositions to acyclic
queries. Thus, any such methodM is characterized by some notion ofM-width. We
say that a query has bounded width according to M if its M-width is bounded by
some fixed constant k.

The main classes of polynomially solvable bounded-width queries considered in
database theory are:

• The queries of bounded treewidth [9] (see also [29, 19]). These are queries,
whose variable-atom incidence graph has treewidth bounded by a constant. The
treewidth of a graph is a well-known measure of its tree-likeness introduced by
Robertson and Seymour in their work on graph minors [34]. This notion plays
a central role in algorithmic graph theory as well as in many subdisciplines of
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Computer Science. We omit a formal definition. It is well-known that checking that
a graph has treewidth at most k for a fixed constant k, and in the positive case,
computing a k-width tree decomposition is feasible in linear time [6]. In [29],
another notion of treewidth of a query has been considered. This notion is equiva-
lent to the treewidth of the Gaifman graph of the query, i.e., the graph linking two
variables by an edge if they occur together in a query-atom.

• Queries of bounded degree of cyclicity [26, 25]. This is an interesting class
of queries which encompasses the class of acyclic queries. (See [26, 25] for a formal
definition.) For each constant k, checking whether a query has degree of cyclicity at
most k is feasible in polynomial time [26, 25].

• Queries of bounded query-width [9]. The notion of bounded query-width is
based on the concept of query decomposition [9]. Roughly, a query decomposition
of a query Q consists of a tree each vertex of which is labeled by a set of atoms
and/or variables. Each variable and atom induces a connected subtree (connected-
ness condition). Each atom occurs in at least one label. The width of a query
decomposition is the maximum of the cardinalities of its vertices. The query-width
qw(Q) of Q is the minimum width over all its query decompositions. A formal
definition is given in Section 3.1; Fig. 2 shows a 2-width query-decomposition for
the cyclic query Q1 of Example 1.1. This class is the widest of the three classes:
Each query of bounded treewidth or of bounded degree of cyclicity k has also
bounded query-width k, but for some queries the converse does not hold [9, 19]. In
fact, there are even classes of queries with bounded query-width but with
unbounded treewidth and unbounded degree of cyclicity. Note, however, that no
polynomial algorithm for checking whether a query has width at most k was
known.

Intuitively, a vertex of a k-width query decomposition stands for the natural join of
(the relations of) its elements—the size of this join is O(nk), where n is the size of
the input database. Once these joins have been done, the query decomposition can
be treated exactly like a join tree of an acyclic query, and permits to evaluate the
query in time polynomial in nk [9]. This notion is a true generalization of the basic
concept of acyclicity: A query is acyclic iff it has query-width 1.

The problem BCQ (evaluation of Boolean conjunctive queries) and the bounded
query-width versions of all mentioned equivalent problems, e.g. query-containment
Q1 ı Q2, where the query-width of Q2 is bounded, can be efficiently solved if a
k-width query decomposition of the query is given as (additional) input. Chekuri and

FIG. 2. A 2-width query decomposition of query Q1 .
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Rajamaran provided a polynomial-time algorithm for this problem [9]; Gottlob et
al. [19] later pinpointed the precise complexity of the problem by proving its
LOGCFL-completeness.

1.3. A Negative Result

Unfortunately, unlike for acyclicity, for bounded treewidth, or for bounded
degree of cyclicity, no efficient method for checking bounded query-width is
known, and a k-width query decomposition, which is required for the efficient
evaluation of a bounded-width query, is not known to be polynomial-time com-
putable.

Chekuri and Rajaraman [9] state this as an open problem. This problem is the
first question we address in the present paper.

The fact that treewidth k can be checked in linear time suggests that an analo-
gous algorithm may work for query-width, too. Chekuri and Rajaraman [9] write:
‘‘it would be useful to have an efficient algorithm that produces query decompositions
of small width, analogous to the algorithm of Bodlaender [6] for decompositions of
small treewidth.’’ Kolaitis and Vardi [29] who also address this issue write: ‘‘there is
an important advantage of the concept of bounded treewidth over the concept of
bounded query-width. Specifically, as seen above, the classes of structures of bounded
treewidth are polynomially recognizable, whereas it is not known whether the same
holds true for the classes of queries of bounded query-width.’’

Unfortunately, there is bad news:

Determining whether the query-width of a conjunctive query is at most 4 is
NP-complete.

The NP-completeness proof is rather involved. We give some intuition in
Section 3.3, and defer the technical proof to Section 7. As shown in Section 3.3,
NP-hardness is intuitively due to the fact that the definition of query decomposition
implicitly requires that certain sets of variables occurring in subtrees of the decom-
position be precisely covered by query atoms. This requirement of precise covering
is reminiscent of various covering problems known to be NP-complete. In fact, in
our NP-completeness proof (given in Section 7), we succeeded to reduce the
problem of EXACT COVER BY 3-SETS to the query-width problem. The proof led
us to a better intuition about (i) why the problem is NP-complete, and (ii) how this
could be redressed by adopting a different notion of width.

1.4. Hypertree Decompositions: Positive Results

To circumvent the high complexity of query decompositions, we introduce a new
concept of decomposition and its associated notion of width, which we call hyper-
tree decomposition and hypertree-width, respectively. The definition of hypertree
decomposition (see Section 4) corresponds to a more liberal notion of ‘‘covering,’’
which is computationally tractable.
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We denote the query-width of a query by qw(Q) and its hypertree-width by
hw(Q). We shall prove the following results:

1. For each conjunctive query Q it holds that hw(Q) [ qw(Q).

2. There exist queries Q such that hw(Q) < qw(Q).

3. For each fixed constant k, the problems of determining whether hw(Q) [ k
and of computing (in the positive case) a hypertree decomposition of width at most
k are feasible in polynomial time.

4. For fixed k, evaluating a Boolean conjunctive query Q with hw(Q) [ k is
feasible in polynomial time.

5. The result of a (non-Boolean) conjunctive query Q of bounded hypertree-
width can be computed in time polynomial in the combined size of the input
instance and of the output relation.

6. Tasks 3 and 4 are not only polynomial, but are highly parallelizable. In
particular, for fixed k, checking whether hw(Q) [ k is in the parallel complexity
class LOGCFL; computing a hypertree decomposition of width k (if any) is in
functional LOGCFL, i.e., is feasible by a logspace transducer that uses an oracle in
LOGCFL; evaluating Q where hw(Q) [ k on a database is complete for LOGCFL
under logspace reductions.

Similar results hold for the equivalent problem of conjunctive query containment
Q1 ı Q2, where hw(Q2) [ k, and for all other of the aforementioned equivalent
problems.

Let us comment on these results. By statements 1 and 2, the concept of hypertree-
width is a proper generalization of the notion of query width. By statement 3,
bounded hypertree-width is efficiently checkable, and by statement 4, queries of
bounded hypertree-width can be efficiently evaluated. In summary, this is truly
good news. It means that the notion of bounded hypertree-width not only shares
the desirable properties of bounded query-width, it also does not share the bad
properties of the latter, and, in addition, is a more general concept.

It thus turns out that the high complexity of determining bounded query-width is
not, as one would usually expect, the price for the generality of the concept. Rather,
it is due to some peculiarity in its definition related to the exact covering paradigm.
In the definition of hypertree width we succeeded to eliminate these problems
without paying any additional charge, i.e., hypertree-width comes as a freebie!

Furthermore, Statement 6 asserts that the main algorithmic tasks related to
bounded hypertree-width are in the very low complexity class LOGCFL, and thus
are highly parallelizable. (See Section 2.2).

The definitions of hypertree decomposition and hypertree width given below (in
Section 4) are quite technical. However, in a recent paper [23], we were able to give
extremely natural characterizations of the classes of queries (or hypergraphs) of
bounded hypertree width, both in terms of games and in terms of suitable frag-
ments of first order logic. From the results in [23], it follows that the concept of
hypertree decomposition is a natural generalization of the concept of tree decom-
position [34] (which is defined for graphs only) to hypergraphs.
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1.5. Structure of the Paper

The rest of this paper is structured as follows. In Section 2, we give some basic
notions of database and complexity theory. In Section 3, we formally define the
query decompositions and provide some intuition on why finding (even small)
query decompositions is NP-hard. The new notions of hypertree decomposition and
hypertree-width are formally defined in Section 4, where also some examples are
given, and it is shown that queries having bounded hypertree-width are efficiently
evaluable. In Section 5, we present the alternating algorithm k-decomp that checks
whether a query has hypertree-width at most k, where k is a fixed constant. This
algorithm is shown to run on a logspace ATM having polynomially-sized accepting
computation-trees, thus the problem is actually in LOGCFL. In Section 6, hyper-
tree decomposition is compared to related notions and, in particular, it is shown
that hypertree decomposition properly generalizes the notion of query decomposi-
tion. In Section 7 we give the full NP-completeness proof of the problem of decid-
ing bounded query-width.

This paper has two appendices. In Appendix 1 we show how the concepts of
hypertree decomposition and hypertree width can be defined for hypergraphs rather
than for conjunctive queries, and we show how the two settings are related. In
Appendix 2, we present a deterministic polynomial time algorithm (in form of a
Datalog program) for checking whether a query has hypertree width at most k.

Moreover, we maintain the hypertree decompositions’ homepage [36], contain-
ing further information and a download section with a program for computing
hypertree decompositions and other useful tools.

2. PRELIMINARIES

2.1. Databases and Queries

For a background on databases, conjunctive queries, etc., see [40, 1, 30]. We
define only the most relevant concepts here.

A relation schema R consists of a name (name of the relation) r and a finite
ordered list of attributes. To each attribute A of the schema, a countable domain
Dom(A) of atomic values is associated. A relation instance (or simply, a relation)
over schema R=(A1, ..., Ak) is a finite subset of the cartesian product
Dom(A1)× · · · ×Dom(Ak). The elements of relations are called tuples. A database
schema DS consists of a finite set of relation schemas. A database instance, or
simply database, DB over database schema DS={R1, ..., Rm} consists of relation
instances r1, ..., rm for the schemas R1, ..., Rm, respectively, and a finite universe
U ı1Ri(Ai1, ..., Aiki ) ¥ DS(Dom(A

i
1) 2 · · · 2 Dom(A iki )) such that all data values occur-

ring in DB are from U.
In this paper we will adopt the standard convention [1, 40] of identifying a

relational database instance with a logical theory consisting of ground facts. Thus,
a tuple Oa1, ...akP, belonging to relation r, will be identified with the ground atom
r(a1, ..., ak). The fact that a tuple Oa1, ..., akP belongs to relation r of a database
instance DB is thus simply denoted by r(a1, ..., ak) ¥ DB.
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A (rule based) conjunctive query Q on a database schema DS={R1, ..., Rm}
consists of a rule of the form

Q : ans(u)P r1(u1)N · · · N rn(un),

where n \ 0, r1, ..., rn are relation names (not necessarily distinct) of DS; ans is a
relation name not in DS; and u, u1, ..., un are lists of terms (i.e., variables or con-
stants) of appropriate length. The set of variables occurring in Q is denoted by
var(Q). The set of atoms contained in the body of Q is referred to as atoms(Q).
Similarly, for any atom A ¥ atoms(Q), var(A) denotes the set of variables occurring
in A; and for a set of atoms R ı atoms(Q), define var(R)=1A ¥ R var(A).

The answer of Q on a database instance DB with associated universe U, consists
of a relation ans whose arity is equal to the length of u, defined as follows. ans con-
tains all tuples ans(u) J such that J: var(Q)0 U is a substitution replacing each
variable in var(Q) by a value of U and such that for 1 [ i [ n, ri(ui) J ¥ DB. (For
an atom A, AJ denotes the atom obtained from A by uniformly substituting J(X)
for each variable X occurring in A.)

The conjunctive query Q is a Boolean conjunctive query (BCQ) if its head atom
ans(u) does not contain variables and is thus a purely propositional atom. Q
evaluates to true if there exists a substitution J such that for 1 [ i [ n, ri(ui) J ¥ DB;
otherwise the query evaluates to false.

The head literal in Boolean conjunctive queries is actually inessential, therefore
we may omit it when specifying a Boolean conjunctive query.

Note that conjunctive queries as defined here correspond to conjunctive queries
in the more classical setting of relational calculus, as well as to SELECT-PROJECT-
JOIN queries in the setting of relational algebra, or to simple SQL queries of the
type

SELECT Ri1 .Aj1 , ...Rik .Ajk FROM R1, ...Rn WHERE cond,

such that cond is a conjunction of conditions of the form Ri.A=Rj.B or Ri.A=c,
where c is a constant.

A query Q is acyclic [3, 4] if its associated hypergraph H(Q) is acyclic, otherwise
Q is cyclic. The vertices of H(Q) are the variables occurring in Q. Denote by
atoms(Q) the set of atoms in the body of Q, and by var(A) the variables occurring
in any atom A ¥ atoms(Q). The hyperedges of H(Q) consist of all sets var(A), such
that A ¥ atoms(Q). We refer to the standard notion of cyclicity/acyclicity in
hypergraphs used in database theory [30, 40, 1].

A join tree JT(Q) for a conjunctive query Q is a tree whose vertices are the atoms
in the body of Q such that whenever the same variable X occurs in two atoms A1
and A2, then A1 and A2 are connected in JT(Q), and X occurs in each atom on the
unique path linking A1 and A2. In other words, the set of nodes in which X occurs
induces a (connected) subtree of JT(Q) (connectedness condition).

Acyclic queries can be characterized in terms of join trees: A query Q is acyclic iff
it has a join tree [4, 3].
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FIG. 3. A join tree of Q3 .

Example 2.1. While query Q1 of example 1.1 is cyclic and admits no join tree,
query Q2 is acyclic. A join tree for Q2 is shown in Fig. 1.

Consider the following query Q3:

ansP r(Y, Z)Ng(X, Y)N s(Y, Z, U)N s(Z, U, W)N t(Y, Z)N t(Z, U).

A join tree for Q3 is shown in Fig. 3.

Acyclic conjunctive queries have highly desirable computational properties:

1. The problem BCQ of evaluating a Boolean conjunctive query can be effi-
ciently solved if the input query is acyclic. Yannakakis provided a (sequential)
polynomial time algorithm solving BCQ on acyclic conjunctive queries [43].2 The

2 Note that, since both the database DB and the query Q are part of an input-instance of BCQ, what
we are considering is the combined complexity of the query [43].

authors of the present paper have recently shown that BCQ is highly parallelizable
on acyclic queries, as it is complete for the low complexity class LOGCFL [19].

2. Acyclicity is efficiently recognizable, and a join tree of an acyclic query is
efficiently computable. A linear-time algorithm for computing a join tree is shown
in [39]; an LSL method has been provided in [19].

3. The result of a (non-Boolean) acyclic conjunctive query Q can be computed
in time polynomial in the combined size of the input instance and of the output
relation [44].

