Monadic Datalog and the Expressive Power of
L anguages for Web Infor mation Extraction

GEORG GOTTLOB AND CHRISTOPH KOCH

Technische Universitat Wien, Wien, Austria

Abstract. Research on information extraction from Web pages (wrapping) has seen much activity
recently (particularly systems implementations), but little work has been done on formally studying
the expressiveness of the formalisms proposed or on the theoretical foundations of wrapping. In this
paper, we first study monadic datalog over trees as a wrapping language. We show that this simple
language is equivalent to monadic second order logic (MSO) in its ability to specify wrappers. We
believe that MSO has the right expressiveness required for Web information extraction and propose
M SO asayardstick for eval uating and comparing wrappers. Along theway, several other resultsonthe
complexity of query evaluation and query containment for monadic datal og over trees are established,
and a simple normal form for this language is presented. Using the above results, we subsequently
study the kernel fragment Elog~ of the Elog wrapping language used in the Lixto system (a visua
wrapper generator). Curiously, Elog~ exactly captures MSO, yet is easier to use. Indeed, programs
in this language can be entirely visually specified.

Categories and Subject Descriptors. F.1.1 [Computation by Abstract Devices]: Models of
Computation—automata (e.g., finite, push-down, resource-bounded); F.4.1 [Mathematical Logic

This research was supported by the Austrian Science Fund (FWF) under project No. Z29-N04 and
the GAMES Network of Excellence of the European Union.

A part of the work was done while C. Koch was visiting the Laboratory for Foundations of Computer
Science of the University of Edinburgh and was sponsored by an Erwin Schridinger scholarship of
the FWF.

An extended abstract of this work appeared as GOTTLOB, G., AND KocH, C., Monadic datalog and
the expressive power of web information extraction languages, in Proceedings of the 21st ACM
S GACT-SGMOD-S GART Symposium on Principles of Database Systems (PODS02) (Madison,
Wisc.), ACM, New York, pp. 17—28. One additional complexity result has been taken from GoTTLOB,
G., AND KocH, C., Monadic queriesover tree-structured data, in Proceedings of the 17th Annual IEEE
Symposiumon Logic in Computer Science (LICS) (Copenhagen, Denmark). |EEE Computer Society
Press, Los Alamitos, Calif., 2002, pp. 189-202.

The results first announced in Proceedings of the 21st ACM SIGACT-S GMOD-S GART Symposium
on Principles of Database Systems (PODS 02) include aformal comparison of monadic datalog and
Elog with other visual wrapping languages that have been proposed in the literature. Because of
space limitations, this could not be covered here, but was moved to GoTTLOB, G., AND KocH, C.,,
2003, A formal comparison of visual web wrapper generators, Tech. Rep. ¢s.DB/0310012, CoRR,
http://arxiv.org/abs/cs.DB/0310012.

Authors' address: Database and Artificial Intelligence Group (E184/2), Technische Universitat Wien,
A-1040 Vienna, Austria, e-mail: {gottlob;koch}@dbai.tuwien.ac.at.

Permission to make digital or hard copies of part or all of thiswork for personal or classroom useis
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on thefirst page or initial screen of adisplay alongwith the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
tolists, or to use any component of thiswork in other works requires prior specific permission and/or
afee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2004 ACM 0004-5411/04/0100-0074 $5.00

Journal of the ACM, Vol. 51, No. 1, January 2004, pp. 74-113.

Monadic Datalog and Web Information Extraction 75

and Formal Languages|: Mathematical Logic—computational logic; F.4.3 [Mathematical Logic
and Formal L anguages]: Formal Languges—classesdefined by grammarsor automata (e.g., context-
free languages, regular sets, recursive sets); H.2.3 [Database Management]: Languages—query
languages; 1.7.2 [Document and Text Processing]: Document Preparation—markup languages

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases. Complexity, expressiveness, HTML, information extraction,
monadic datalog, M SO, regular tree languages, web wrapping

1. Introduction

The Web wrapping problem, that is, the problem of extracting structured infor-
mation from HTML documents, is one of high practical importance and has
spurred a great amount of work, including theoretical research (e.g., Atzeni and
Mecca [1997]) as well as systems. Previous work can be classified into two cate-
gories, depending on whether the HTML input isregarded as a sequentia character
string (e.g., TSIMMI S [Papakonstantinou et al. 1995], Editor [Atzeni and Mecca
1997], FLORID [Ludascher et a. 1998], and DEBYE [Laender et al. 2002]) or
a preparsed document tree (e.g., W4F [Sahuguet and Azavant 2001], XWrap [Liu
etal. 2000], and Lixto [Baumgartner et al. 2001b, 20014; Lixto]). Thelatter category
of work thus assumes that systems may make use of an existing HTML parser asa
front end.

From the standpoint of theory, many practical problems are presumably simpler
to solveover the parsetrees of documentsrather than over the documentsconsidered
as strings.! In the light of the large legacy of Web documents that motivate Web
information extraction in the first place, the practical perspective of tree-based
wrapping must be emphasized. Robust wrappers are easier to program using a
wrapper programming language that models documents as preparsed document
treesrather than astext strings. Writing afully standards-compliant HTML parseris
asubstantial task, which should not haveto be redonefrom scratch for each wrapper
being created. Theuseof an existing parser allowsthewrapper implementor tofocus
on the essential s of each wrapping task and to work on ahigher, more user-friendly
level. No serious study of the productivity gains obtained by the transition from
string-based to tree-based wrapping has been conducted as of yet, but wethink that
itis clear that the leap in productivity must be substantial.

Nonlinear productivity improvements in software development are among the
most desirable and valuable outcomes of computer science research. The often-
observed information overload that users of the Web experience witnesses the
lack of intelligent and encompassing Web services that provide high-quality col-
lected and value-added information. At the origin of this, there is a mild form
of software crisis in Web information extraction which calls for such product-
ivity improvements.

A second candidate for a substantial productivity leap, whichin practice requires
the first (tree-based representation of the source documents) as a prerequisite, is
the visual specification of wrappers. By visua wrapper specification, we ideally
mean the process of interactively defining a wrapper from one (or few) example

LInfact, it is known that aword language is context-free iff it isthe yield of aregular tree language
(cf. Gécseg and Steinby [1997]), where the yield of atree is the sequence of labels of its leaf nodes
extracted depth-first from left to right.

76 G. GOTTLOB AND C. KOCH

document(s) using mainly “mouse clicks’, supported by a strong and intuitive
design metaphor. During this visual process, the wrapper program should be auto-
matically generated and should not actually require the human designer to use or
even know the wrapper programming language. Visual wrapping is now areality
supported by several implemented systems|[Liu et al. 2000; Sahuguet and Azavant
2001; Baumgartner et al. 2001a], however with varying thoroughness.