Acyclicity is a key-property responsible for the polynomial solvability of problems
that are in general NP-hard such as BCQ [8] and other equivalent problems such
as Conjunctive Query Containment [33, 9], Clause Subsumption, and Constraint
Satisfaction [29, 19]. (For a survey and detailed treatment see [19].)

2.2. The Class LOGCFL

LOGCFL consists of all decision problems that are logspace reducible to a
context-free language. An obvious example of a problem complete for LOGCFL is
Greibach’s hardest context-free language [24]. There are a number of very
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interesting natural problems known to be LOGCFL-complete (see, e.g. [19, 38,
37]). The relationship between LOGCFL and other well-known complexity classes
is summarized in the following chain of inclusions:

AC0 ı NC1 ı L ı SL ı NL ı LOGCFL ı AC1 ı NC2 ı P ı NP

Here L denotes logspace, AC i and NC i are logspace-uniform classes based on the
corresponding types of Boolean circuits, SL denotes symmetric logspace, NL
denotes nondeterministic logspace, P is polynomial time, and NP is nondeterminis-
tic polynomial time. For the definitions of all these classes, and for references con-
cerning their mutual relationships, see [28].

Since—as mentioned in the introduction—LOGCFL ı AC1 ı NC2, the problems
in LOGCFL are all highly parallelizable. In fact, they are solvable in logarithmic
time by a concurrent-read-concurrent-write (CRCW) parallel random-access-
machine (PRAM) with a polynomial number of processors, or in log2-time by an
exclusive-read-exclusive-write (EREW) PRAM with a polynomial number of pro-
cessors.

In this paper, we will use an important characterization of LOGCFL by Alter-
nating Turing Machines. We assume that the reader is familiar with the alternating
Turing machine (ATM) computational model introduced by Chandra et al. [7].
Here we assume without loss of generality that the states of an ATM are parti-
tioned into existential and universal states.

As in [35], we define a computation tree of an ATMM on an input string w as a
tree whose nodes are labeled with configurations of M on w, such that the descen-
dants of any non-leaf labeled by a universal (existential) configuration include all
(resp. one) of the successors of that configuration. A computation tree is accepting
if the root is labeled with the initial configuration, and all the leaves are accepting
configurations.

Thus, an accepting tree yields a certificate that the input is accepted. A complex-
ity measure considered by Ruzzo [35] for the alternating Turing machine is the tree-
size, i.e. the minimal size of an accepting computation tree.

Definition 2.2 [35]. A decision problem P is solved by an alternating Turing
machine M within simultaneous tree-size and space bounds Z(n) and S(n) if, for
every ‘‘yes’’ instance w of P, there is at least one accepting computation tree for M
on w of size (number of nodes) [ Z(n), each node of which represents a configura-
tion using space [ S(n), where n is the size of w. (Further, for any ‘‘no’’ instance w
of P there is no accepting computation tree forM.)

Ruzzo [35] proved the following important characterization of LOGCFL :

Proposition 2.3 [35]. LOGCFL coincides with the class of all decision problems
recognized by ATMs operating simultaneously in tree-size O(nO(1)) and space
O(log n).
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3. QUERY DECOMPOSITIONS

In this section, we first give the formal definitions of query-width and query
decomposition. Then, we provide some intuition of why deciding whether a query
has bounded query-width is NP-hard.

3.1. Bounded Query-Width and Bounded Query-Decompositions

The following definition of query decomposition is a slight modification of the
original definition given by Chekuri and Rajaraman [9]. Our definition is a bit
more liberal because, for any conjunctive query Q, we do not care about the atom
head(Q), as well as of the constants possibly occurring in Q. However, in this
paper, we will only deal with Boolean conjunctive queries without constants, for
which the two notions coincide.

Definition 3.1. A query decomposition of a conjunctive query Q is a pair
OT, lP, where T=(N, E) is a tree, and l is a labeling function which associates
to each vertex p ¥N a set l(p) ı (atoms(Q) 2 var(Q)), such that the following
conditions are satisfied:

1. for each atom A of Q, there exists p ¥N such that A ¥ l(p);

2. for each atom A of Q, the set {p ¥N|A ¥ l(p)} induces a (connected)
subtree of T;

3. for each variable Y ¥ var(Q), the set

{p ¥N|Y ¥ l(p)} 2 {p ¥N|Y occurs in some atom A ¥ l(p)}

induces a (connected) subtree of T.

The width of the query decomposition OT, lP is maxp ¥N |l(p)|. The query-width
qw(Q) of Q is the minimum width over all its query decompositions. A query
decomposition for Q is pure if, for each vertex p ¥N, l(p) ı atoms(Q).

Note that Condition 3 above is the analogue of the connectedness condition of
join trees and thus we will refer to it as the Connectedness Condition, as well.

Example 3.2. Figure 2 shows a 2-width query decomposition for the cyclic
query of Example 1.1.

Consider the following query Q4:

ansP s(Y, Z, U)Ng(X, Y)N t(Z, X)N s(Z, W, X)N t(Y, Z)

Q4 is a cyclic query, and its query-width equals 2. A 2-width decomposition of Q4 is
shown in Fig. 4. Note that this query decomposition is pure.

The next proposition, which is proved elsewhere [19], shows that we can focus
our attention on pure query decompositions.

Proposition 3.3 [19]. Let Q be a conjunctive query and OT, lP a c-width query
decomposition of Q. Then
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FIG. 4. A 2-width query decomposition of query Q4 .

1. there exists a pure c-width query decomposition OT, lŒP of Q;

2. OT, lŒP is logspace computable from OT, lP.

Thus, by Proposition 3.3, for any conjunctive query Q, qw(Q) [ k if and only if
Q has a pure c-width decomposition, for some c [ k.
k-bounded-width queries are queries whose query-width is bounded by a fixed

constant k > 0. The notion of bounded query-width generalizes the notion of
acyclicity [9]. Indeed, acyclic queries are exactly the conjunctive queries of query-
width 1, because any join tree is a query decomposition of width 1.

Bounded-width queries share an important computational property with acyclic
queries: BCQ can be efficiently solved on queries of k-bounded query-width, if a
k-width query decomposition of the query is given as (additional) input. Chekuri
and Rajamaran provided a polynomial time algorithm for this problem [9]; while
Gottlob et al. [19] pinpointed that the precise complexity of the problem is
LOGCFL-complete.

Unfortunately, unlike for acyclicity, no efficient method for checking bounded
query-width is known. In fact, we will show that deciding whether a conjunctive
query has a bounded-width query decomposition is NP-complete. The proof is
quite involved. We will give an intuition of the source of complexity in Section 3.3,
while Section 7 at the end of the paper is devoted to the full NP-hardness proof.
Before proceeding with NP-completeness issues in Section 3.3, we define a number
of important concepts.

3.2. Important Definitions for Hypergraph-Based Decompositions

The concepts we are going to define here are not only relevant to the context of
query decompositions but will be used in later sections, too.

Let V ı var(Q) be a set of variables, and X, Y ¥ var(Q) a pair of variables
occurring in a query Q, then X is [V]-adjacent to Y if there exists an atom
A ¥ atoms(Q) such that {X, Y} ı (var(A)−V). A [V]-path p from X to Y consists
of a sequence X=X0, ..., Xh=Y of variables and a sequence of atoms A0, ..., Ah−1
(h \ 0) such that: Xi is [V]-adjacent to Xi+1 and {Xi, Xi+1} ı var(Ai), for each
i ¥ [0...h−1]. We denote by var(p) (resp. atoms(p)) the set of variables (atoms)
occurring in the sequence X0, ..., Xh (A0, ..., Ah−1).
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Let V ı var(Q) be a set of variables occurring in a query Q. A set W ı var(Q) of
variables is [V]-connected if -X, Y ¥W there is a [V]-path from X to Y.

A {[V]-component is a maximal [V]-connected non-empty set of variables
W ı (var(Q)−V).

Note that the variables in V do not belong to any [V]-component (i.e.,
V 5 C=” for each [V]-component C).

Let C be a [V]-component for some set of variables V. We define:

atoms(C) :={A ¥ atoms(Q) | var(A) 5 C ]”}.

Note that for any set V of variables and for every atom A ¥ atoms(Q) such that
var(A) ł V, there exists exactly one [V]-component C of Q such that A ¥ atoms(C).

3.3. NP-completeness of Bounded Query-Width (Outline)

As mentioned in the Introduction, Chekuri and Rajaraman [9] stated as an open
problem the tractability of deciding whether the width of a given query is bounded
by some fixed constant. We next give a negative answer to their question.

Theorem 3.4. Deciding whether the query-width of a conjunctive query is at most
4 is NP-complete.

For the sake of completeness, it is worthwhile noting that this result holds for the
original definition of query decomposition given in [9], too. Indeed, the
NP-hardness of Boolean conjunctive queries without constants (that we consider in
this paper) clearly entails the NP-hardness of the general case, and hence of the
notion given in [9]. Moreover, the membership in NP is routine, and it is already
discussed in [9].

The proof of the theorem above is rather involved and is deferred to Section 7. In
the the rest of the present section, we make some observations on query-decompo-
sitions and give some intuitions about the source of NP-hardness of finding a small
query decomposition. These intuitions provide some insight into the nature of
query decompositions and give us a hint on how the high complexity could be
redressed by suitably modifying the notion of query decomposition.

The following example will serve as running example for this and later sections.

Example 3.5. Consider the following conjunctive query Q5:

ansP a(S, X, XŒ, C, F)Nb(S, Y, YŒ, CŒ, FŒ)N c(C, CŒ, Z)Nd(X, Z)N e(Y, Z)N

Nf(F, FŒ, ZŒ)Ng(XŒ, ZŒ)Nh(YŒ, ZŒ)N j(J, X, Y, XŒ, YŒ)

The query-width of Q5 is 3. A query decomposition of Q5 of width 3 is depicted
in Fig. 5. Note that this is not the only one, as Q5 admits several other possible
query decompositions of width 3.
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FIG. 5. A 3-width query decomposition of query Q5 .

For any vertex p of a query-decomposition OT=(N, E), lP of some query Q, we
denote by var(p) the set 1A ¥ l(p) var(A) of all variables occurring in the atoms
associated with p, by Tp=(Np, Ep) the subtree of T rooted at p, and by var(Tp) the
set of all variables covered by Tp, formally, var(Tp)=1q ¥Np var(q).

The following observation follows easily from Definition 3.1.

Proposition 3.6. Let T=(N, E) be a pure query decomposition of a conjunctive
query Q. Let p be any non-leaf vertex of T. Then

var(Tp)=var(p) 20
i ¥ I
Ci,

where I is some index set and each Ci is a [var(p)]-component.

For illustration, consider, e.g., the root vertex p0 of the decomposition
QD5=OT, lP of query Q5 depicted in Fig. 5. The set of the variables occurring in p0
is var(p0)={S, X, XŒ, C, F, Y, YŒ, CŒ, FŒ} and there are three [var(p0)]-compo-
nents: C1={J}, C2={Z}, and C3={ZŒ}. We have: var(T)=var(Tp0 )=var(p0) 2
C1 2 C2 2 C3.

A query-decomposition of width k thus consists of a tree where the atoms of each
subtree Tp rooted at any vertex p precisely cover the variables of p plus some
[var(p)]-components. The atoms of Tp may not contain any additional variable
which neither occurs in var(p) nor in any of the chosen [var(p)]-components.

It is this requirement of precise covering which, intuitively, makes it so hard to
compute a suitable query decomposition.

Very roughly, the source of NP-hardness can be pinpointed as follows. In order
to find a query decomposition of width bounded by k, we can proceed as follows.
At any step, the decomposition is guided by a set C of variables that still needs to
be processed. Initially, i.e., at the root of the decomposition, C consists of all
variables that occur in the query. We then choose as root of the decomposition tree
a hypernode p0 of at most k query atoms. By fixing this hypernode, we eliminate a
set of variables, namely those which occur in the atoms of p0. The remaining set of
variables disintegrates into connected components. For instance, assume that we
are looking for a query decomposition of width 2 for query Q5 of our running
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example. We choose to label the root p0 of this query decomposition by atoms
a, b,3 as for the decomposition shown in Fig. 5. Thus, the variables in

3 For the sake of readability, whenever is possible, we identify atoms with their predicate symbols.

{X, XŒ, Y, YŒ, S, C, CŒ, F, FŒ} are ‘‘fixed.’’ As a consequence {J}, {Z}, and {ZŒ}
are now distinct [p 0]-components, in that every path connecting any pair of these
variables contains some variable occurring in {a, b}.

We now expand the decomposition tree by attaching children, and thus, in the
long run, subtrees to p0. By Proposition 3.6, each subtree rooted in any child p of
p0 must precisely contain (in its labels) all the variables in var(p) and in some
[var(p)]-components. Moreover, each of these [var(p)]-components occurs in
exactly one subtree (otherwise the connectedness condition would be violated). For
instance, variable J, which occurs in the left child of QD5 cannot occur in the other
subtree of the root, because J does not belong to var(a) 2 var(b).

Moreover, each atom w should be eventually covered, that is, there must exist a
vertex of the tree whose label contains all the variables in var(w). For instance, the
atom j, is covered by the left child of the root. This process goes on until all
variables are eliminated and until all query atoms are eventually covered. As we
observed above, the definition of query-width requires this covering be exact, i.e.,
each atom containing a variable of a certain component C occurs only in the
subtree corresponding to C. (Again, the requirement of precise covering is due to
the connectedness condition.) As a consequence, since we labeled the root p0 by
{a, b}, and then covered j in the left child of the root of QD5, we cannot use this
atom in the other child of the root, where we deal with the component {ZŒ}. Recall
that our purpose was finding a query decomposition of width 2. However, covering
atoms f, g, and h with only two atoms per label would require the use of atom j,
because it contains both variables XŒ and YŒ which occur in g and h, respectively.
But j already appears in the left subtree of the root and, as said, cannot appear in
the right subtree, too. Therefore, the query decomposition shown in Figure 5 has
width 3, because in order to enforce the connectedness condition, both atoms a and
b must be used again in the label of the right child of p0. In fact, by checking all
possible labelings, it can be shown that Q5 has no query decomposition of width 2.

In general, suitable choices of labels at each step of the decomposition are crucial
in order to meet the required bound k on the query-width.

Thus, the question is: how can one choose the right kp [ k labels at each decom-
position vertex p in order to cover every atom of the query and satisfying the con-
nectedness condition? It turns out that this is a difficult task, and indeed we reduce
the well-known NP-hard problem EXACT COVER BY 3-SETS [16] to the problem
of finding a query decomposition of width at most 4 for some query Q. An instance
of EXACT COVER BY 3-SETS consists of a pair I=(R, D) where R is a set of r=3s
elements, and D is a collection of m 3-element subsets of R. The question is whether
we can select s subsets out of D such that they form a partition of R. Roughly, in
Section 7 we show that, given such an instance I, we build a query Q, depending on
I, such that every query decomposition for Q of width at most 4 corresponds to an
exact cover of R. In particular, any choice for the labels of some special vertices
corresponds to the selection of some 3-element subset from D. If every labeling is
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correct, one is able to find a query-decomposition for Q of width at most 4 (if any),
and hence a solution for the covering-problem instance I.