Little is known about the theoretical aspects of tree-based wrapping languages.
Clearly, languageswhich do not have the right expressive power and computational
properties cannot be considered satisfactory, even if wrappers are easy to define.

One may thus want to look for a wrapping language over document trees that

(i) hasasolid and well understood theoretical foundation,

(i) provides a good trade-off between complexity and the number of practical
wrappers that can be expressed,

(iii) iseasy to use as awrapper programming language, and
(iv) issuitablefor beingincorporatedinto visual tools, sinceideally all constructsof
awrapping language can be realized through corresponding visual primitives.

This article exhibits and studies such languages.

It is understood in the literature that the scope of wrapping is a conceptually
limited one. Information systems architectures that employ wrapping usually con-
sist of at least two layers, alower one that is restricted to extracting relevant data
from data sources and making them available in a coherent representation using
the data model supported by the higher layer, and a higher layer in which data
transformation and integration tasks are performed which are necessary to fuse
syntactically coherent data from distinct sources in a semantically coherent man-
ner. With the term wrapping, we refer to the lower, syntactic integration layer. The
higher, semantic integration layer isnot topic of thisarticle. Therefore, awrapper is
assumed to extract relevant datafrom apossibly poorly structured source and to put
it into the desired representation formalism by applying a number of transforma-
tional changes close to the minimum possible. A wrapping language that permits
arbitrary data transformations may be considered overkill.

The core notion that we base our wrapping approach on is that of an informa-
tion extraction function, which takes a labeled unranked tree (representing a Web
document) and returns a subset of its nodes. In the context of the present article, a
wrapper is aprogram which implements one or several such functions, and thereby
assigns unary predicates to document tree nodes. Based on these predicate assign-
ments and the structure of the input tree, a new tree can be computed as the result
of the information extraction process in a natural way, along the lines of the input
tree but using the new labels and omitting nodes that have not been relabel ed.

That way, we can take a tree, relabel its nodes, and declare some of them as
irrelevant, but we cannot significantly transform its origina structure. This coin-
cides with the intuition that a wrapper may change the presentation of relevant
information, its packaging or data model (which does not apply in the case of Web
wrapping), but does not handle substantial data transformation tasks. We believe
that this captures exactly the essence of wrapping.

We propose unary queriesin monadic second-order logic (M SO) over unranked
trees as an expressiveness yardstick for information extraction functions. MSO
over treesiswell-understood theory-wise [Thatcher and Wright 1968; Doner 1970;

Monadic Datalog and Web Information Extraction 77

Courcelle 1990; Flum et al. 2001] (see also Thomas [1990, 1997]) and quite ex-
pressive. The MSO query evaluation problem is PSPACE-complete (combined
complexity). The parameter of most significant influence in query evaluation is of
course the size of the data. Unary MSO gueries can be evaluated in linear time
with respect to the sizes of the input trees [Flum et al. 2001; Courcelle 1990] using
techniquesthat, unfortunately, have nonel ementary complexity in terms of the size
of the M SO query.? Thus—even when assuming the size of awrapper program (as
aset of MSO formulae) to be small—we cannot accord satisfaction of requirement
(ii). Moreover, MSO does not satisfy requirements (iii) and (iv): It is neither easy
to use as awrapping language nor doesit lend itself to visual specification.

Presently, only two formalisms are known that precisely capture the unary
MSO queries over trees yet are computationally cheaper to process, query au-
tomata [Neven and Schwentick 2002], a form of deterministic two-way tree au-
tomata with a selection function, and Boolean attribute grammars [Neven and
van den Bussche 2002]. At least the latter formalism satisfies requirement (ii)—
Boolean attribute grammars can be evaluated efficiently both in terms of the size
of the data and the query. However, we think that neither satisfies the require-
ments (iii) or (iv).

The main task of practical Web information extraction is the detection and ex-
traction of interesting “ objects’ from aWeb document. Modeling such objectsin a
wrapper often only requiresasmall fraction of theintuitive* complexity” of thefull
documents to be wrapped. However, both query automata and attribute grammars
regquire to model the entire source documents, which may be substantially more
cumbersome and work-intensive than just describing the objects of interest. Such a
monolithic approach is very brittle in real-world applications where no full model
of the source documentsis available or their layouts change frequently. In contrast,
all implemented practical systemsfor tree-based wrapping that weare aware of [Liu
et al. 2000; Sahuguet and Azavant 2001; Baumgartner et al. 2001b] are based on
wrapping languages that allow to specify the objects of interest without requiring
to model the entire source documents.®

It isalso worth mentioning that both query automataand Bool ean attribute gram-
mars cause substantial notational difficulty on unranked trees, which makes them
difficult to use on Web documents.

The main contributions of the article are the following.

—We study monadic datalog and show that it is equivalent to MSO in its ability to
express unary queries for tree nodes (in ranked as well as unranked trees).

We also characterize the evaluation complexity of our language. We show
that monadic datalog can be evaluated in linear time both in the size of the data
and the query, given that tree structures are appropriately represented. Interest-
ingly, judging from our experience with the Lixto system, real-world wrappers
written in monadic datalog are small. Thus, in practice, we do not trade the
lowered query complexity compared to MSO for considerably expanded pro-
gram sizes.

2 Thisisat least so under widely held complexity-theoretic assumptions [Frick and Grohe 2002].

3 We admit that attribute grammars are an €l egant formalism for extracting relations from trees. That
problem isnot topic of thisarticle. Here, we hope to improve on the state-of-the-art of extracting (e.g.
XML) trees from documents with awrapping formalism that is more manageable.

78 G. GOTTLOB AND C. KOCH

M onadic datal og over labeled treesisavery simple programming languageand
much better suited as a wrapping language than MSO. Consequently, monadic
datal og satisfies the first three of our requirements.

—We provide reductions from query automata (in both the ranked and unranked
tree case) to monadic datalog. As a corollary, we obtain the result that the con-
tainment problem for monadic datal og over treesremains EXPTIME-hard. (Itis
known to be EXPTIME-hard over arbitrary finite structures [Cosmadakis et a.
1988].) Thisis also ademonstration of how conveniently even intricate automa-
ton constructions can be simulated in our language of choice.

Moreover, we show that monadic datalog is a more efficient device for evalu-
ating queries defined by query automata than query automata themselves: while
there are terminating runs of query automata that take superpolynomially many
steps, the same queries are evaluated in time linear in the size of the data
and quadratic in the size of the query automata using our reductions to mona-
dic datalog.

—We defineasimple normal formfor monadic datal og over trees, TMNF, towhich
any monadic datalog program over trees can be mapped in linear time.