4. CONJUNCTIVE QUERIES OF BOUNDED HYPERTREE-WIDTH

In Section 4.1 we formally introduce the notions of hypertree decomposition and
hypertree-width. In Section 4.2, we prove that Boolean conjunctive queries whose
hypertree-width is bounded by a constant can be answered in polynomial time. The
problem of recognizing constant hypertree-width is deferred to Section 5.

4.1. Hypertree Decompositions and Hypertree-Width

The definition of hypertree decomposition eliminates the source of NP-
completeness present in query decompositions by recurring to a more liberal notion
of ‘‘covering’’.

Intuitively, when choosing a vertex p of the decomposition tree, we no longer
want to require that the set of all variables in the atoms of Tp precisely coincide
with the variables of var(p) plus those of some [var(p)]-components (cf. Proposi-
tion 3.6). Instead, it shall be sufficient that the former set of variables be a superset
of the latter. (Which, by the way, corresponds to a more standard notion of
covering.)

In order to achieve this, we decouple the set of variables associated with a node
in the decomposition tree from the set of query atoms associated with the same
node. The set of variables associated with a node p is denoted by q(p) while the set
of atoms associated with p is denoted as before by l(p). In our definition below we
will not require that q(p)=var(l(p)) but only that q(p) ı var(l(p)).

Let Q be a conjunctive query. A hypertree for Q is a triple OT, q, lP, where
T=(N, E) is a rooted tree, and q and l are labeling functions which associate to
each vertex p ¥N two sets q(p) ı var(Q) and l(p) ı atoms(Q). If TŒ=(NŒ, EŒ) is a
subtree of T, we define q(TŒ)=1v ¥NŒ q(v). We denote the set of vertices N of T by
vertices(T), and the root of T by root(T). Moreover, for any p ¥N, Tp denotes
(as before) the subtree of T rooted at p.

Definition 4.1. A hypertree decomposition of a conjunctive query Q is a hyper-
tree OT, q, lP for Q which satisfies all the following conditions:

1. for each atom A ¥ atoms(Q), there exists p ¥ vertices(T) such that
var(A) ı q(p);

2. for each variable Y ¥ var(Q), the set {p ¥ vertices(T) |Y ¥ q(p)} induces a
(connected) subtree of T;

3. for each vertex p ¥ vertices(T), q(p) ı var(l(p));

4. for each vertex p ¥ vertices(T), var(l(p)) 5 q(Tp) ı q(p).

The width of the hypertree decomposition OT, q, lP is maxp ¥ vertices(T) |l(p)|. The
hypertree-width hw(Q) of Q is the minimum width over all its hypertree decomposi-
tions.
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In analogy to join trees and query decompositions, we will refer to Condition 2
above as the Connectedness Condition. Note that the inclusion in Condition 4 is
actually an equality, because Condition 3 implies the reverse inclusion. Moreover,
by Condition 1, q(T)=var(Q). Hence Condition 4 entails that, for s0=root(T),
var(l(s0))=q(s0).

Definition 4.2. A hypertree decomposition OT, q, lP of Q is a complete
decomposition of Q if, for each atom A ¥ atoms(Q), there exists p ¥ vertices(T) such
that var(A) ı q(p) and A ¥ l(p).

Intuitively, the q labeling selects the set of variables to be fixed in order to split
the cycles and achieve acyclicity; l(p) ‘‘covers’’ the variables of q(p) by a set of
atoms. Thus, the relations associated to the atoms of l(p) restrict the range of the
variables of q(p). For the evaluation of query Q, each vertex p of the decomposi-
tion is replaced by a new atom whose associated database relation is the projection
on q(p) of the join of the relations in l(p). This way, we obtain a join tree JT of an
acyclic query QŒ over a database DBŒ of size polynomial in the original input data-
base. All the efficient techniques available for acyclic queries can be then employed
for the evaluation of QŒ.

More technically, Condition 1 and Condition 2 in Definition 4.1 extend the
notion of tree decomposition [34] from graphs to hypergraphs (the hypergraph of
a query Q groups the variables of the same atom in one hyperedge [3]). Thus, the
pair OT, qP of a hypertree decomposition OT, q, lP of a conjunctive query Q, can
be seen as the correspondent of a tree decomposition on the query hypergraph.
However, the treewidth of OT, qP (i.e., the maximum cardinality of the q-labels of
the vertices of T) is not an appropriate measure of the width of the hypertree
decomposition, because a set of m variables appearing in the same atom should
count 1 rather than m for the width. Thus, l(p) provides a set of atoms which
‘‘covers’’ q(p) and its cardinality gives the measure of the width of vertex p. It is
worthwhile noting that OT, lP may violate the classical connectedness condition
usually imposed on the variables of the join trees, as it is allowed that a variable X
appears in both l(p) and l(q) while it does not appear in l(s), for some vertex s on
the path from p to q in T. However, this violation is not a problem, as the variables
in var(l(p))−q(p) are meaningless and can be projected out before starting the
query evaluation process, because the role of l(p) is just that of providing a
binding for the variables of q(p).

Example 4.3. The hypertree-width of the cyclic query Q1 of Example 1.1 is 2; a
(complete) 2-width hypertree decomposition of Q1 is shown in Fig. 6a.

Figure 6b shows a (complete) hypertree decomposition HD5 of query Q5 of
Example 3.5. Since Q5 is a cyclic query and only acyclic queries have hypertree-
width 1 (see Theorem 4.5 below), it follows that hw(Q5)=2.

An alternative representation, called atom representation, of the hypertree
decomposition HD5 of query Q5 is depicted in Fig. 7. Each node p in the tree is
labeled by a set of atoms representing l(p); q(p) is the set of all variables, distinct
from ‘–’, appearing in these atoms. Thus, the anonymous variable ‘–’ is in the place
of the variables in var(l(p))−q(p).
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FIG. 6. A 2-width hypertree decomposition of (a) query Q1; and (b) query Q5 .

Definition 4.1 does not require the presence of all query atoms in a decomposi-
tion HD, as it is sufficient that every atom is "covered" by some vertex p of HD
(i.e., its variables are included in q(p)). However, every missing atom can be easily
added to complete decompositions.

Lemma 4.4. Given a conjunctive query Q, every k-width hypertree decomposition
HD of Q can be transformed in logspace into a k-width complete hypertree decompo-
sition HDŒ of Q, whose size is O(||Q||+||HD||).

Proof. Let Q be a conjunctive query and HD=OT, q, lP a hypertree decompo-
sition of Q. We transform HD into a complete decomposition HDŒ as follows. For
each atom A ¥ atoms(Q) such that no vertex q ¥ vertices(T) satisfies var(A) ı q(q)
and A ¥ l(q), create a new vertex vA with l(vA) :={A} and q(vA)=var(A), and
attach vA as a new child of a vertex p ¥ vertex(T) such that var(A) ı q(p). (By
Condition 1 of Definition 4.1 such a p must exist.)

This transformation is obviously feasible in logspace. Moreover, the size of HDŒ
differs only by O(||Q||) from the size of HD given that HDŒ is obtained from HD
by adding nodes corresponding to some atoms of Q. Thus, the size ||HDŒ|| of HDŒ
is O(||Q||+||HD||). L

The acyclic queries are precisely the queries of hypertree-width one.

FIG. 7. Atom representation of hypertree decompositionHD5 .
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Theorem 4.5. A conjunctive query Q is acyclic if and only if hw(Q)=1.

Proof. (Only if part.) If Q is an acyclic query, there exists a join tree JT(Q) for
Q. Let T be a tree, and f a bijection from vertices(JT(Q)) to vertices(T) such that,
for any p, q ¥ vertices(JT(Q)), there is an edge between p and q in JT(Q) if and
only if there is an edge between f(p) and f(q) in T. Moreover, let l be the follow-
ing labeling function: If p is a vertex of JT(Q) and A is the atom of Q associated to
p, then l(f(p))={A}. For any vertex pŒ ¥ vertices(T) define q(pŒ)=var(l(pŒ)).
Then, OT, q, lP is clearly a width 1 hypertree-decomposition of Q.

(If part.) Let HD=OT, q, lP be a width 1 hypertree-decomposition of Q.
Without loss of generality, assume that HD is a complete hypertree decomposition.
Since HD has width 1, all the l labels are singletons, i.e., l associate one atom of Q
to each vertex of T.

We next show how to trasform HD into a width 1 complete hypertree decompo-
sition of Q such that, for any vertex p ¥ vertices(T), q(p)=var(A), where
{A}=l(p), and p is the unique vertex labeled with the atom A.

Choose any total ordering O of the vertices of T. For any atom A ¥ atoms(Q),
denote by v(A) the O -least vertex of T such that q(v(A))=var(A) and
l(v(A))={A}. The existence of such a vertex is guaranteed by definition of
complete hypertree decomposition and by the hypothesis that every l label consists
of exactly one atom.

For any atom A ¥ atoms(Q), and for any vertex p ] v(A) such that l(p)={A},
perform the following actions. For any child pŒ of p, delete the edge between p and
pŒ and let pŒ be a new child of v(A), hence the subtree TpŒ is now attached to v(A).
Then, delete vertex p. By Condition 3 of Definition 4.1, q(p) ı var(l(p)). Since
var(l(p))=var(A)=q(v(A)), we get q(p) ı q(v(A)). Then, it is easy to see that the
(transformed) tree T satisfies the connectedness condition.

Eventually, we obtain a new hypertree HŒ=OTŒ, q, lP such that vertices(TŒ) ı
vertices(T) and HŒ has the following properties: (i) for any A ¥ atoms(Q), there
exists exactly one vertex p=v(A) of TŒ such that l(p)={A} and q(p)=var(A);
(ii) for any vertex p of TŒ, p=v(A) holds, for some A ¥ atoms(Q); (iii) HŒ satisfies
the connectedness condition. Thus, HŒ clearly corresponds to a join tree of Q. L

4.2. Efficient Query Evaluation

In this section, we show that for any constant k, Boolean conjunctive queries
with given hypertree decompositions of width k can be efficiently answered. In fact,
we show that any such query is equivalent, via a logspace transformation, to an
acyclic conjunctive query.

The following lemma shows that, starting from a hypertree decomposition of a
query Q, we can efficiently build a join tree of an acyclic query QŒ equivalent to Q.

Lemma 4.6. Let Q be a Boolean conjunctive query over a database DB, and HD a
hypertree decomposition of Q of width k. Then, there exists QŒ, DBŒ, JT such that:

1. QŒ is an acyclic (Boolean) conjunctive query evaluating to ’true’ on database
DBŒ if and only if the answer of Q on DB is ’true’.

2. ||OQŒ, DBŒ, JTP||=O((||Q||+||HD||) · rk), where r denotes the maximum
relation-size over the relations in DB.
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3. JT is a join tree of the query QŒ.

4. OQŒ, DBŒ, JTP is logspace computable from OQ, DB, HDP.

Proof. Let Q be a Boolean conjunctive query over a database DB, and HD a
hypertree decomposition of Q of width k. Without loss of generality, we assume
that Q does not contain any atom A such that var(A)=”. We first transform HD,
using the construction shown in the proof of Lemma 4.4, into a k-width complete
hypertree decomposition HD5=O T, q, lP of Q. By Lemma 4.4, this transformation
is feasible in logspace, and ||HD5 ||=O(||Q||+||HD||).
Q evaluates to true on DB if and only if yA ¥ atoms(Q) rel(A) is a non-empty relation,

where rel(A) denotes the relation of DB associated to the atom A, and y is the
natural join operation (with common variables acting as join attributes).

For each vertex p ¥ vertices(T) define a Boolean query Q(p) and a database
DB(p) as follows. For each atom A ¥ l(p):

• If var(A) ı q(p), then A occurs in Q(p) and rel(A) belongs to DB(p);

• if var(A) ł q(p) and (var(A) 5 q(p)) ]”, then Q(p) contains a new atom
AŒ such that var(AŒ)=var(A) 5 q(p), and DB(p) contains the corresponding rela-
tion rel(AŒ), which is the projection of rel(A) on the set of attributes corresponding
to the variables in var(AŒ);

Now, consider the following query Q̄ on the database DB=1p ¥ vertices(T) DB(p):

Q̄: L
p ¥ vertices(T)

Q(p).

By the associative and commutative properties of natural joins, and by the fact
that HD5 is a complete hypertree decomposition, it follows that Q̄ on DB is equiva-
lent to Q on DB. To see this, note that DB just contains some new relations which
are projections of relations already occurring in DB, and Q̄ contains the atoms cor-
responding to these relations. Thus, no tuple can be lost by taking the additional
joins corresponding to these relations. It follows that if Q evaluates to true on DB,
then also Q̄ evaluates to true on DB. On the other hand, since HD5 is a complete
decomposition, every atom A of Q also occurs in Q̄ (as A must occur in l(p) for
some vertex p of T). Thus, if Q̄ evaluates to true then also Q evaluates to true.

We build OQŒ, DBŒ, JTP as follows. JT has exactly the same tree shape of T. For
each vertex p of T, there is precisely one vertex pŒ in JT, and one relation PŒ in DBŒ.
Then pŒ is an atom having q(p) as arguments and its corresponding relation PŒ in
DBŒ is the natural join of all atoms in Q(p). QŒ=Mp ¥ JT pŒ is the conjunction of all
atoms corresponding to some vertex of JT.
QŒ on DBŒ is clearly equivalent to Q̄ on DB, and hence to Q on DB. JT is a join

tree of QŒ, because the connectedness condition holds in the hypertree decomposi-
tion HD and thus in JT, by construction. Figure 8 shows the join tree JT5 of the
acyclic query Q −5 corresponding to query Q5 of our running example.
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Each relation in DBŒ is the join of (at most) k relations of DB, and its size is
O(rk), where r denotes the maximum relation-size over the relations in DB. More-
over, the number of relations in DBŒ is equal to the number of vertices of T. There-
fore, ||DBŒ||=O(||HD5 || · rk). Since ||JT||=O(||HD5 ||) and ||QŒ||=O(||HD5 ||), we
have ||OQŒ,DBŒ, JTP||=O((||Q||+||HD||) · rk) (recall that ||HD5 ||=O(||Q||+||HD||),
where the term ||Q|| comes from the ‘‘completion’’ of the decomposition HD—see
above).

The described transformation mainly involves a join of at most k relations for
each node of the tree. Since the join of a constant number of relations can be com-
puted in logspace, the transformation is feasible in logspace. L

Theorem 4.7. Given a database DB, a Boolean conjunctive query Q, and a
k-width hypertree-decomposition of Q for a fixed constant k > 0, deciding whether Q
evaluates to true on DB is LOGCFL-complete.

Proof. Membership in LOGCFL. From Lemma 4.6, it follows that the problem
of deciding whether a Boolean conjunctive query Q evaluates to true on a database
DB, given a k-width hypertree decomposition for Q (where k is fixed) is logspace
reducible to the LOGCFL-complete problem of evaluating an acyclic conjunctive
query QŒ given a join tree for QŒ [19].
Hardness for LOGCFL. Immediately follows from the fact that a join tree for an

acyclic query Q trivially corresponds to a hypertree decomposition of Q of width 1,
and from the above cited LOGCFL-hardness of the problem of evaluating an
acyclic Boolean conjunctive query. L

Using the same construction as in the proof of Lemma 4.6 and well-known
results on the sequential complexity of acyclic conjunctive-query evaluation [44],
we get the following result for non-Boolean conjunctive queries.

Theorem 4.8. Given a database DB, a (non-Boolean) conjunctive query Q, and a
k-width hypertree decomposition of Q for a fixed constant k > 0, the answer of Q on
DB can be computed in time polynomial in the combined size of the input instance and
of the output relation.

FIG. 8. Join tree JT5 computed for query Q −5 .
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Remark. In this section we demonstrated that k-bounded hypertree-width
queries are efficiently computable, once a k-width hypertree decomposition of the
query is given as (additional) input. In Section 5.2, we will strengthen these results
showing that they remain true for queries of hypertree-width k even if a corre-
sponding hypertree decomposition is not given. As will be seen, unlike query
decompositions, bounded hypertree decompositions can be computed very effi-
ciently.

5. BOUNDED HYPERTREE DECOMPOSITIONS ARE
EFFICIENTLY COMPUTABLE

In this section we show that for any given query Q a bounded-width hypertree-
decomposition for Q can be efficiently computed. In particular, we prove that this
task is not only feasible in polynomial time, but it is also highly parallelizable.
From the results given in the previous sections, it follows that evaluating a bounded
hypertree-width query is tractable, and actually is LOGCFL-complete.

To prove these results, we first introduce a normal form for hypertree decompo-
sitions. Then, we give two algorithms for deciding whether a query has a bounded-
width hypertree decomposition. The first one runs on an alternating Turing
machine and proves the problem belongs to LOGCFL; the second one is a deter-
ministic polynomial-time algorithm, implemented as a Datalog program. Another
algorithm for the computation of hypertree decompositions has been recently pre-
sented in [22], and its implementation is available on the WEB [36].

5.1. Normal form

In this section we introduce a very useful normal form for hypertree decomposi-
tions.

Let H=OT, q, lP be a hypertree of Q and V ı var(Q) a set of variables. We
define vertices(V, H)={p ¥ vertices(T) |q(p) 5 V ]”}.

For any vertex v of T, we will often use v as a synonym of q(v). In particular,
[v]-component denotes [q(v)]-component; the term [v]-path is a synonym of
[q(v)]-path; and so on.

Definition 5.1. A hypertree decomposition HD=OT, q, lP of a conjunctive
query Q is in normal form (NF) if for each vertex r ¥ vertices(T), and for each child
s of r, all the following conditions hold:

1. there is (exactly) one [r]-component Cr such that q(Ts)=Cr 2
(q(s) 5 q(r));

2. q(s) 5 Cr ]”, where Cr is the [r]-component satisfying Condition 1;

3. var(l(s)) 5 q(r) ı q(s).

Note that Condition 2 above entails that, for each vertex r ¥ vertices(T), and for
each child s of r, q(s) ł q(r). Indeed, Cr 5 q(r)=”, and s must contain some
variable belonging to the [r]-component Cr.
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Note that, according to the general definition, a hypertree decomposition can
contain some redundancies, e.g., adjacent vertices labeled by the same set of
variables and the same set of atoms. However, no such redundancies can occur in
hypertree decompositions in normal form. As a consequence, given a query Q on
some database DB and an NF hypertree decomposition for Q, the evaluation of Q
on DB is much more efficient, because the upper bound on the size of the equiva-
lent query QŒ (see Lemma 4.6) can be improved. A detailed analysis of this issue has
been carried out in [21].

Furthermore, we will prove some nice properties of NF hypertree decompositions
that make these decompositions easy to compute, as well.

Lemma 5.2. Let HD=OT, q, lP be a hypertree decomposition of a conjunctive
query Q. Let r be a vertex of T, let s be a child of r, and let C be an [r]-component of
Q such that C 5 q(Ts) ]”. Then, vertices(C, HD) ı vertices(Ts).

Proof. For any subtree TŒ of T, let covered(TŒ) denote the set of atoms
{A ¥ atoms(Q) | var(A) ı q(v) for some v ¥ vertices(TŒ)}.

We proceed by contradiction. Assume there exists some vertex q ¥
vertices(C, HD) such that q ¨ vertices(Ts). Since C 5 q(Ts) ]”, there exists a
vertex p ¥ vertices(Ts) which also belongs to vertices(C, HD). By definition of
vertices(C, HD), there exists a pair of variables {X, Y} ı C such that X ¥ q(p) and
Y ¥ q(q). Since X, Y ¥ C, there exists an [r]-path p from X to Y consisting of a
sequence of variables X=X0, ..., Xi, Xi+1, ..., Xa=Y, and a sequence of atoms
A0, ..., Ai, Ai+1, ..., Aa−1.

Note that Y ¨ q(Ts). Indeed, Y ¨ q(r), hence any occurrence of Y in q(v), for
some vertex v of Ts, would violate Condition 2 of Definition 4.1 (i.e., the connec-
tedness condition). Similarly, X only occurs as a variable in q(Ts). As a conse-
quence, A0 ¥ covered(Ts) (by Condition 1 of Definition 4.1) and Aa−1 ¨ covered(Ts),
hence the [r]-path p leaves Ts, i.e., atoms(p) ł covered(Ts).

Assume without loss of generality that the atoms Ai, Ai+1 ¥ atoms(p) form the
‘‘frontier’’ of this path w.r.t. Ts, i.e., Ai ¥ covered(Ts) and Ai+1 ¨ covered(Ts), and
consider the variable Xi+1, which occurs in both Ai and Ai+1. Xi+1 belongs to C,
hence it does not occur in q(r), and this immediately yields a contradiction to
Condition 2 of Definition 4.1. L

Lemma 5.3. Let HD=OT, q, lP be a hypertree decomposition of a conjunctive
query Q and r ¥ vertices(T). If V is an [r]-connected set of variables in var(Q)−q(r),
then vertices(V, HD) induces a (connected) subtree of T.

Proof. We use induction on |V|.

Basis. If |V|=1, then V is a singleton, and the statement follows from
Condition 2 of Definition 4.1.
Induction Step. Assume the statement is established for sets of variables

having cardinalities c [ h. Let V be an [r]-connected set of variables such that
|V|=h+1, and let X ¥ V be any variable of V such that V−{X} remains [r]-
connected. (It is easy to see that such a variable exists.) By the induction hypothesis,
vertices(V−{X}, HD) induces a connected subtree of T. Moreover, {X} is a
singleton, thus vertices({X}, HD) induces a connected subtree of T, too.
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Since X ¥ V, V is [r] − connected, and |V| > 1, there exists a variable Y ¥ V−{X}
which is [r] −adjacent to X. Hence, there exists an atom A ¥ atoms(Q) such that
{X, Y} ı var(A). By Condition 1 of Definition 4.1, there exists a vertex p ¥
vertices(T) such that var(A) ı q(p). Note that vertices(V, HD)=vertices(V−{X},
HD) 2 vertices({X}, HD), and p belongs to both vertices(V−{X}, HD) and
vertices({X}, HD). Then, both sets induce connected subgraphs of T that are,
moreover, connected to each other via vertex p. Thus, vertices(V, HD) induces a
connected subgraph of T, and hence a subtree, because T is a tree. L

Theorem 5.4. For each k-width hypertree decomposition of a conjunctive query Q
there exists a k-width hypertree decomposition of Q in normal form.

Proof. Let HD=OT, q, lP be any k-width hypertree decomposition of Q. We
show how to transform HD into a k-width hypertree decomposition in normal
form.

Assume there exist two vertices r and s such that s is a child of r, and s violates
any condition of Definition 5.1. If s satisfies Condition 1, but violates Condition 2,
then q(s) ı q(r) holds. In this case, simply eliminate vertex s from the tree as shown
in Fig. 9. It is immediate to see that this transformation is correct.

Assume Ts does not meet Condition 1 of Definition 5.1, and let C1, ..., Ch be all
the [r]-components containing some variable occurring in q(Ts). Hence,
q(Ts) ı (11 [ i [ h Ci 2 q(r)). For each [r]-component Ci (1 [ i [ h), consider the
set of vertices vertices(Ci, HD). Note that, by Lemma 5.3, vertices(Ci, HD) induces
a subtree of T, and by Lemma 5.2, vertices(Ci, HD) ı vertices(Ts), hence
vertices(Ci, HD) induces in fact a subtree of Ts.

For each vertex v ¥ vertices(Ci, HD) define a new vertex new(v, Ci), and let
l(new(v, Ci))=l(v) and q(new(v, Ci))=q(v) 5 (Ci 2 q(r)). Note that q(new(v, Ci))
]”, because by definition of vertices(Ci, HD), q(v) contains some variable
belonging to Ci. Let Ni={new(v, Ci) | v ¥ vertices(Ci, HD)} and, for any Ci
(1 [ i [ h), let Ti denote the (directed) graph (Ni, Ei) such that new(p, Ci) is a child
of new(q, Ci) iff p is a child of q in T. Ti is clearly isomorphic to the subtree of Ts
induced by vertices(Ci, HD), hence Ti is a tree, as well.

Now, transform the hypertree decomposition HD as follows. Delete every vertex
in vertices(Ts) from T, and attach to r every tree Ti for 1 [ i [ h. Intuitively, we
replace the subtree Ts by the set of trees {T1, ..., Th}. By construction, Ti contains a
vertex new(v, Ci) for each vertex v belonging to vertices(Ci, HD) (1 [ i [ h). Then,
if we let children(r) denote the set of children of r in the new tree T obtained after
the transformation above, it holds that for any sŒ ¥ children(r), there exists an
[r]-component C of Q such that vertices(TsŒ)=vertices(C, HD), and q(TsŒ) ı
(C 2 q(r)). Furthermore, it is easy to verify that all the conditions of Definition 4.1
are preserved during this transformation. As a consequence, Condition 2 of Defini-
tion 4.1 immediately entails that (q(TsŒ) 5 q(r)) ı q(sŒ). Hence, q(TsŒ)=C 2 (q(sŒ)
5 q(r)). Thus, any child of r satisfies both Condition 1 and Condition 2 of Defini-
tion 5.1.

Now, assume that some vertex v ¥ children(r) violates Condition 3 of Defini-
tion 5.1. Then, add to the label q(v) the set of variables var(l(v)) 5 q(r). Because
variables in q(r) induce connected subtrees of T, and q(r) does not contain any
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FIG. 9. Normalizing a hypertree decomposition.

variable occurring in some [r]-component, this further transformation never
invalidates any other condition. Moreover, no new vertex is labeled by a set of
atoms with cardinality greater than k, then we get in fact a legal k-width hypertree
decomposition.

Note that root(T) cannot violate any of the normal form conditions, because it
has no parent in T. Moreover, the transformations above never change the parent r
of a violating vertex s. Thus, if we apply such a transformation to the children of
root(T), and iterate the process on the new children of root(T), and so on, we
eventually get a new k-width hypertree decomposition OTŒ, qŒ, lŒP of Q in normal
form. L

If HD=OT, q, lP is an NF hypertree decomposition of a conjunctive query Q,
we can associate a set treecomp(s) ı var(Q) to each vertex s of T as follows.

• If s=root(T), then treecomp(s)=var(Q);

• otherwise, let r be the parent of s in T; then, treecomp(s) is the (unique)
[r]-component C such that q(Ts)=C 2 (q(s) 5 q(r)).

Note that, since s ¥ vertices(Ts), also q(Ts)=C 2 q(s) holds.

Lemma 5.5. Let HD=OT, q, lP be an NF hypertree decomposition of a
conjunctive query Q, v a vertex of T, and W=treecomp(v)−q(v). Then, for any
[v]-componentC such that (C 5W) ]”, C ıW holds.
Therefore, the set C={CŒ ı var(Q) | CŒ is a [v]-component and CŒ ı
treecomp(v)} is a partition of treecomp(v)−q(v).

Proof. Let C be a [v]-component such that (C 5W) ]”. We show that
C ıW. Assume this is not true, i.e., C−W ]”. By definition of treecomp(v),
q(Tv)=treecomp(v) 2 q(v). Hence, any variable Y ¥ (C−W) only occurs in the q
label of vertices not belonging to vertices(Tv). However, C is a [v]-component,
therefore C 5 q(v)=”. As a consequence, vertices(C, HD) induces a disconnected
subgraph of T, and thus contradicts Lemma 5.3. L
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Lemma 5.6. Let HD=OT, q, lP be an NF hypertree decomposition of a
conjunctive query Q, and r be a vertex of T. Then, C=treecomp(s) for some child s
of r if and only if C is an [r]-component of Q and C ı treecomp(r).

Proof. (If part.) Assume C is an [r]-component of Q and C ı treecomp(r).
Let children(r) denote the set of the vertices of T which are children of r. Because
C ı (treecomp(r)−q(r)), C must be included in 1s ¥ children(r) q(Ts). Moreover, for
each subtree Ts of T such that s ¥ children(r), there is a (unique) [r]-component
treecomp(s) such that q(Ts)=treecomp(s) 2 (q(s) 5 q(r)). Therefore, C necessarily
coincides with one of these components, say treecomp(s̄) for some s̄ ¥ children(r).

(Only if part.) Assume C=treecomp(s) for some child s of r, and let
CŒ=treecomp(r). By definition of treecomp(s), C is an [r]-component, and hence
(C 5 q(r))=”. Since HD is in normal form, q(Ts)=C 2 (q(s) 5 q(r)) and
q(Tr)=(CŒ 2 q(r)). Moreover, s is a child of r, then vertices(Ts) ı vertices(Tr) and
thus q(Ts) ı q(Tr). Therefore, C 2 (q(s) 5 q(r)) ı q(Tr), and hence we immediately
get C ı (CŒ 2 q(r)). However, (C 5 q(r))=” and thus C ı CŒ. L

Lemma 5.7. For any NF hypertree decomposition HD=OT, q, lP of a query Q,
|vertices(T)| [ |var(Q)| holds.

Proof. Follows from Lemma 5.6, Lemma 5.5, and Condition 2 of the normal
form, which states that, for any v ¥ vertices(T), q(v) 5 treecomp(v) ]”. Hence,
treecomp(v)−q(v) … treecomp(v) and thus, for any child s of v in T, treecomp(s) is
actually a proper subset of treecomp(v). L

Lemma 5.8. Let HD=OT, q, lP be an NF hypertree decomposition of a query Q,
s a vertex of T, and C a set of variables such that C ı treecomp(s). Then, C is an
[s]-component if and only if C is a [var(l(s))]-component.

Proof. Let V=var(l(s)). By Condition 4 of Definition 4.1, (V 5 q(Ts)) ı q(s).
Since HD is in normal form, V satisfies the following property.