—Finaly, we present asimple but practical Web wrapping language equivalent to
M SO, which we call Elog~. Elog™ isasimplified version of the core wrapping
language of the Lixto system, Elog (“ Extraction by datalog”), and can be obtained
by dlightly restricting the syntax of monadic datalog. Programs of this language
(even recursive ones) can be completely visually specified, without requiring the
wrapper implementor to deal with Elog~ programs directly or to know datal og.
We also give a brief overview of this visual specification process. Thus, Elog~
satisfies all of our four desiderata for tree-based wrapping languages.

The present work is—to the best of our knowledge—the first to provide a the-
oretical study of an advanced tree-based wrapping tool and language used in an
implemented system. In summary, we present a thorough theoretical anaysis of
expressiveness aspects of tree-based information extraction based on the expres-
siveness of MSO as an intuitively justifiable yardstick for languages attacking this
problem. We also keep the efficiency of query evaluation in mind and are able to
guarantee linear-time evaluation for the language studied.

Thearticleisstructured asfollows: Westart with preliminariesregarding treesand
MSO in Section 2 and introduce monadic datalog in Section 3.1. In Section 3.2, we
present several known theoretical results on (monadic) datalog. The main technical
developmentsof thisarticlestart with Section 4. The complexity of monadic datal og
over trees is detailed in Section 4.1, its expressive power in Section 4.2, and the
relationship to query automata is studied in Section 4.3. Section 5 presents the
the transformation of monadic datalog over trees into the normal form TMNF. In
Section 6, we define the Elog~ fragment of the industrial-strength Elog language
and study its theoretical properties. We conclude with Section 7.

2. Preliminaries

Throughout thisarticle, only finite treeswill be considered. Trees are defined in the
normal way and have at least one node. We assume that the children of each node

Monadic Datalog and Web Information Extraction 79

1

firstchild

2 nextsibling

n1
n3
firstchild nextsibling

Ny i ng T4 g

nextsibling
14 ns g

(a) (b)

FiG. 1. (&) An unranked tree and (b) its representation using the binary relations “firstchild” ()
and “nextsibling” (\,).

are in some fixed order. Each node has a label taken from a finite* nonempty set
of symbols X, the al phabet. We consider both ranked and unranked trees. Ranked
trees have aranked alphabet, that is, each symbol in X has some fixed arity or rank
k < K (and K isthemaximumrank in 2, i.e., aconstant integer). We may partition
¥ intosets X, ..., Xk of symbolsof equal rank. A nodewith alabel a € T (i.e.,
of rank k) has exactly k children. Nodes with labels of rank O are called leaves.
Each ranked tree can be considered as arelational structure

ti = (dom, root, leaf, (childi)k<k, (labela)acs).

In an unranked tree, each node may have an arbitrary number of children. An
unranked ordered tree can be considered as a structure

ty = (dom, root, leaf, (labely)acs, firstchild, nextsibling, lastsibling),

where “dom” is the set of nodes in the tree, “root”, “leaf”, “lastsibling”, and the
“labely” relations are unary, and “firstchild”, “nextsibling”, and the “childy” re-
lations are binary. All relations are defined according to their intuitive meanings.
“root” contains exactly one node, the root node. “leaf” consists of the set of all
|eaves. childy denotesthekth direct child relationin aranked tree. In unranked trees,
“firstchild(ny, np)” istrueiff n, istheleftmost child of ny; “nextsibling(ny, nz)” is
trueiff, for somei, n; and n, aretheithand (i + 1)th children of acommon parent
node, respectively, counting from the left (see also Figure 1). label;(n) istrueiff n
islabeled a in thetree. Findly, “lastsibling” contains the set of rightmost children
of nodes. (The root node is not a last sibling, as it has no parent.) Whenever the
structuret may not be clear from the context, we stateit as a subscript of therelation
names (as, e.g., in dom, root;, .. .).

By default, we will always assume ranked and unranked trees to be represented
using the schemata outlined above, and will refer to them as 7, (for ranked trees)
and t,, (for unranked trees), respectively.

M onadic second-order logic (M SO) over treesisasecond-order logical language
consisting of (1) individual variables (with lower-casenamesx, v, .. .) ranging over
nodes, also called node variables, (2) set variables (written using upper-case names
P, Q,...) ranging over sets of nodes, (3) parentheses, (4) Boolean connectives v
and —, (5) quantifiers vV and 3 over both node and set variables, (6) the relation

4 The finite al phabet choice is discussed in more detail in Remark 2.2.

80 G. GOTTLOB AND C. KOCH

symbols of the tree structure in consideration, = (equality of node variables), and,
as syntactic sugaring, possibly (7) the Boolean operations A, —, and <> and the
relation symbols = and C between sets. IT1;-M SO refers to (universal) MSO sen-
tencesof theform (VPy) - - - (VP) v (P4, ..., P) wherethe P, are set variablesand
Y isafirst-order formula. Given an MSO formula g, its quantifier rank k is defined
as the maximum degree of nesting of first-order as well as set-quantifiersin ¢. In
other words, k isthe maximum number of quantifiers encountered on any path from
the root of the expression tree of ¢ to aleaf. A unary MSO query is defined by an
M SO formula¢ with one free first-order variable. Given atreet, it evaluatesto the
set of nodes{x € dom | t F ¢(x)}. A treelanguage L isdefinablein MSO iff there
isan MSO sentence ¢ over tree structurest suchthat £ = {t | t F ¢}.

The regular tree languages (for ranked as well as for unranked alphabets) are
precisely those tree languages recognizable by a number of natural forms of finite
automata [Briggemann-Klein et a. 2001]. The following is a classical result for
ranked trees [Thatcher and Wright 1968; Doner 1970], which has been shown in
[Neven and Schwentick 2002] to hold for unranked trees as well.

ProPOSITION 2.1. Atreelanguageisregular iff it is definablein MSO.

Remark 2.2. In the context of wrapping HTML documents, it is worthwhile
to consider an infinite alphabet X, which allows to merge both HTML tags and
attribute assignments into labels. This requires a generalized notion of relational
structures (dom, Ry, Ry, Rs, ...) consisting of a countable (but possibly infinite)
set of relations, of which only a finite number is nonempty. Even though al re-
sults cited or shown in this article (such as Proposition 2.1) were proven for finite
alphabets, it is trivial to see that they also hold for infinite alphabets in case the
symbols of the alphabet (i.e., the node labels) are not part of the domain, labels
of domain elements are expressed via predicates such as label, only (rather than,
say, abinary relation label € dom x X), and for each predicate label;, we can also
use its complement label, (in the finite-alphabet case such a complement can be
obtained by the union | ;x4 I80€l1). Given these requirements, it isimpossible
to quantify over symbolsof ¥ and any query in finitary logical languages can only
refer to afinite number of symbols of the alphabet . (See the related discussion
in Neven and Schwentick [2000].) Another way to cope with composite tags and
attribute values is to encode such values as lists of character symbols modeled as
subtrees in our document tree. Whatever way is preferred, it should be clear that
the assumption of afinite alphabet X madeinthisarticleisnot atruelimitation for
representing real-world documents.