(1) (V 5 treecomp(s)) ı q(s).

(Only if part.) Assume C ı treecomp(s) is an [s]-component. From
Property 1 above, C 5 V=” holds. As a consequence, for any pair of variables
{X, Y} ı C, X [s]-adjacent to Y entails X [V]-adjacent to Y. Hence, C is a [V]-
connected set of variables. Moreover, q(s) ı V. Then, any [V]-connected set which
is a maximal [s]-connected set is a maximal [V]-connected set as well, and thus C
is a [V]-component.

(If part.) Assume C ı treecomp(s) is a [V]-component. Since q(s) ı V, C is
clearly [s]-connected. Thus, C ı CŒ, where CŒ is an [s]-component and, by
Lemma 5.5, CŒ ı (treecomp(s)−q(s)) holds. By the ‘‘only if’’ part of this lemma, CŒ
is a [V]-component, therefore C cannot be a proper subset of CŒ, and CŒ=C
actually holds. Thus, C is an [s]-component. L
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5.2. A LOGCFL Algorithm Deciding k-Bounded Hypertree-Width

Figure 10 shows the algorithm k-decomp, deciding whether a given conjunctive
query Q has a k-bounded hypertree-width decomposition. In that figure, we give a
high level description of an alternating algorithm, to be run on an alternating
Turing machine (ATM). The details of how the algorithm can be effectively
implemented on a logspace ATM will be given later (see Lemma 5.15).

To each computation tree y of k-decomp on input query Q, we associate a
hypertree d(y)=OT, q, lP, called the witness tree of y, defined as follows: For any
existential configuration of y corresponding to the ‘‘guess’’ of some set
S ı atoms(Q) during the computation of k-decomposable(C, R), for some [var(R)]-
component C, (i.e., to Step 1 of k-decomp), T contains a vertex s. In particular,
the vertex s0 guessed at the initial call k-decomposable(var(Q),”), is the root of T.

There is an edge between vertices r and s of T, where s ] s0, if S is guessed at
Step 1 during the computation of k-decomposable(C, R), for some [var(R)]-com-
ponent C (S and R are the (guessed) sets of atoms of y corresponding to s and r in
T, respectively). We will denote C by comp(s), and r by parent(s). Moreover, for
the root s0 of T, we define comp(s0)=var(Q).

The vertices of T are labeled as follows. l(s)=S (i.e., l(s) is the guessed set S
of atoms corresponding to s), for any vertex s of T. If s0=root(T), let
q(s0)=var(l(s0)); for any other vertex s, let q(s)=var(l(s)) 5 (q(r) 2 C), where
r=parent(s) and C=comp(s).

FIG. 10. A nondeterministic algorithm deciding k-bounded hypertree-width.
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Lemma 5.9. For any given query Q such that hw(Q) [ k, k-decomp accepts Q.
Moreover, for any c [ k, each c-width hypertree-decomposition of Q in normal form is
equal to some witness tree for Q.

Proof. Let HD=OT, q, lP be a c-width NF hypertree decomposition of a
conjunctive query Q, where c [ k. We show that there exists an accepting compu-
tation tree y for k-decomp on input query Q such that d(y)=OTŒ, qŒ, lŒP ‘‘coin-
cides’’ with HD. Formally, there exists a bijection f: vertices(T)Q vertices(TŒ) such
that, for any pair of vertices p, q ¥ T, p is a child of q in T iff f(p) is a child of f(q)
in TŒ, l(p)=lŒ(f(p)), l(q)=lŒ(f(q)), q(p)=qŒ(f(p)), and q(q)=qŒ(f(q)).

To this aim, we impose to k-decomp on input Q the following choices of sets S
in Step 1:

(a) For the initial call k-decomposable(var(Q),”), the set S chosen in Step 1
is l(root(T)).

(b) Otherwise, for a call k-decomposable(CR, R), if R is the label l(r) of some
vertex r, and if r has a child s such that treecomp(s)=CR, then choose S=l(s) in
Step 1.

We use structural induction on trees to prove that, for any vertex r ¥ vertices(T),
if we denote f(r) by rŒ, the following equivalences hold: l(r)=lŒ(rŒ);
treecomp(r)=comp(rŒ); and q(r)=qŒ(rŒ).

Basis: For r=root(T), we set f(root(T)) :=root(TŒ). Thus, by choosing
lŒ(f(r))=l(r) as described in Item a) above, all the equivalences trivially hold.

Induction Step: Assume that the equivalence holds for some vertex
r ¥ vertices(T). Then, we will show that the statement also holds for every child of
r. Let rŒ ¥ vertices(TŒ) denote f(r), and let s be any child of r in T. By Lemma 5.6
and Lemma 5.8, the [r]-component treecomp(s) coincides with some [var(lŒ(rŒ))]-
component comp(sŒ) corresponding to the call k-decomposable(comp(sŒ), lŒ(rŒ)) that
generated a child sŒ of rŒ, which we define to be the image of s, i.e., we set f(s) :=sŒ.
Since HD is a k-width hypertree decomposition, and the induction hypothesis
holds, it easily follows that, by choosing l(s)=lŒ(sŒ) as prescribed in Item b)
above, no check performed in Step 2 of the call k-decomposable(comp(sŒ), lŒ(rŒ))
can fail.

Next we show that q(s)=qŒ(sŒ). Let C=comp(sŒ)=treecomp(s), and V=
var(l(s))=var(lŒ(sŒ)). By Condition 4 of Definition 4.1, V 5 q(Ts) ı q(s) holds.
Since HD is in normal form, we can replace q(Ts) by C 2 q(s) according to
Condition 1 of Definition 5.1, and we get V 5 (C 2 q(s)) ı q(s). Hence, we obtain
the following property

(1) V 5 C ı q(s).

Now, consider qŒ(sŒ). By definition of witness tree, qŒ(sŒ)=V 5 (qŒ(rŒ) 2 C)
=V 5 (q(r) 2 C). By Property (1) above, V 5 C ı q(s). Moreover, HD is in NF,
and Condition 3 of the normal form entails that (V 5 q(r)) ı q(s). As a conse-
quence, qŒ(sŒ) ı q(s). We claim that this inclusionship cannot be proper. Indeed, by
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definition of qŒ(sŒ), if qŒ(sŒ) … q(s), there exists a variable Y ¥ q(s) which belongs
neither to q(r), nor to C. However, this entails that Y belongs to some other
[r]-component and thus s violates Condition 1 of the normal form.

In summary, k-decomp accepts Q with the accepting computation tree y deter-
mined by the choices described above, and its witness tree d(y) is a c-width hyper-
tree decomposition of Q in normal form. L

Lemma 5.10. Assume that k-decomp accepts an input query Q with an accepting
computation tree y and let d(y)=OT, q, lP be the corresponding witness tree. Then,
for any vertex s of T:

(a) if s ] root(T), then comp(s) is a [parent(s)]-component;

(b) for any C ı comp(s), C is an [s]-component if and only if C is a
[var(l(s))]-component.

Proof. We use structural induction on the tree T.
Basis: Both parts of the lemma trivially hold if s is the root of T. In fact, in

this case, we have q(s)=var(l(s)), by definition of witness tree.
Induction Step: Assume that the lemma holds for some vertex r ¥ vertices(T).

Then, we will show that both parts hold for every child of r. The induction
hypothesis states that any [var(l(r))]-component included in comp(r) is an [r]-
component included in comp(r), and vice versa. Moreover, if r ] root(T), then
comp(r) is a [parent(r)]-component; otherwise, i.e., r is the root, comp(r)=var(Q),
by definition of witness tree. Let s ¥ vertices(T) be a child of r.

(Item a.) The assertion of Item a. immediately follows by the definition of
comp(s) and by the induction hypothesis. Indeed, r is the parent of s and by
the induction hypothesis any [var(l(r))]-component included in comp(r) is an
[r]-component included in comp(r). Thus, in particular, comp(s) is an [r]-
component.

(Item b.) Let V=var(l(s)). We first observe that, by definition of the variable
labeling q of the witness tree, it follows that var(l(s)) 5 comp(s) ı q(s). Hence, the
following holds.

Fact 1: (V−q(s)) 5 comp(s)=”.

(Only if part.) Assume that a set of variables C ı comp(s) is an [s]-compo-
nent. By Fact 1, C 5 (V−q(s))=” holds, and for any pair of variables
{X, Y} ı C, X [s]-adjacent to Y entails X [V]-adjacent to Y. Hence, C is a [V]-
connected set of variables. Moreover, q(s) ı V. Then, any [V]-connected set which
is a maximal [s]-connected set is a maximal [V]-connected set as well, and thus C
is a [V]-component.

(If part.) We proceed by contradiction. Assume C ı comp(s) is a [V]-
component, but C is not an [s]-component, i.e., C is not a maximal [s]-connected
set of variables. Since q(s) ı V, C is clearly [s]-connected, then it is not maximal.
That is, there exists a pair of variables X ¥ C and Y ¨ C such that X is [s]-adjacent
to Y, but X is not [var(l(s))]-adjacent to Y. Let A be any atom proving their adja-
cency w.r.t. s, i.e., {X, Y} ı var(A)−q(s). Hence, because X ¥ C and X is not [V]-
adjacent to Y, it follows that Y ¥ (V−q(s)). By Fact 1, (V−q(s)) 5 comp(s)=”,
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therefore Y ¨ comp(s). In summary, X ¥ comp(s) and Y ¨ comp(s). Moreover,
comp(s) ı comp(r), by Step 4 of k-decomp. Hence, by induction hypothesis,
comp(s) is an [r]-component and thus X is not [r]-adjacent to Y. Consider again
the atom A. We get {X, Y} ł var(A)−q(r). Since X ¥ comp(s), the variable Y must
belong to q(r). However, by definition of witness tree, Y ¥ q(r) and Y ¥ var(l(s))
entail that Y ¥ q(s), which is a contradiction. L

Lemma 5.11. Assume that k-decomp accepts an input query Q with an accepting
computation tree y. Let d(y)=OT, q, lP be the corresponding witness tree, and
s ¥ vertices(T). Then, for each vertex v ¥ Ts :

q(v) ı comp(s) 2 q(s)

comp(v) ı comp(s).

Proof. We use induction on the distance d(v, s) between any vertex
v ¥ vertices(Ts) and s. The basis is trivial, since d(v, s)=0 means v=s.

Induction Step. Assume both statements hold for distance n. Let v ¥
vertices(Ts) be a vertex such that dist(v, s)=n+1. Let vŒ be the parent of v in Ts.
Clearly, dist(vŒ, s)=n, thus

(a) q(vŒ) ı (comp(s) 2 q(s)); and

(b) comp(vŒ) ı comp(s).

v is generated by some call k-decomposable(comp(v), l(vŒ)). By the choice of
v and the definition of witness tree, it must hold (aŒ) q(v) ı (comp(v) 2 q(vŒ)),
and by Step 4 of the call k-decomposable(comp(vŒ), l(parent(vŒ))) we get (bŒ)
comp(v) ı comp(vŒ). By (aŒ) and (bŒ), we obtain (aœ) q(v) ı (comp(vŒ) 2 q(vŒ)). By
(aœ), (b), and (a) we get q(v) ı (comp(s) 2 q(s)). Moreover, (b) and (bŒ) yield
comp(v) ı comp(s). L

Lemma 5.12. Let Q be a query such that k-decomp accepts Q, and OT, q, lP the
witness tree of an accepting computation tree of k-decomp on Q. Let s be any vertex
of T, and let Cr=comp(s). Then, for each P ¥ atoms(Cr), it holds that
-A ¥ (atoms(Q)−atoms(Cr)), (var(P) 5 var(A)) ı q(s).

Proof. We use structural induction on the tree T.

Basis: The lemma trivially holds if s is the root of T. In fact, in this case, we
have Cr=comp(s)=var(Q) and hence atoms(Cr)=atoms(Q).
Induction Step: Assume that the statement holds for some vertex

s ¥ vertices(T). Then, we will show that it also holds for every child of s. Let
Cr=comp(s) and V=var(l(s)). The induction hypothesis states that -P ¥

atoms(Cr) and -A ¨ atoms(Cr), var(P) 5 var(A) ı q(s). By Step 4 of k-decomp,
for each [V]-component C such that C ı Cr, T contains a vertex q such that
comp(q)=C and parent(q)=s. Moreover, by Lemma 5.10, C is an [s]-component.
Let PŒ belong to atoms(C). Since C ı Cr, PŒ also belongs to atoms(Cr). First note
that, -A ¨ atoms(C), we have

(1) var(PŒ) 5 var(A) ı q(s).
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Indeed, if var(A) ı q(s), then (1) is trivial, and if A contains some variable belong-
ing to another [s]-component, it immediately follows by definition of [s]-compo-
nent.

Let sŒ be a child of s in T. Then, there exists a [V]-component Cs ı Cr such that
Cs=comp(sŒ), i.e., Step 1 of k-decomposable(Cs, l(s)) guessed the atoms in l(sŒ) for
decomposing the component Cs. Let PŒ an atom belonging to atoms(Cs). Since
OT, q, lP is the witness tree of an accepting computation tree, -B ¥ atoms(Cs),
(var(B) 5 var(l(s))) ı var(l(sŒ)). In particular, (var(PŒ) 5 var(l(s))) ı var(l(sŒ)).
Because q(s) ı var(l(s)), this yields (var(PŒ) 5 q(s)) ı (var(l(sŒ)) 5 q(s)). By defi-
nition of witness tree, (var(l(sŒ)) 5 q(s)) ı q(sŒ), hence we get (var(PŒ) 5 q(s))
ı q(sŒ). By combining this result with relationship (1) above, we get that
-A ¨ atoms(Cs) (var(PŒ) 5 var(A)) ı (var(PŒ) 5 q(s)) ı q(sŒ). L

Lemma 5.13. If k-decomp accepts an input query Q, then hw(Q) [ k. Moreover,
each witness tree for Q is a c-width hypertree-decomposition of Q in normal form,
where c [ k.

Proof. Assume that y is an accepting computation tree of k-decomp on input
query Q. We show that d(y)=OT, q, lP is an NF c-width hypertree decomposition
of Q, for some c [ k.

First, we will prove that d(y) fulfils all the properties of Definition 4.1 and is thus
a hypertree decomposition of Q.

Property 1. -A ¥ atoms(Q),v ¥ vertices(T) s.t. var(A) ı q(v).
We first prove the following claim.

Claim A. Let s be any vertex of T, and let Cr=comp(s). Then, for each
P ¥ atoms(Cr), either var(P) ı q(s) or there exists an [s]-component Cs ı Cr such
that P ¥ atoms(Cs).

Proof of Claim A. Let s be any vertex of T, let Cr=comp(s), and let P belong
to atoms(Cr). Assume by contradiction that var(P) ł q(s) and that P ¥ atoms(C −s),
where C −s is an [s]-component not included in Cr, i.e., C −s ł Cr. Then, there exists a
variable Y ¥ C −s such that Y ¨ Cr and there is an [s]-path from Y to each variable in
var(P)−q(s).

Let A be an atom belonging to both atoms(Cr) and atoms(C −s). Then, var(A)−
q(r) ı Cr and var(A)−q(s) ı C −s hold. As a consequence, (var(A) 5 C −s) ı Cr.
Indeed, if this is not true, there exists a variable Z ¥ (var(A)−q(s)) such that
Z ¥ q(r) and hence, by construction, Z ¥ l(r). By definition of the q labeling of a
witness tree, since Z ¥ (var(A) 5 var(l(r))) and we assumed Z ¨ q(s), it follows that
Z does not belong to var(l(s)). However, this contradicts the fact that A satisfies
the condition checked at Step 2.a of k-decomp, because y is an accepting compu-
tation tree. Note that, by assumption, both P ¥ atoms(Cr) and P ¥ atoms(C −s) hold.
Hence, there exists a variable X ¥ var(P)−q(s) such that both X ¥ Cr and X ¥ C −s.
From the latter condition, it follows that there exists an [s]-path p from Y to X.

Therefore, there exist two atoms {QŒ, PŒ} ı atoms(p) belonging to atoms(C −s) and
adjacent in p such that QŒ ¨ atoms(Cr), PŒ ¥ atoms(Cr), and var(QŒ) 5 var(PŒ) ł
q(s). However, by Lemma 5.12, this is a contradiction. L
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Note that, by Lemma 5.10, in the Step 4 of any call k-decomposable(C, l(r)) of
an accepting computation of k-decomp, [s]-components included in C and
[var(l(s))]-components included in C coincide. Thus, Property 1 follows by induc-
tive application of Claim A. In fact, Claim A applied to the root s0 of T states that,
-A ¥ atoms(Q), either var(A) ı q(s0), or A ¥ atoms(CS) for some [S]-component
CS of Q that will be further treated in Step 4 of the algorithm. Thus, var(A) is
covered eventually by some chosen set of atoms S, i.e., there exists some vertex s of
T, such that l(s)=S, and var(A) ı q(s).

Property 2. For each variable Y ¥ var(Q) the set {v ¥ vertices(T) | Y ¥ q(v)}
induces a connected subtree of T.

Assume that Property 2 does not hold. Then, there exists a variable Y ¥ var(Q)
and two vertices v1 and v2 of T such that Y ¥ (q(v1) 5 q(v2)) but the unique path
from v1 to v2 in T contains a vertex w such that Y ¨ q(w). W.l.o.g, assume that v1 is
adjacent to w and that v2 is a descendant of w in T, i.e., v2 ¥ vertices(Tw). There are
two possibilities to consider:

• v1 is a child of w and v2 belongs to the subtree Tp of another child p of
w. However, this would mean that, by Step 4 of k-decomp and by Lemma 5.11,
the variables in sets V1=(q(v1)−q(w)) and V2=(q(v2)−q(w)) belong to distinct
[w]-components. But this is not possible, because Y ¥ (V1 5 V2).

• w is a child of v1 and v2 belongs to the subtree Tw of T rooted at w. Then,
l(w) was chosen as set S in Step 1 of k-decomposable(C, l(v1)), where C is a [v1]-
component. Note that Y ¥ q(v1) entails Y ¨ C, by definition of [v1]-component.
Since v2 belongs to the subtree Tw, by Lemma 5.11 it holds that q(v2) ı (C 2 q(w)).
This is a contradiction, because Y ¥ q(v2), but Y belongs neither to q(w), nor to C.

Property 3. -p ¥ vertices(T), q(p) ı var(l(p)).
Follows by definition of the q labeling of a witness tree.

Property 4. -p ¥ vertices(T), var(l(p)) 5 q(Tp) ı q(p).
Let v be any vertex in Tp, and let V=var(l(p)). By Lemma 5.11, q(v) ı
comp(p) 2 q(p). Hence, V 5 q(v) ı (V 5 comp(p)) 2 q(p), because Property 3
holds for p. However, by definition of witness tree, (V 5 comp(p)) ı q(p), and thus
(V 5 q(v)) ı q(p).

Thus, d(y) is a hypertree decomposition of Q. Let c be the width of d(y). Since
Step 1 of k-decomp only chooses sets of atoms having cardinality bounded by k,
c [ k holds.

Moreover, d(y) is in normal form. Indeed, Condition 2 and Condition 3 of
Definition 5.1 hold by Step 2.b of k-decomp, and by definition of the q labeling of
a witness tree. Finally, since d(y) is a hypertree decomposition, by Lemma 5.2,
Lemma 5.11, and the definition of the q labeling of a witness tree, we get that
Condition 1 holds for d(y), too. L

By combining Lemma 5.9 and Lemma 5.13 we get:

Theorem 5.14. k-decomp accepts an input query Q if and only if hw(Q) [ k.
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Lemma 5.15. k-decomp can be implemented on a logspace ATM having poly-
nomially bounded tree-size.

Proof. Let us refer to logspace ATMs with polynomially bounded tree-size as
LOGCFL-ATMs. We will outline how the algorithm k-decomp can be imple-
mented on a LOGCFL-ATMM.

We first describe the data-structures used by M. Instead of manipulating atoms
directly, indices of atoms will be used in order to meet the logarithmic space bound.
Thus the i-th atom occurring in the given representation of the input query Q will
be represented by integer i. Sets of at most k atoms, k-sets for short, are represented
by k-tuples of integers; since k is fixed, representing such sets requires logarithmic
space only. Variables are represented as integers, too.

If R is a k-set, then a [var(R)]-component C is represented by a pair
Orep(R), first(C), where rep(R) is the representation of the k-set R, and first(C) is
the smallest integer representing a variable of the component C. For example, the
”-component var(Q) is represented by the pair Orep(”), 1P. It is thus clear that
[var(R)]-components can be represented in logarithmic space, too.

The main data structures carried with each configuration of M consist of (the
representations of):

• a k-set R,4

4 The separate representation of R is actually slightly redundant, given that R also occurs in the
description of the [R]-component CR.

• a [var(R)]-component CR,

• a k-set S, and

• a [var(S)]-component C.

Not all these items will contain useful data in all configurations. We do not describe
further auxiliary logspace data structures that may be used for control tasks and for
other tasks such as counting or for performing some of the SL subtasks described
below.

We are now ready to give a description of the computation M performs on an
input query Q.

To facilitate the description, we will specify some subtasks of the computation,
that are themselves solvable in LOGCFL, as macro-steps without describing their
corresponding computation (sub-)trees. We may imagine a macro-step as a special
kind of configuration—termed oracle configuration—that acts as an oracle for the
subtask to be solved.

Each oracle configuration can be normal or converse.
A normal oracle configuration has the following effect. If the subtask is negative,

this configuration has no children and amounts to a REJECT. Otherwise, its value
(ACCEPT or REJECT) is identical to the value of its unique successor configura-
tion.

A converse oracle configuration has the following effect. If the subtask is nega-
tive, this configuration has no children and amounts to an ACCEPT. Otherwise, its
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value (ACCEPT or REJECT) is identical to the value of its unique successor con-
figuration.

From the definition of logspace ATMs with polynomial tree-size, it follows that
any polynomially tree-sized logspace ATMM with LOGCFL oracle configurations
(where an oracle configuration contributes 1 to the size of an accepting subtree) is
equivalent to a standard logspace ATM having polynomial tree size.
M is started with R initialized to the empty set and CR having value var(Q).
We describe the evolution of M corresponding to a call to the procedure
k-decomposable(CR, R).

Instruction 1 is performed by guessing an arbitrary k-set S of atoms.
The ‘‘Guess’’ phase of Instruction 1 is implemented by an existential configura-

tion of the ATM. (Actually, it is implemented by a subtree of existential configura-
tions, given that a single existential configuration can only guess one bit; note
however, that each accepting computation tree will contain only one branch of this
subtree.)

Checking Step 2 is in symmetric logspace (SL). The most difficult task is to
enumerate atoms of atoms(CR), which in turn—as most substantial sub-
task—requires to enumerate the variables of CR. Remember that CR is given in the
form Orep(R), iP as described above. Thus, enumerating CR amounts to cycling
over all variables j and checking whether j is [R]-connected to i. The latter subtask
is easily seen to be in SL because it essentially amounts to a connectedness-test
of two vertices in an undirected graph. It follows that the entire checking-task
of Instruction 2 is in SL. Since SL ı LOGCFL, this corresponds to a
LOGCFL-subtask. We can thus assume that the checking-task is performed by
some normal oracle configuration. If the oracle computation fails at some branch,
the branch ends in a REJECT, otherwise, the guessed k-set S corresponding to that
branch satisfies all the conditions checked by Step 2 of k-decomp.

Steps 4 intuitively corresponds to a ‘‘big’’ universal configuration that universally
quantifies over all subtrees corresponding to the calls k-decomposable(C, S) for all
C ¥ C. This could be realized as follows. First, a subtree of universal configurations
enumerates all candidates Ci=Orep(S), iP for 1 [ i [ |var(Q)|, for [var(S)]-com-
ponents. Each branch of this subtree (of polynomial depth) computes exactly one
candidate Ci. Each such branch is expanded by a converse oracle configuration
checking whether Ci is effectively a [var(S)]-component contained in CR. Thus,
branches that do not correspond to such a component are terminated with an
ACCEPT configuration (they are of no interest), while all other branches are
further expanded. Each branch Ci of the latter type is expanded by the subtree
corresponding to the recursive call k-decomposable(Ci, S).

We have thus completely described a logspace ATM M with oracle configura-
tions that implements k-decomp. It is easy to see that this machine has polynomial-
size accepting computation trees. In fact, this is seen from the fact that there exists
only a polynomial number of choices for set S in Step 1, and that no such set is
chosen twice in any accepting computation tree. L

The above results entail that bounded hypertree-width queries are efficiently
recognizable.
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Theorem 5.16. Deciding whether a conjunctive query Q has k-bounded hypertree-
width is in LOGCFL.

Proof. Follows from Theorem 5.14, Lemma 5.15, and Proposition 2.3. L

In fact, the following proposition states that an accepting computation tree of a
bounded-treesize logspace ATM can be computed in (the functional version of)
LOGCFL.

Proposition 5.17 [20]. Let M be a bounded-treesize logspace ATM recognizing
a language A. It is possible to construct an LLOGCFL transducer T which for each input
w ¥ A outputs a single (polynomially-sized) accepting tree forM and w.

Thus, we immediately obtain that (bounded-width) hypertree decompositions are
efficiently computable, as well.

Theorem 5.18. Computing a k-bounded hypertree decomposition (if any) of a
conjunctive query Q is in LLOGCFL, i.e., in functional LOGCFL.

Proof. From Lemma 5.9 and Lemma 5.13, it follows that, for any given query
Q, there exists a one-to-one correspondence between NF hypertree decompositions
of Q having width at most k and witness trees of accepting computation trees of
k-decomp. It is easy to see that a witness tree can be computed in logspace from
an accepting computation tree of k−decomp. Moreover, L p LLOGCFL=LLOGCFL

[20]. Thus, a hypertree decomposition of Q can be computed in LLOGCFL, by Pro-
position 5.17. L

Since LOGCFL is closed under LLOGCFL reductions [20], the two following
statements follow from the theorem above and Theorem 4.7 and Theorem 4.8,
respectively.

Corollary 5.19. Deciding whether a k-bounded hypertree-width query Q
evaluates to true on a database DB is LOGCFL-complete.

Corollary 5.20. The answer of a (non-Boolean) k-bounded hypertree-width
query Q can be computed in time polynomial in the combined size of the input instance
and of the output relation.

In Appendix 2, we also present a simple Datalog program for computing a
hypertree decomposition of a given query. Another algorithm for computing
hypertree decompositions has been recently presented in [22], and its implementa-
tion is available on the WEB [36]. Given a query Q and an integer k > 0, this
algorithm returns an optimal hypertree decomposition for Q, i.e., a hypertree
decomposition of width hw(Q), if hw(Q) [ k; otherwise, it answers that hw(Q) > k.

6. BOUNDED HYPERTREE-WIDTH VS RELATED NOTIONS

Many relevant cyclic queries are—in a precise sense—close to acyclic queries
because they can be reduced via bounded-width decompositions to acyclic queries.
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A similar phenomenon has been observed in artificial intelligence for Constraint
Satisfaction Problems (CSPs), and several decomposition methods have been
developed for dealing with cyclic CSP instances. For a formal definition of CSPs,
see, e.g., [27].

As pointed out by various authors [5, 25, 11, 29, 19], there is a tight relationship
between CSPs and database problems such as the evaluation of conjunctive queries.
Actually, the problems can be considered to be equivalent. Indeed, they can be also
recast as the same fundamental algebraic problem of deciding whether, given two
finite relational structures A and B, there exists a homomorphism f : AQ B [29].

It follows that the CSP research area can profit from new developments on
conjunctive queries and vice-versa. In [21] we compared the decomposition
methods developed in AI to the new method of hypertree decompositions intro-
duced here. It turned out that the method of bounded hypertree decomposition is
strictly more general than the CSP decomposition methods so far developed in AI.
In particular, we have compared the hypertree decomposition method to the struc-
tural CSP decomposition methods, including those based on hinges [25, 26],
biconnected components [15], cycle cutsets [11], tree clustering [12], and treewidth
[2]. We say that a method M is applicable to a class (possibly infinite set) of con-
straints (or queries) if every problem instance belonging to this class is classified as
tractable according to method M. The main result in [21] is that the new method
of bounded hypertree decomposition is applicable to a class of constraints (queries)
whenever any of these methods is applicable. On the other hand, for each method
M of the above list, there exist classes of (non binary) constraints having bounded
hypertree-width, to which methodM is not applicable.

Following [21], it is easy to see that, as for hypertree-width, the class of queries
having bounded query-width encompasses all the above cited decomposition
methods. By Theorem 3.4, deciding whether a query has bounded query-width is an
NP-complete problem. Nevertheless, we next show that also this class is properly
included in the class of queries of bounded hypertree-width. More precisely, we
show that every k-width query-decomposition corresponds to an equivalent k-width
hypertree-decomposition, but the converse is not true, in general. Recall that hw(Q)
and qw(Q) denote the hypertree-width and the query-width of a conjunctive query Q.

Theorem 6.1. (a) For each conjunctive query Q it holds that hw(Q) [ qw(Q).

(b) There exist queries Q such that hw(Q) < qw(Q).

Proof. (a) Let Q be a conjunctive query and OT, lP a query decomposition of
Q. Without loss of generality, assume Q is pure (i.e., labels contain only atoms, see
Section 3.1). Then, (T, q, l) is a hypertree decomposition of Q, where, for any
vertex v of T, q(v) consists of the set of variables var(l(v)) occurring in the atoms
l(v). Indeed, because the properties of query decompositions hold for OT, lP,
OT, q, lP verifies Condition 1 and 2 of Definition 4.1. Condition 3 and 4 follows
immediately, as q(p)=var(l(p)) by construction. Therefore, hw(Q) [ qw(Q).