A regular path expression (cf. Abiteboul and Vianu [1999]) over a set of binary
relationsT" isaregular expression (using concatenation”.”, theKleenestar “*”, and
digiunction “|”) over alphabet I". Caterpillar expressions (cf. Briggemann-Klein
and Wood [2000]) furthermore support inversion (i.e., expressions of the form
E—!, where E is a caterpillar expression)® and unary relations in I". Caterpillar
expressions only consisting of a single relation name from T are subsequently
called atomic, all other caterpillar expressionsare called compound. Each caterpillar

5 In Briiggemann-K lein and Wood [2000] the inverse is only supported on atomic expressions, that
is, relations from I'. We do not assume this restriction, but thisis an inessential difference.

Monadic Datalog and Web Information Extraction 81

expression E isinductively interpreted as abinary relation [E] as follows.

[R] =R ... ReTisbhinary
[P] = {{x,x) | x € P} ... PeTrl isunary
[EiE2] = {{x.2) | QY) (x,y) € [Eall A (Y, 2) € [E2]l}
[E1VEZ] = [E: UIE]
[E*] := thereflexive and transitive closure of [E]]
[E™'T == (y, %) | {x,) € [E]}

Theprecedenceof operationsissuchthat E;UE,. E5.E; ! canbeused asashorthand

for E1 U (Ez.(Eg‘).(Egl)). E* isashortcut for E.E*. In the following, we identify
therelation [E]] with the expression E whenever no confusion may occur.

PropPOSITION 2.3. For caterpillar expressions E and F,
(EF)t=FL1E?!, (EUFR)T=EtUuF
(E*)—l — (E_l)*, (E—l)—l — E.

Using Proposition 2.3, we can efficiently “push down” inversion operations to
the atomic expressions.

PrOPOSITION 2.4. Each caterpillar expression E over I' can be rewritten into
an equivalent ~1-free caterpillar expressionover TU{R™? | R e '} intime O(|E|).

Example 2.5. Thedocument order relation < isanatural total ordering of dom
used in several XML-related standards (see, e.g., World Wide Web Consortium
[1999]). It is defined as the order in which the opening tags of document tree nodes
arefirst reached when reading an HTML or XML document (as aflat text file) from
left to right. For an example, consider the document

@ (a) (/a) (@) (@) (/a) (a) (/a) (/a) (a) (/a) (/a),

which correspondsto atreeof six nodes, all labeled “a’. If wetraverse the document
from left to right and assign i to the i th opening tag that we encounter, we obtain

@1 (@) (/@) (a)s (@), (/@) (a)s (/a) (/a) (a)s (/) (/a).

Foreachl < i < 6, let us assign node id n; to the node corresponding to the
opening tag with index i. Then, the document tree is as shown in Figure 1(a) and

N1 < N2 <N3 <N <N5 < Ng.
Over 1, < can be defined by the caterpillar expression
child* U (child™)* .nextsibling™.child*,

where “child” is a shortcut for firstchild.nextsibling®. This caterpillar expression
basically saysthat n < n’ iff n’ isadescendant of n or n” isin a subtree rooted by
anodethat isaright sibling of a node on the path from n to the root node. It is not
difficult to verify that thisis a correct alternative definition of <.

By Proposition 2.3, child~1 is also equivalent to (nextsibling™)* firstchild 2.

82 G. GOTTLOB AND C. KOCH

3. Monadic Datalog

In this section, we provide aformal background for the remainder of the article. We
define the language of monadic datal og and provide known—sometimesfolklore—
results regarding its expressiveness and complexity.

3.1. SYNTAX AND SEMANTICS. We briefly define the function-free logic pro-
gramming syntax and semantics of datalog (cf. Abiteboul et al. [1995] and Ceri
et al. [1990] for detailed surveys of datalog).

A datalog program is a set of datalog rules. A datalog ruleis of the form

h(_bl,...,bn.

where h, by, ..., b, are caled atoms, h is called the rule head, and by, ..., b,
(understood as a conjunction of atoms) is called the body. Each atom is of the form
p(X1, ..., Xm), Where p is apredicate and Xy, . .., Xy are variables and constants
(from a finite domain dom). Variable-free atoms, rules, or programs are called
ground. Rules are required to be safe, that is, all variables appearing in the head
also haveto appear in the body. A body atom which containsall variables of itsrule
iscaled aguard, and arule containing such an atom is called guarded. Predicates
that appear in the head of some rule of a program are called intensional, al others
are called extensional. An extension isaset of ground atoms that are assumed to be
true. We assume that for each extensional predicate, a (possibly empty) extension
is given as input data. By signature, we denote the (finite) set of all extensional
predicates (with fixed arities) available to the program. By default, we use the
signatures t,, and 7, for ranked and unranked trees, respectively.®

Letr be adatalog rule. By Vars(r) we denote the set of variables occurringinr
and by Body(r) we denote the set of body atomsof r.

A valuationisafunction ¢ : (Vars(r) Udom) — dom which maps each variable
to an element of dom and isthe identity on dom. Given an atom p(Xa, . .., Xm), let
P(P(X1, . .., Xm)) := P(P(Xa), . .., ¢(Xn))-

We define the semantics of datalog by means of the fixpoint operator 7.

Definition 3.1 (Immediate Consequence Operator). Let P be a datalog pro-
gram and B the (finite) set of all ground atoms over the domain dom and a given
signature. The immediate consequence operator 7 : 2% — 28 isdefined as

Tp(X):=X U{p(h) | thereisaruleh < by, ..., b, inP and avauation ¢
on the rule such that ¢(by), ..., ¢(bn) € X}.

Let 79 := X and 7, := T»(7})) for each i > 0, where X isthe database given as
aset of ground atoms. The fixpoint 7,0 = 7+ of the sequence 7,2, 72, 772, . . . is
denoted by 7.

It is clear that 7p eventually reaches a fixpoint because it ranges over a finite
universe dom given with the database and the sequence 7,0, 77, 77, .. . is strictly
(because 75 isdeterministic) monotonically increasing until thefixpoint isreached.
The semantics of P on X isdefined as 73.

6 Note that our tree structures contain some redundancy (e.g., a leaf is a node x such that
—(3y)firstchild(x, y)), by which (monadic) datalog becomes as expressive as its semipositive gener-
aization. Semipositive datalog allows to use the complements of extensional relationsin rule bodies.

Monadic Datalog and Web Information Extraction 83

Monadic datalog is obtained from full datalog by requiring all intensional pred-
icates to be unary. By unary query, for monadic datalog as for MSO, we denote
a function that assigns a predicate to some elements of dom (or, in other words,
selects a subset of dom). For monadic datalog, one obtains a unary query by dis-
tinguishing one intensional predicate as the query predicate. In the remainder of
this article, when talking about a monadic datalog query, we will always refer to
aunary gquery specified as a monadic datalog program with a distinguished query
predicate.

Example 3.2. We construct a monadic datalog program over t,, which, given
an unranked tree, computes all those nodes which are roots of subtrees containing
an even number of nodes labeled “a’.

The program usesthree pairsof intensiona predicates, B, C;,and R, (i € {0, 1}).
Bi(n) denotes the number of nodes (modulo 2) labeled “a@’ in the subtree of n
excluding n itself, Cj(n) the count (mod 2) of such nodes in the subtree of n (thus,
including n), and R; (") denotes the sum (mod 2) of the occurrences of “a’ in the
subtrees of nodesin the ordered list of siblings of n from the right up to n.

The program consists of the rules

Bo(X) <« leaf(x). (1)
Bi(Xo) « firstchild(xo, X), Ri(X). ©)
C(i+1) mod 2(X) < Bi(x), labela(x). ©)
Ci(x) < Bi(x), label(x). 4)
R (x) < lastsibling(x), Cj(x). (5)
Ritj)y mod2(X0) < Cj(xo), nextsibling(xo, x), Ri(X). (6)

for eachi, j € {0,1},1 € (X — {a}). The query predicateis Cy (“even”).

Now consider a4-node tree (dom = {ny, Nz, Nz, N4}) consisting of aroot node n;
and three children (from left to right) n,, nz, and ns. All nodes are labeled “a’. In
the tree structure, we have root = {n}, leaf = {ny, N3, Ny}, firstchild = {{(n1, ny)},
nextsibling = {(n,, n3), (N3, N4}, lastsibling = {n4}, and label; = dom.

Thecomputation of fixpoint 7,5’ for the program given above proceeds asfollows.
Derived atoms are annotated with the rules that entail them (as superscripts).

T,? = {root(nl), leaf(ny), leaf(ng), leaf(ng),
firstchild(ny, ny), nextsibling(n,, n3), nextsibling(ngz, Ng),
lastsibling(ng), labela(ny), ..., Iabela(n4)}
79 U {Bo(n2)V, Bo(ng)®, Bo(nd)®}
T = Tp U {Ci(np)®, Ci(ng)®, Cy(n4)®}
T2 U { R1(|’]4)(5)}
73 U {Ro(n3)®} T3 = T35 U {By(n) @}
T3 = T3 U{R()®} T = TP U {Co(ny)®)
Now, 7} = 78 = T,9. Thequery Q = {x | Co(X) € 7,¥} evaluatesto {ny}.

3.2. EXPRESSIVENESS AND EVALUATION COMPLEXITY. Thefollowing resultis
part of the database folklore:

84 G. GOTTLOB AND C. KOCH

ProPosITION 3.3. Over arbitrary finite structures, each monadic datalog
query is IT;-MSO-definable.

ProoOF. Let P beamonadic datalog program and without loss of generality let
P: be the query predicate. We encode the query defined by P as

@(X):=(VPy) - (VPy) (SAT(Py, ..., Py) > x € Py)

where {Py, ..., Py} is the set of al intensional predicates appearing in P and
SAT(Py, ..., Py) is the conjunction of the logical formulae corresponding to the

rules of P inthe following way. Givenruleh < by, ..., by, itsformulais
(Vz1) -+ (VZ) (by A -+ - Abm — h),
where zy, ..., z consists of all variables appearing in the rule and an atom P, (x)

isunderstood asx € P,.

This can easily be justified by the fact that the minimal model 7%’ is the inter-
section of al models of P, and an interpretation Py, ..., P, isamode of P iff
SAT(Py, ..., Py istrue. O

Throughout the article, our main measure of query evaluation cost is combined
complexity, that is, where both the database and the query (or program) are consid-
ered variable.

ProPOSITION 3.4. Monadic datalog (over arbitrary finite structures) is NP-
complete with respect to combined compl exity.

Proor. Since al intensional predicates are unary, a proof (tree) can be
guessed and subsequently verified in polynomia time, and NP-hardness fol-
lows from the NP-compl eteness of Boolean conjunctive queries (and thus single-
rule programs). [J

We discuss a number of fragments that can be evaluated efficiently.

ProPOSITION 3.5. Given a ground datalog program P and a structure o, P
can be evaluated on o intime O(|P| + |o).

PrROOF. By adding the facts from “database” o to the variable-free (and thus
propositional) program P, we obtain an instance of propositional Horn-SAT, which
can be solved in linear time [Dowling and Gallier 1984; Minoux 1988]." [J

PrROPOSITION 3.6. LetP beadatalog programinwhicheachruleisguarded by
an extensional atom. Then, P can be evaluated on structure o intime O(|P| * |o).

PrROOF. For each ruler with guard R(Xq, ..., Xk), we proceed as follows. For
eachtuple (cy, ..., &) € R,, we generate aground version of r by replacing each
occurrence of variable x; inr by ¢;. Only O(]R,|) such rulesare created for eachr .

The ground program obtained that way is of size O(|P| * |o|), can be computed
within the same time bounds, and is equivalent to 7. We apply Proposition 3.5 to
complete the evaluation of P. (O(|P| * |o| + |o|) = O(|P| = |a|).) O

7 An earlier linear-time algorithm for the equivalent implication problemfor functional dependencies
can be found in Beeri and Bernstein [1979].

Monadic Datalog and Web Information Extraction 85

Let Datalog LIT [Gottlob et a. 2002] be the fragment of datalog in which the
body of each rule either (i) consists exclusively of monadic atoms or (ii) contains
one atom, the guard, in which all variables of the rule occur. Monadic Datalog LIT
isthe fragment of Datalog LIT in which all head atoms are unary.

PROPOSITION 3.7 (GOTTLOB ET AL. 2002). Givenamonadic Datalog LIT pro-
gram P and a finite structure o, P can be evaluated in time O(|P| * |o).

As aready propositional Horn-SAT is P-complete (e.g., Papadimitriou [1994]),
al of the above problems (with the program considered variable) are actually
P-hard.

4. Expressiveness and Complexity of Monadic Datalog on Trees

This section is divided into three parts. First, we characterize the complexity of
evaluating a program on a tree; second, we show that monadic datalog on trees
captures the unary MSO queries, and third, we study the relationship between
monadic datalog and query automata and prove a new result on the complexity of
the query containment problem for monadic datalog on trees.