(b) The query Q5 of Example 4.3 has no query decompositions of width 2.
However, Figure 5 shows a query decomposition of Q5 having width 3, and thus
qw(Q5)=3 holds. However, hw(Q5)=2, as witnessed by the hypertree decomposi-
tion shown in Figure 6. L
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We assume the reader is familiar with the notion of graph treewidth (cf. [2, 34]).
There are two possibilities to define the treewidth of a conjunctive query according
to whether one considers the primal graph G(Q) of a query (also called its Gaifman
graph), or the variable-atom incidence graph VAIG(Q) of Q (see also [29]). The
primal graph G(Q) has as vertices the variables of Q, and as edges all pairs {X, Y}
such that both X and Y occur together in some atom of Q. The variable-atom
incidence graph VAIG(Q) is the bipartite graph whose vertices are both the atoms
of Q and the variables of Q, and whose edges connect an atom A with a variable X
if and only if X occurs in A. From results in [21], it immediately follows that there
are classes of queries having an unbounded treewidth with respect to their primal
graph but having hypertree width 1. Let us here deal with the treewidth of a query
Q defined as the treewidth of VAIG(Q). Denote this treewidth by tw(Q). Chekuri
and Rajaraman [9] proved that, for any query Q, tw(Q)/a [ qw(Q) [ tw(Q)+1,
where a is the maximum predicate arity in Q. In [9] the assumption of bounded
query predicate arity a was made. Under this assumption, the above inequation
tw(Q)/a [ qw(Q) implies that whenever the query width of a class of queries is
bounded by a constant, then also the treewidth of the queries in this class is
bounded by a constant. As shown below, it is easy to see that this is not valid in the
general case.

Theorem 6.2. There is a class C of queries having query width 1, and thus hyper-
tree width 1, but unbounded treewidth.

Proof. Consider the set of variables Vn=Wn 2 Un where Wn={X1, ..., Xn} and
Un={Y1, ..., Yn}. Let Qn be defined by

Qn=ans P q(X1, ..., Xn, Y1)Nq(X1, ..., Xn, Y2)Nq(X1, ..., Xn, Yn).

Let C be the class consisting of all Qn for all positive integers n. Each Qn has
query width 1. In fact, a query decomposition of width 1 can be obtained by taking
the first atom q(X1, ..., Xn, Y1) as root and attaching every other atom of Qn as
child to this root. On the other hand, we have tw(Qn)=n. In fact, the graph
VAIG(Qn) contains as subgraph the complete bipartite graph atoms(Q)×Wn which
has treewidth n, while the other edges relating each variable of Un to a single atom
of Q do not contribute to the treewidth. L

7. NP-COMPLETENESS OF BOUNDED QUERY-WIDTH (PROOF)

In this section, we provide a formal proof of Theorem 3.4. We need some pre-
liminary results and definitions.

A k-element-vertex of a query decomposition (T, l) is a vertex v of T such that
|l(v)|=k.

Lemma 7.1. Let Q be a query having variable set var(Q)=C 2 Rest, where

C={Vij | 1 [ i < j [ 8},
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and Rest is an arbitrary set of further variables. Assume the set atoms(Q) contains
as subset a set P={P1, ..., P8} of 8 atoms, where, for 1 [ i [ 8, var(Pi) 5 C=
{V1i, V2i, ..., Vi−1 i, Vi i+1, ..., Vi8}, i.e.,

var(Pi) 5 C=0
k < i
{Vki} 2 0

i < k
{Vik}.

and -A ¥ atoms(Q)−P : var(A) 5 C=”.
If Q admits a pure query decomposition (T, l) of width 4, then there exist two
adjacent 4-element-vertices p1 and p2 of T such that l(p1) 2 l(p2)=P.

Proof. For each subgraph G of T, denote by l(G) the union of all l(v) such that
v is a vertex of G. Moreover, for any branch B of T and vertices v1, v2 on B, [v1, v2]
denotes the segment of B whose extremal vertices are v1 and v2.

Root the tree T=(V, E) in an arbitrary vertex r. Assume for each branch B of
the rooted tree T, P ł l(B). Let D be a set of branches of T such that P ı l(D)
and such that D is minimal with respect to this property. We have |D| \ 2. Let Bi
and Bj be two distinct branches of D. From the minimality of D it follows that
l(Bi) 5P ł l(Bj) 5P and l(Bj) 5P ł l(Bi) 5P. Therefore, there exist atoms
Pi, Pj ¥P such that Pi ¥ l(Bi), Pi ¨ l(Bj) Pj ¥ l(Bj), and Pj ¨ l(Bi). But this violates
the connectedness condition. In fact, the atoms Pi and Pj have a common variable
X (X=Vij or X=Vji) that occurs in no other atoms than in Pi and Pj. Let vc be the
lowest common vertex belonging to both branches Bi and Bj. By the connectedness
condition, X ¥ var(l(vc)), and thus either Pi ¥ l(vc) or Pj ¥ l(vc). But then one of Pi
and Pj belongs to both branches Bi and Bj, which results in a contradiction. There-
fore, there must exist a branch Bg such that P ı l(Bg). In the rest of the proof we
will work with this branch Bg. The top vertex of Bg is the root r of T and its
bottom vertex is some leaf s.

Let w be the lowest vertex v in Bg such that |l([v, s])| \ 4, and let wŒ be the
parent of w. If w=s, then |l([w, s])|=|l(w)| [ 4. Otherwise, let wœ be the child of
w belonging to the branch Bg. By the choice of w, |l([wœ, s])| [ 3. Moreover,
|l(w)| [ 4, and therefore |l([w, s])| [ 7 holds. Since |P|=8, there exists an atom
P ¥P which occurs in l([r, wŒ]) but not in l([w, s]). Given that for each atom PŒ
in l([w, s]) 5P, P and PŒ share variables that occur in no other atoms, and given
that P itself does not belong to l([w, s]), it follows from the connectedness con-
dition that all atoms of l([w, s]) occur in l(w). Thus, |l(w) 5P|=4, i.e., l(w)
contains exactly 4 atoms of P. Moreover, |l([w, s]) 5P|=4. Let u be the first
ancestor of w such that l(u) ] l(w), and let uŒ be its child. There is an atom Pk ¥P
contained in l(uŒ) but not in l(u). Let W denote the 4 atoms in P−l([uŒs]). If an
atom Ph of W did not belong to l(u), then the connectedness condition would be
violated for the common variable of Pk and Ph which occurs exclusively in these two
atoms. Therefore, u and uŒ are two adjacent 4-element-vertices of T such that
l(u) 2 l(uŒ)=P. L

Definition 7.2. Let S be a set of n elements. A 3-partition {Sa, Sb, Sc} of S
consists of three nonempty subsets Sa, Sb, Sc … S such that Sa 2 Sb 2 Sc=S, and
Sx 5 Sy=” for x ] y from {a, b, c}. The sets Sa, Sb, Sc are referred to as classes.
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A 3-Partitioning-System (short 3PS) S on a base set S is a set of 3-partitions of S,

S={ {S1a, S
1
b , S

1
c}, {S

2
a, S

2
b , S

2
c}, ..., {S

m
a , S

m
b , S

m
c }},

where -s, sŒ ¥ S: s ] sŒS s 5 sŒ=” (i.e., no class occurs in two or more elements
of S).

We define classes(S) :=1s ¥ S s. The base set S of S is referred to as base(S):
base(S)=1C ¥ classes(S) C.

A 3PS is strict if for all SŒ, Sœ, SœŒ ¥ classes(S) either {SŒ, Sœ, SœŒ}=s for some
s ¥ S or SŒ 2 Sœ 2 SœŒ … S. In other words: the only way to obtain S as a union of
three classes is via the specified 3-partitions of S; any other union of three classes
results in a proper subset of S.

A 3PS S is referred to as an (m, k)-3PS if |S| \ m and -C ¥ classes(S) : |C| \ k.

Lemma 7.3. For each m > 0 and k > 0, a strict (m, k)-3PS can be computed in
O(m2+km) time.

Proof. Fix m and k. We will construct a set S such that there exists a strict
(m, k)-3PS for S. Let T={X1, ..., X3k+m}, TŒ={X

−

1, ..., X
−

m}, and Tœ={X'a ,
X'b , X

'

c }. Moreover, let S=T 2 TŒ 2 Tœ and, for 1 [ i [ m,

• S ia={X1, ..., Xk+i−1} 2 {X −1, ..., X −m−i} 2 {X'a}
• S ib={Xk+i, ..., X2k+i−1} 2 {X'b}
• S ic={X2k+i, ..., X3k+m} 2 {X −m−i+1, ..., X −m} 2 {X'c }

Then, S={{S ia, S
i
b, S

i
c} | 1 [ i [ m} is clearly an (m, k)-3PS for S. We next show

that S is strict. Note that, because of the subset Tœ, the only way to cover S by
three sets is by choosing three classes of the form {Sra, S

s
b, S

t
c}, for some triple of

indexes r, s, t ¥ {1, ..., m}. Moreover, to cover the subset TŒ, it must hold that
m−r \ m−t, and hence r [ t. Assume by contradiction that r is strictly less than t.
Then, with S ra and S tc, we cover at most the elements {X1, ..., Xk+t−2} 2
{X2k+t, ..., X3k+m} from the subset T. This means that we miss at least the k+1
elements {Xk+t−1, ..., X2k+t−1}. However, by construction, for any s, S sb contains at
most k elements from T. Thus, S sb cannot cover the missing elements from T, and
we get a contradiction. It follows that r=t holds, and it is easy to see that this
entails s=r=t, too.

Note that each triple in S contains all the elements in S and that there are
m triples. Thus, S can be clearly constructed in time O(m(3k+m+m+3))
=O(m2+km). L

We can now prove Theorem 3.4, which states that deciding whether the query-
width of a conjunctive query is at most 4 is NP-complete.

Theorem 3.4. Deciding whether the query-width of a conjunctive query is at most
4 is NP-complete.
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Proof. 1, ‘‘Membership.’’ Let Q be a query. It is easy to see that if there exists
a query decomposition of width bounded by 4, then there also exists one of poly-
nomial size (in fact, by a simple restructuring technique we can always remove iden-
tically labeled vertices from a decomposition tree, and thus for any conjunctive
query Q only O(|atoms(Q) 2 var(Q)|4) need to be considered). Therefore, a query
decomposition of width at most k can be found by a nondeterministic guess
followed by a polynomial correctness check. The problem is thus in NP.

2, ‘‘Hardness.’’ We transform the well-known NP-complete problem EXACT
COVER BY 3-SETS (XC3S) [16] to the problem of deciding whether, for a
conjunctive query Q, qw(Q) [ 4 holds. An instance of EXACT COVER BY 3-SETS
consists of a pair I=(R, D) where R is a set of r=3s elements, and D is a collection
of m 3-element subsets of R. The question is whether we can select s subsets out of
D such that they form a partition of R.

Consider an instance I=(R, D) of XC3S. Let D={Di |1 [ i [ m} and let
Di={X

i
a, X

i
b, X

i
c} for 1 [ i [ m (note that for i ] j, some X ia and X jb may

coincide).
For illustration, throughout this proof, we will use as running example the

instance Ie=(Re, De), where the set Re to be partitioned is {X1, X2, X3, X4,
X5, X6}, and De contains the following subsets: D1={X1, X3, X4}, D2={X1, X2, X4},
D3={X3, X4, X6},and D4={X3, X5, X6}.

Generate a strict (m+1, 2) 3PS S={s0, s1, ..., sm} on some base set
S=base(S). By Lemma 7.3, this can be done in O((m+1)2+2(m+1))=O(m2),
and hence in polynomial time in the size of I. Let si={S

i
a, S

i
b, S

i
c} for 0 [ i [ m.

Identify each element of S with a separate variable and establish a fixed prece-
dence order O among the elements (variables) of S. If SŒ is a subset of S, and
SŒ={G1, ..., Gl}, where G1 O G2 · · · O Gl, then we will abbreviate the list of
variables G1, ..., Gl by SŒ in query atoms. For example, instead of writing
p(a, G1, ..., Gl, b), we write p(a, SŒ, b).

In order to transform the given instance I=(R, D) of XC3S to a conjunctive
query Q, let us first define the following sets of variables Ca and Pai , which are all
taken to be disjoint from the variables in S.

For 0 [ a [ s, let

Ca={Vaij | 1 [ i < j [ 8},

and for (1 [ i [ 8), let

Pai={V
a

1i, V
a

2i, ..., V
a

i−1 i, V
a

i i+1, ..., V
a

i8}.

Let S −a and S'a be two nonempty sets which partition S0a. (Such a partition exists
because S0a contains at least two elements.)

Define, for 0 [ a [ s the following sets of query atoms:

BLOCKAa={q(Pa1, S
−

a, Za), pa(P
a

2, S
'

a ), pb(P
a

3, S
0
b), pc(P

a

4, S
0
c)}

BLOCKBa={q(Pa5, S
−

a, Ya), pa(P
a

6, S
'

a ), pb(P
a

7, S
0
b), pc(P

a

8, S
0
c)},
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where the Ya and Za variables are distinct fresh variables not occurring in any
previously defined set. We further define

BLOCKSA= 0
0 [ a [ s

BLOCKAa, BLOCKSB= 0
0 [ a [ s

BLOCKBa,

and BLOCKS=BLOCKSA2 BLOCKSB.

Define, for 1 [ a [ s:

LINKa={link(Ya−1, Za)} and LINKS= 0
1 [ a [ s

LINKa.

Finally, define for each set Di={X
i
a, X

i
b, X

i
c} of D, 1 [ i [ m, the set of atoms:

W[Di]={s(X
i
a, S

i
a), s(X

i
b, S

i
b), s(X

i
c, S

i
c)}.

Let W=11 [ i [ mW[Di], and denote by W(Di) the set of all atoms of W in which
some variable of Di occurs, i.e,

W(Di)={s(X, a) ¥ W | X ¥ Di}.

In our running example, we have the following four sets of atoms corresponding
to the elements of De:

W[D1]={s(X1, S
1
a), s(X3, S

1
b), s(X4, S

1
c)},

W[D2]={s(X1, S
2
a), s(X2, S

2
b), s(X4, S

2
c)},

W[D3]={s(X3, S
3
a), s(X4, S

3
b), s(X6, S

3
c)},

W[D4]={s(X3, S
4
a), s(X5, S

4
b), s(X6, S

4
c)}.

Note that, according to the construction above, for each 1 [ i [ 4, si={S
i
a, S

i
b, S

i
c}

is a member of a strict (4+1, 2) 3PS Se on some base set Se. Each element in si is
thus a set of variables, and si is a partition of the base set Se.

Let Q be the query whose atom-set is BLOCKS 2 LINKS 2 W.
We claim that Q has query-width 4 iff I=(R, D) is a positive instance of EXACT

COVER BY 3SETS.
We call Qe the query corresponding to instance Ie of our running example. Note

that Ie is a positive instance of EXACT COVER BY 3SETS. Indeed, the sets D2 and
D4 form a partition of Re.