4.1. EVALUATION COMPLEXITY. We start by characterizing the complexity of
evaluating monadic datalog programs over trees. We first need to introduce the
standard notion of afunctional dependency. Let R be arelation. By $i, we denote
theith column of R. A functional dependency R: $i — $j meansthat R satisfies
the constraint that whenever (ay, ..., ak), (b1, ..., bx) € Rsuchthat ay = by, the
values a; and b; must be equal as well. Observe that by definition,

PROPOSITION 4.1. Each binary predicate® R in 7, or 7, has both a functional
dependency R : $1 — $2 and a functional dependency R : $2 — $1.

For instance, each node has at most onefirst child and isthefirst child of at most
one other node.

THEOREM 4.2. Over t,, as well as z,,, monadic datalog has O(|P| * |dom|)
combined complexity (where |P| is the size of the program and |dom| the size of
thetree).

ProoF. We will call aruler connected if and only if the (undirected) graph
Gr = (V, E)withV = Vars(r)and E = {{X, y} | R(X, y) € Body(r)} isconnected.

We proceed in three steps. First, we translate P into aprogram P’ in which each
rule is connected. For each ruler € P, in case G, is not connected, we split off
each connected component C of G, that does not contain the variable in the head
of r, create a rule r’ with a propositional head predicate p and Body(r') = C,
and replace C inr by p. For instance, therule p(X) < p(x), p2(y). whichis
not connected is rewritten into two rules p(x) < pu(x), b. and b <« pa(y).
Here, b isanew propositional predicate. We obtain a set of connected rules P’ in
linear time.

Second, we compute a “ground” program P” from P’ which consists, for each
ruler of P’, of al ground rules obtainable by instantiating the variablesin r with

8 That is, one of (child)k<k, firstchild, and nextsibling.

86 G. GOTTLOB AND C. KOCH

nodes from dom. By Proposition 4.1, the connectedness of G, ensures that each
variable of r functionally determines all others. There are only O(|dom|) relevant
variable-free ground instantiations of r, which can be computed in time O(|dom|).

Finally, by Proposition 3.5, the fixpoint of ground program P” can be computed
intime O(|P”]), and is equivalent to the fixpoint of P on the input tree minus the
propositional atoms (e.g., b in our example above) added in thefirst step. Thus, the
three stepsin total require O(|P| * |dom|) time. [

Therefore, we have both linear time data and program complexities.

Remark 4.3. The data complexity part of Theorem 4.2 also follows from the
fact that the data complexity of MSO queries over finite structures of bounded
tree-width isin linear time [Flum et al. 2001] and the fact that ranked and unranked
trees over afixed labeling aphabet are of bounded tree-width.

4.2. EXPRESSIVENESSOF UNARY QUERIES. Inthissection, weshow that aunary
guery over ranked or unranked trees is M SO-definable exactly if it is definable in
monadic datalog. All that needs to be shown isthat each unary query in MSO (over
trees) can be expressed in monadic datalog, as the other direction follows from
Proposition 3.3.

THEOREM 4.4. Each unary MSO-definable query over t, (respectively, t) is
also definable in monadic datalog over t, (respectively, z,,).

Given atreet and anodev € dom;, let t, denote the subtree of t rooted by v and
t, the envelope (or complement) of t, int, which is obtained by removing al of t,
int except for node v itself (that is, t, and t, share exactly v). Given atree s, that
containsw asaleaf and atree s, let s[w — ;] be the tree obtained by the fusion
of w and the root node of s,. Notably, t,[v — t,] denotesthe insertion of t, intot,
at node v, which again amountsto't.

In the following, let structures o with one distinguished constant ¢ be denoted
as (o, ¢). By (01, ¢1) =" (02, C2), we denote that for all MSO sentences ¢ of
guantifier rank k, (o1, ¢1) F ¢ if and only if (o2, C) F ¢. (Thus, (o1, €1) and (o2, Cy)
are indistinguishable by MSO sentences of quantifier rank k.) Clearly, == isan
equivalence relation. We also call its equivalence classes the =}'*-types.

PropPOSITION 4.5. Given a natural number k,

(1) thereisonly a finite number of equivalence classes of ='*°, and
(2) thereis an effective procedure for deciding whether (o1, ¢1) =% (02, C2).

Such a decision procedure is provided by Ehrenfeucht-Fraissé games, which
exactly capture the essence of quantification in MSO over finite structures. Given
the following proposition, we do not need to ponder about them in detail, but refer
to Ebbinghaus and Flum [1999] for a detailed account of their theory.

PROPOSITION 4.6 (FOLKLORE, CF. NEVEN AND SCHWENTICK [2002]). Lett
and s be trees with nodes v € dom, and w € dom, both with n children (n > 0).
Letvi and w; (1 <i < n) bethei-th child (fromthe left) of v and w, respectively.

(D) If (v, vi) =P (sw,,w;) for all 1 < i < nand labeli(v) = labelg(w) then
(tV’V) E'ILASD (SW’W)

Monadic Datalog and Web Information Extraction 87

(2 Leti e {1, ...,n} If (f,v) = (s,v w), labeli(v;) = labelg(w;), and
(t;, vj) :kM (SW,»W yfor j e {1,....n} —{i}, then (&, vi) =" (Sa, wi).
3) 1f (&, v) =M (5, w) and (t,, v) =V (s, w) then (t, v) =V (s, w).

Now we are ready to show the main results of this section.

PrOOF OF THEOREM 4.4. Wefirst consider the ranked tree case.

Given an MSO formula ¢ of quantifier rank k with one free first-order variable,
we compute a monadic datalog program with a distinguished query predicate ¢
which defines the same (unary) query. The main idea of the proof is that we can
compute the (relevant) =}'*°-types for ¢ together with awitness structure for each
type (equival ence class) and decide already when computing the program for which
witness structures (t, v) and thus ={"-types it holds that (t, v) £ ¢. Computing
=M-types for nodes v of agiven datatreet, and thus deciding (t, v) F ¢, is easy
enough to be carried out by a monadic datalog program.

In the following, the arrows 4 and | are meant to support the intuition that the
=N-types of subtreest, and their envelopes f, are mainly computed bottom-up
and top-down, respectively.

We maintain two sets of types ®T and ®;, representl ng =}'-types computed
for subtrees tv of nodes v in treest (denoted T, MSO T(t\,, v)) and for their counter-
parts (Tk (tv, v)), respectlvely Moreover, we| mal ntain a witness W(0) of each
type@ i e structures W(T, M. (tV, v)) and W(Tk (tv, v)) such that (ty, v) =
W(T (¢, v)) and (&, V) =N W(TM(E,, v)). Thetypesin ©] and O WI||
serve as predicate names in the monadic datalog program to be constructed.

Given a structure (t, v) we compute its type T, (t, v) (or T"¥(t, v)) by
trying for each 6 e @k (or @k) whether (t, v) =" W(9). By Proposmon 45,
we have an effective procedure for deciding this. If such a@ exigts, it is returned.
Otherwise, we invent any new token 6, add it to @k (or or), Set W(0) = (t, V),
and return 6.

Itisconvenient to compute both the sets@T and @¢ and the monadic datal og pro-
gram P as parts of the same construction, WhICh cons as of three parts, analogously
to the three parts of Proposition 4.6. Initialy, P = ©) = ©) = ¢.

(1) For 0 < n < K (where K isthe maX|mum rank of the trees), for each com-
bination of n elements 4y, ..., 6, of @k, and for each | € X, let t be the tree
constructed from a new root node v labeled | and W(61), ..., W(6,) as chil-
dren. We set 6 := T (t, v). (Now, 6 € ©] and W(6) = (t, v).) Moreover, if
n = 0, we add therule

0(x) < leaf(x), label(x).
to P; otherwise, we add
0(x) < childi(X, X1), 01(X1), ..., child,(X, Xn), 6n(Xn), label(X).

Thisisrepeated until no new ='*°-types 6 can be added to ®|I . Terminationis
guaranteed as there are only finitely many =}'-types and labelsin T.

(2) To compute ®}, we start at the root node. For each| € =, Iettm(be atreethat
consists simply of a(root) node labeled | and let 6 := Tk (troott, root;). We
add therule

0(x) < root(x), label(x).

88 G. GOTTLOB AND C. KOCH

to P. For nodes v; other than the root node, the = —type of (t,,v;) de-
pends also on the D-types of the siblings. For aII l<i=<nz<K,dl
01,....60 € O suchthatW(@)_ (tj.vj)foral 1< j <n,and6 e @¢
with W(O) = (tv, v), let t,, be the tree obtained by appending the I|st of trees

ty, ..., ti_1, Vi, tiyq, ..., ty tothe leaf nodev of t,. Let 6 := (tV, vi).

Weadd therule

0/(%) < 6(x), childi(x,x), label(x), /\ (child;j(x, x;). 0;(x;))-
1<j<n, j#i

to P. Typesand thewitnessstructuresaremaintained asfor ©,', and termination
is guaranteed.

(3) For each6; € O] and each 6, € ® suchthat W(61) = (t1, v1), wherev, isthe
root of t, and W(6,) = (t2, v2), where v, isaleaf of t,, we proceed asfollows.
If (to[vo — t1], V1) F @, we add therule

go(X) < 91(X), QQ(X).
toP.

The sets of predicates uwd in the left-hand sides of rules added to P in the three
parts of our construction, @k, G)k, and {¢}, are digoint, so we can consider the
subprograms of P defined in each of the three partsindividually, assuming in each
case that the fixpoint for the rules from previous partsis available as input.

In part (1) of our construction, G)k |scomputed following Proposition 4.6(1) and
a bottom-up intuition. We add types to @k as long as we can construct struc-
tures of new types by combining the witness structures of existing types using
labels from X. The monadic datalog rules defined there are a direct realization of
Proposition4.6(1). Itiseasy to seethat therulesof (1) inisolation compute an atom
o(v) on atreet exactly if 6 = Tk Tty, V).

In part (2), we compute @k using Proposition 4.6(2) and a top-down intuition.
Given aninput treet, the monadlc datalog rules added in part (2) compute 6(v) for
each nodev and the one 6 € Oy suchthat 6 = T"V (&, v).

In part (3) of our construction, we use Proposition 4.6(3) to combine the types
computed for each node to answer the query ¢. Here, for types 6; and 6, with
W(01) =M (ty, v) and W(6,) =" (&, v), we do not need to explicitly compute
the combined =)"*°-type of (t, v). By our construction, if 6;(v) and 6,(v) evaluate
to truefor P and the program containsthe rule ¢(x) < 61(x), 82(x), we know that
¢ holds for the combined type and that v has to be part of the query result.

This concludes our proof for the ranked tree case. The unranked tree case (with
structures over t,,) can be reduced to the former as follows:

A binary tree (over 1, and with maximum rank K = 2) is obtained from an arbi-
trary unranked tree by the renaming of “firstchild” in r,, to “child;” and “nextsib-
ling” to“childy,” (cf. Figure 1). The samerenaming of relation names can be applied
to a query ¢ on unranked trees. If we leave aside ranked al phabets, the unranked
tree case is thus equivalent to the ranked tree case 1. Since we did not rely on the
labels being ranked in the proof for the ranked tree case above (nor did the original
proofs of Proposition 4.6), we are done. [

By this result, it is also easy to see that a tree language (for ranked as well as
unranked trees) isregular iff it isdefinable in monadic datal og, given an appropriate

Monadic Datalog and Web Information Extraction 89

notion of acceptance of an input tree. We say that a monadic datalog program P
with aquery predicate “accept” acceptsatreet iff accept(root;) € T7 (i.e., theroot
node of t isin the inferred extension of “accept”). P recognizes the tree language
L ={t| P acceptst}.

COROLLARY 4.7. Atreelanguageisdefinable in monadic datalog exactly if it
is definable in MSO.

Thisissimilar tothefolkloreresult that monadic fixpoint | ogic over trees captures
M SO (with respect to tree language acceptance).

4.3. SIMULATING QUERY AUTOMATA IN MONADIC DATALOG. As pointed out
earlier, there is a need for formalisms that capture the expressive power of unary
M SO queries selecting nodesfrom trees. Clearly, MSO itself isby far too expensive
to be used in practice; Another previous formalism to achieve this task is that of
guery automata [Neven and Schwentick 2002]. Aswe show, while query automata
are much more complicated, each query automaton can be translated into an equiv-
aent monadic datalog program. Our reduction is very efficient, and can be carried
out inlogarithmic space. Based on thisfact, we can show that the containment prob-
lem for monadic datalog over ranked or unranked trees (represented by . or 7,) is
EXPTIME-hard. This strengthens an earlier result from Cosmadakis et a. [1988]
that the containment problem for monadic datalog on arbitrary finite structuresis
EXPTIME-hard.

Definition 4.8 (Neven and Schwentick 2002). A ranked query automaton
(QA")—that is, a two-way deterministic ranked tree automaton with a selection
function—is atuple

A = (Qa Ea Fv S, 81‘5 8l,a 8I’00t7 (Sleafa)\'>9

where Q is afinite set of states, F € Q is the (nonempty) set of final states,
s € Qisthe start state, > isaranked alphabet, the §’s are transition functions, and
A Qx X — {1, 1} isthe so-called selection function. Let there be a partition of
Q x X into two digoint setsU and D.

(1) 8, : U=K — Qisthetransition function for up transitions.

(2 6, : Dx{1,...,K} - Q*isthetransition function for down transitions. For
eachi < K, §,(q, a,i) isastring of states of lengthi.

(3) 00t : U — Q isthetransition function for root transitions.