Let us first prove the if part. Assume that there exist s 3-sets D1, ..., D s ¥ D which
exactly cover R, i.e., which form a partition of R. We describe a query-decomposi-
tion (T, l) of Q.

The root va0 of T is labeled by the set of atoms BLOCKA0. The root has as
unique child a vertex vb0 labeled by BLOCKB0.

The decomposition tree is continued as follows. For each 1 [ a [ s, do the
following.
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• Create a vertex vca labeled by LINKa 2 W[Da], and attach vca as a child to
vba−1.

• For each remaining atom A ¥ W(Da)−W[Da], we create a new vertex, label it
with {A}, and attach it as a leaf to vca. (Note that these remaining atoms, if any,
stem from other elements of D, given that a variable may occur in several 3-sets.)

• Then, create a vertex vaa of T, label it by the set of atoms BLOCKAa, and
attach it as a child of vca. The vertex vaa, in turn, has as only child a vertex vba
labeled by BLOCKBa.

It is not hard to check that (T, l) is indeed a valid query decomposition.
Since our example instance admits a solution, Qe has a query decomposition of

width 4. Figure 11 shows such a decomposition for Qe. Note that the choice of sets
D2 and D4 from D corresponds to the choice of two vertices of the query decompo-
sition containing W[D2] and W[D4], respectively.

Let us now prove the only-if part. Assume (T, l) is a width 4 query decomposi-
tion of the above defined query Q. By Proposition 3.3, we also assume, without loss
of generality, that (T, l) is a pure query decomposition. Since Q is connected, also
T is connected.

We observe a number of relevant facts and make some assumptions.

FIG. 11. A 4-width query decomposition of query Qe .
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Fact 1. By Lemma 7.1 for each 0 [ a [ s, there must exist adjacent vertices vaa
and vba such that l(vaa) 2 l(vba)=BLOCKAa 2 BLOCKBa.
Fact 2. It holds that S ı var(vaa) and S ı var(vba). In fact, if this were not the

case, then both vertices would miss variables from S, but since all variables of S
occur together in other pairs of adjacent vertices, this would violate the connected-
ness condition and is thus impossible.

Fact 3. From the latter, and from the fact that the sets S −a, S
'

a , S
0
b , and S0c form

a partition of S, it follows that each of the vertices vaa and vba contains a q atom, a
pa atom, a pb atom, and a pc atom. Without loss of generality, we can thus make
the following assumption.

Assumption. For 0 [ a [ s we have Za ¥ var(vaa) and Ya ¥ var(vba).

Fact 4. For 1 [ a [ s, there exists a vertex vca that lies on the unique path from
vba−1 to vaa such that {Ya−1, Za} ı var(vca). This can be seen as follows. For any
variable J, a J-path is a path p in T such that the variable J occurs in the label l(v)
of any vertex v of p. The atom link(Ya−1, Za) must belong to the set l(v −ca) of some
vertex v −ca of T. Clearly, by the connectedness condition, v −ca is connected via a
Ya−1-path pb to vba−1 and by a Za-path pa to vaa. Let p denote the unique path from
vba−1 to vaa. Then p, pa, and pb intersect at exactly one vertex. This is the desired
vertex vca.

Fact 5. For 1 [ a [ s, S ı var(vca). Trivial, because vca lies on a path from vba−1
to vaa and S ı var(vba−1) and S ı var(vaa). The fact follows by the connectedness
condition.

Fact 6. For 1 [ a [ s, link(Ya−1, Za) belongs to l(vca) and there exists an i with
1 [ i [ m such that W[Di] ı l(vca); in summary, l(vca)={link(Ya−1, Za)} 2 W[Di].
Let us prove this. By FACT 5 we know that all variables in S must be covered by
vca. However, it also holds that {Ya−1, Za} ı var(vca) (see FACT 4). To cover the
latter variables, there are two alternative choices:

1. both atoms q(Pa−15 , S
−

a, Ya−1) and q(Pa1, S
−

a, Za) belong to l(vca); or

2. the atom link(Ya−1, Za) belongs to l(vca).

Choice 1 is impossible: there exist no two other atoms A, B ¥ atoms(Q) such that
var(A) 2 var(B) 2 S −a=S. We are thus left with Choice 2. Since the atom
link(Ya−1, Za) does not contain any variable from S, there must be three other
atoms in l(vca) that together cover S. An inspection of the available atoms shows
that the only possibility of covering S by three atoms is via some atom set W[Di]
for 1 [ i [ m. The fact is proved.

Fact 7. For 1 [ i < j [ s it holds that vai lies on the unique path in T from vci
to vcj.

Consider the edge {vai, vbi}. If we cut this edge from the tree T, then we obtain
two disconnected trees Ta (containing vai) and Tb (containing vbi). Since vci is con-
nected via a Zi-path to vai, but Zi does not occur in var(vbi), it holds that vci is con-
tained in Ta. On the other hand, by ‘‘iterative’’ application of Fact 4 and of the
connectedness condition it follows that there is a path p from vbi to vcj such that for
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each vertex v of p it holds that var(v) 5 Bigvars ]”, where Bigvars={Yh | i [ h < j}
2 {Zh | i < h < j}. Since var(vai) 5 Bigvars=”, p does not traverse vai. It follows
that vci belongs to Tb. Therefore, the unique path linking vci to vcj goes through the
edge {vai, vbi}, and thus contains the vertex vai.

Fact 8. For 0 [ i < j [ s it holds that var(vci) 5 var(vcj)=S. By Fact 7, vai lies
on the unique path from vci to vcj. Therefore by the connectedness condition it holds
that var(vci) 5 var(vcj) ı var(vai). Moreover, by Fact 6, no variable from var(vai)−S
is contained in both var(vci) and var(vcj). Thus var(vci) 5 var(vcj) ı S. On the other
hand, by Fact 5, S ı var(vci) and S ı var(vcj), hence, S ı var(vci) 5 var(vcj). In
summary, we obtain var(vci) 5 var(vcj)=S.

For each 1 [ a [ s, denote by Da the set Di such that W[Di] ı l(vca) (see Fact 6). By
FACT 8 it follows that the sets Da (1 [ a [ s) are mutually disjoint. But then the
union of these sets is of cardinality 3s=r, and hence the union must coincide with
R. Thus s subsets out of D cover R and (R, D) is a positive instance of EXACT
COVER BY 3-SETS. L

APPENDIX A
HYPERTREE DECOMPOSITIONS OF HYPERGRAPHS

In Section 4 of this paper we consider hypertree decompositions of conjunctive
queries. It is equally possible to define the concepts of hypertree decomposition and
hypertree width in the slightly more abstract setting of hypergraphs. This was done,
e.g., in [21]. Given that each Boolean conjunctive query has a corresponding
hypergraph, the two settings are closely related. In particular, all definitions, results,
and algorithms introduced in this paper in the context of conjunctive queries carry
over to the more general context of hypergraphs. This is made explicit in this
appendix.

Let H=(V, H) be a hypergraph. We will often use the term variable and the
term edge to refer to the elements in V and H, respectively. Accordingly, we will
denote the set V and H of H by var(H) and edges(H), respectively.

A hypertree for a hypergraphH is a triple OT, q, lP, where T=(N, E) is a rooted
tree, and q and l are labeling functions which associate to each vertex p ¥N two
sets q(p) ı var(H) and l(p) ı edges(H). The notation and definitions of Section 4
for hypertrees of conjunctive queries will be used also for hypertrees of
hypergraphs.

Definition A.1. A hypertree decomposition of a hypergraph H is a hypertree
HD=OT, q, lP for H which satisfies all the following conditions:

1. for each edge h ¥ edges(H), there exists p ¥ vertices(T) such that h ı q(p);

2. for each variable Y ¥ var(H), the set {p ¥ vertices(T) | Y ¥ q(p)} induces a
(connected) subtree of T;

3. for each p ¥ vertices(T), q(p) ı var(l(p));

4. for each p ¥ vertices(T), var(l(p)) 5 q(Tp) ı q(p).
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The width of a hypertree decomposition OT, q, lP is maxp ¥ vertices(T) |l(p)|. The
hypertree-width hw(H) of H is the minimum width over all its hypertree decom-
positions.

All other related notions, such as, e.g., complete decomposition, normal form, etc.,
directly carry over to hypertree decompositions of hypergraphs, and need not to be
redefined here.

Definition A.2. Let H=(V, H) be a hypergraph. Let [v1, ..., vm] and
[h1, ..., hn] be lexicographic orderings of V and H, respectively. Moreover, let
DS={R1, ..., Rn} be a database schema such that, for each 1 [ i [ n, the arity of
relation Ri is equal to the cardinality of the edge hi.

The canonical query cq(H) of H is the following Boolean conjunctive query Q
over DS.

Q: ansP r1(u1)N · · · N rn(un),

where r1, ..., rn are the relation names of R1, ..., Rn and, for each 1 [ i [ m, ui is the
lexicographically-ordered list of the variables in hi.

Since the set of edges of a hypergraph H is isomorphic to the set of atoms of its
canonical query cq(H), and var(H)=var(cq(H)), any hypertree of a hypergraph
H can be seen as a hypertree of cq(H) and vice versa. Under this view, the follow-
ing statement follows immediately from Definition 4.1, Definition 1.1, and Defini-
tion 1.2.

Theorem A.3. Given a hypergraph H, every hypertree decomposition of H is a
hypertree decomposition of its canonical query and vice versa.

Corollary A.4. The hypertree-width of any hypergraph H is equal to the
hypertree-width of its canonical query cq(H).

Since the canonical query of a hypergraph is evidently logspace computable, from
Theorem 5.16 and the above result, we obtain that bounded hypertree-width
hypergraphs are efficiently recognizable.

Corollary A.5. Deciding whether a hypergraph H has k-bounded hypertree-
width is in LOGCFL.

From Theorem 1.3 and Theorem 5.18, we obtain that bounded-width hypertree
decompositions of hypergraphs are efficiently computable.

Corollary A.6. Computing a k-bounded hypertree decomposition (if any) of a
hypergraphH is in LLOGCFL, i.e., in functional LOGCFL.

It is worthwhile noting that the hypertree-width of a query Q coincides with the
hypertree-width of the hypergraph H(Q) associated with Q (see Section 2.1).

Theorem A.7. The hypertree-width of a query Q is equal to the hypertree-width
of the query hypergraph H(Q) of Q.
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Proof. It suffices to show that, for each each hypertree decomposition of Q
having width k, there is a hypertree decomposition of H(Q) having width [ k, and
vice-versa.

Let D=OT, q, lP be a hypertree decomposition of Q. For each v ¥ vertices(T),
let lŒ(v) :={var(A) | A ¥ l(V)}. Let DŒ :=OT, q, lŒP. Clearly, DŒ is a hypertree
decomposition of H(Q). Moreover, for each v ¥ vertices(T), |lŒ(v)| [ |l(v)|, hence
the width of DŒ is not greater than the width of D.

For the other direction, let D=OT, q, lP be a hypertree decomposition of H(Q).
Note that for an edge e ¥ edges(H(Q)) there may exist several atoms A in atoms(Q)
such that var(A)=e. Therefore, for each edge e ¥ edges(H(Q)) choose one particu-
lar atom Ae in atoms(Q) such that var(Ae)=e. For each v ¥ vertices(T), let
lŒ(v) :={Ae | e ¥ l(V)}. Let DŒ :=OT, q, lŒP. Clearly, DŒ is a hypertree decomposi-
tion of Q. Moreover, D and DŒ are of the same width. (Note that DŒ is not neces-
sarily a complete hypertree decomposition of Q, given that some atoms may not
appear in any lŒ-label; however, by Lemma 4.4, DŒ can be transformed into a
complete hypertree decomposition of Q having the same width.) L

APPENDIX B
A DATALOG PROGRAM RECOGNIZING QUERIES OF

k-BOUNDED HYPERTREE-WIDTH

In this short Appendix, we show a straightforward polynomial-time implementa-
tion of the LOGCFL algorithm k−decomp. In particular, we reduce (in polyno-
mial time) the problem of deciding whether there exists a k-bounded hypertree-
width decomposition of a given conjunctive query Q to the problem of evaluating a
weakly stratified Datalog program [32, 40].

First, we associate an identifier (e.g., some constant number) to each k-vertex
(non empty subset of Q consisting of k atoms at most) R of Q, and to each [R]-
component C for any k-vertex R of Q. Moreover, we have a new identifier root
which intuitively will be the root of any possible hypertree-decomposition, and a
new identifier varQ which encodes the set of all the variables of the query and hence
is seen as a component including any subset of var(Q).

Then, we compute the following relations:5

5 For the sake of clarity, we directly refer to objects by means of their associated identifiers (which we
also use as logical terms in the program).

• k-vertex( · ): Contains a tuple ORP for each k-vertex R of Q.

• component( · , · ): Contains a tuple OCR, RP for each [R]-component CR of
some k-vertex R.

Moreover, it contains the tuple OvarQ, rootP.

• meets-condition( · , · , · ): Contains any tuple OS, R, CRP such that S and R are
k-vertices, CR is an [R]-component, and the following conditions hold:
var(S) 5 CR ]”, and -P ¥ atoms(CR) var(P) 5 var(R) ı var(S).

Moreover, it contains a tuple OS, root, varQP for any k-vertex S.

• subset( · , · ): Contains any tuple OCS, CRP such that CS is an [S]-component
for some k-vertex S, CR is an [R]-component for some k-vertex R, and CS … CR
holds.
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Let P be the following Datalog program:

1. k-decomposable(R, CR) P k-vertex(S), meets-conditions(S, R, CR),

¬ undecomposable(S, CR)

2. undecomposable(S, CR) P component(CS, S), subset(CS, CR),

¬ k-decomposable(S, CS).

Note that each atom of the form k-decomposable(R, CR) depends only on atoms
k-decomposable(S, CS) such that CS … CR, because of the base relation
subset(CS, CR) in the body of the last rule of P. Thus, program P is weakly stra-
tified. As a consequence, P has a total well-founded model [42] M, and hence a
unique stable model [17] which coincides with M. Recall that the well-founded
model of any Datalog program can be computed in polynomial time [42].

It is easy to see that hw(Q) [ k if and only if model M contains the atom
k-decomposable(root, varQ).

In fact, if k-decomposable(root, varQ) belongs to M, the atoms k-decomposable
( · , · ) belonging to M, together with the base relations, encode all the NF hypertree
decompositions of Q in normal form having width at most k. Thus, we can also
compute from M a hypertree decomposition of Q, by using a simple top-down
procedure in order to select one of these decompositions. For instance, we can
choose as the root of such a hypertree decomposition any k-vertex S such that
meets-conditions(S, root, varQ) ¥M and undecomposable(S, varQ) ¨M. Then, we
can continue by choosing in a similar way one child of S for each [S]-component
CS ı var(Q), and so on. An extension of the above algorithm which computes a
k-bounded hypertree decomposition is shown in [22]. See the hypertree decompo-
sitions’ homepage [36] for downloading executables and examples.
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