(4) St : D — Q isthetransition function for leaf transitions.

Let t be a ranked tree. A cut is a subset of dom; which contains exactly one
node of each path from the root to aleaf. A configuration of .4 ont isa mapping
c:C — Qfromacut C of t tothe set of states Q of A.

The automaton .4 makes a transition between two configurationsc; : C; — Q
and c; : C, — Q, denoted by ¢c; — ¢, if it makes an up, down, root, or leaf
transition:

(1) A makes an up transition from c; to c; if there is a node n such that (a) the
childrenof n,say, ny, ..., Nnm,areinCgq, (b) Co = (C1—{Nnq, ..., N U{n}, (c)
C2(n) = 84({ce(ny), label(ny)), . .., (c1(nNm), label(ny))), and (d) ¢, isidentical
tocoonCi NGCo.

90 G. GOTTLOB AND C. KOCH

(2) A makesadowntransitionfromc; toc;if thereisanoden suchthat (&) n € Cy,
(b) Co = (Cy —{nhU{nyg,..., Ny}, where{ny, ..., ny} isthe set of children
of n, (c) c2(n1) - - - C2(Nm) = 8, (ce(n), label(n), arity(n)), and (d) ¢, isidentical
toc,onCy N Co.

(3) A makes aroot transition from ¢, to ¢, if (@) C; = C, = {root;}, where root;
denotes the root node of t, and (b) c(root;) = &,4t(C1(root;), label(root;)).

(4) A makesaleaf transition from c; to ¢; if thereis a (leaf) node n such that (a)
n € Cy, (b) C; = Cy, (€) C2(n) = §iesr(C2(N), label(n)), and (d) ¢, isidentica
toc, onC; — {n}.

The start configuration c : C — Q has C = {root;} and c(root;) = s. Any
configuration with c(root;) € F isan accepting configuration (i.e., a2DTA" starts
at the root and terminates there.) A run is a sequence of configurationscg, ..., Cn
suchthatc; — --- — ¢y and ¢; isthe start configuration. A run isaccepting if ¢,
is an accepting configuration and there does not exist acm 1 such that ¢, — Cmya.

Since often a number of transitions can be made in parallel, there are usualy
many different sequences of transitions that are possible. However, because of the
disjointness of U and D, given anode n with some label and a (“current”) state g,
at most one (kind of) transition involving n is possible at any point in time, and for
all nodes, the sequence of statesin which they are visited is the same in al these
runs. Thuswe can consider thistype of automaton as deterministic and refer to the
run of A rather than arun of A. Even though an automaton of the kind specified
can run forever on an input tree, we can restrict ourselves to automata that always
terminate. (Thisis a decidable property [Neven and Schwentick 2002].)

The selection mechanism of A isdefined asfollows. A query automaton A selects
anodeninconfigurationc : C — Qif n € C and A(c(n), label(n)) = 1. A selects
nif theruncy,..., ¢y isaccepting and if thereisan 1 < i < msuch that nis
selected by Aing;.

Thus, a query automaton computes the set of nodes selected at any time during
the run, not just in the terminating configuration (which, by our definition, only
contains the root node in its cut).

Example 4.9. Consider the following query on binary trees. Which nodes are
roots of subtrees that contain an even number of nodes labeled “a’? We evaluate
this query by first going down to the leaves of the tree and then, while ascending
towards the root, summing up the sizes of subtrees (modulo two).

We construct aranked query automaton .4 asfollows: Theautomaton .4 hasthree
states s, S, and sy; s, is the start state and is used while going down, and s, and
s, represent the number of nodes below the current (modulo 2) while subsequently
going up (these are also the final states). We need the following transitions:

(1) first go down al theway to the leaves: 5, (s}, *, 2) = (S}, S)
(2) aleaf node has no children: §iex (S}, *) = S

(3) when ascending, we count al nodes below the current node (the label of the
current nodeisnot accessible): §;((si, 11), (sj. 12)) = scfori, j € {0, 1}, where

X=[i+]+x(1=2a)+ x(I2=a)] mod 2
with x(true) = 1 and yx (false) = 0.
The selection function A is L except for A(s, —a) = Land A(s;, @) = 1.

Monadic Datalog and Web Information Extraction 91

Now consider the tree

No

v\
nq Ny
. . 8.: Sleaf N Sleaf N S4:n1, i
with label, = dom. Therunof Aiscy 5" ¢, o5 ¢y o ey 3™ ¢, with the
cuts C; and configurations ¢;

Co=1{no} Co:nNg— s
Ci={n,n} cr:ing—s, np—s
Co={n,n} C:inL— S, Np—S;
Cz3={ny, N2} C3:nNp— S N2 —> S

Cs={no} Cs:Ng— S

The result of our query on the given tree is empty, as we have an odd number of
nodes labeled “a’ in all subtrees.

Given a ranked query automaton, let an index i such that n € C; be caled a
crossing index on n. Let there be states go, g € Q, nodes ngp, n such that ng is the
parent of n, and indexesi < | such that ¢ (ng) = qo, (Qo, label(ng)) € D, interval
[i +1, j] doesnot contain acrossing index onng, ¢;(n) = ¢, and (q, label(n)) € U.
Then, (qo, g, n) is caled an imminent return situation. Informally, we have an
imminent return situation (qo, g, n) in arun if we are about to return from node n
(where we are currently in state g, thus (g, label(n)) € U) toits parent ng and the
last time ng was part of a configuration, it was assigned state qg (so it must have
been the case that (qo, label(np)) € D). Then, q is uniquely determined by node n
and state gy, the most recent state assignment of the parent node of n in the run:

LEmMMmA 4.10. Given state gp and node n, thereisat most one state g such that
(do, g, n) isan imminent return situation.

PrROOF. The fact that g functionally depends on go and n in imminent return
situationsis adirect consequence of determinism as required in Definition 4.8.

We show thisby asimpleinduction (bottom-up on thetree, withanested induction
on transitions occurring localized at a node which we discuss informally). Let ng
be any node and take any i such that ¢; (ng) = qo and (qp, label(ng)) € D.

(Induction start.) Let all children of ng be leaves. Consider an arbitrary child
n of no. Initially, we make a down transition from ng to n (and its siblings), and
assign state ¢, 1(n) to n. Since the automaton is deterministic, ¢ 1 isfunctionaly
determined by o (and the tre). In case (¢;.1(n), label(n)) € U, (qo, Gi+1(n), n) is
the imminent return situation in question and the induction hypothesis (the lemma)
holds. Otherwise, only leaf transitions are possible. For aleaf transition on n from
configuration ¢, to ¢ 1, the outcome is again uniquely determined by qg and k.
Thisistrue because the automaton is deterministic and the transition only depends
on the single state cc(n). If now (ck,1(n), label(n)) € U, we next return to ng, SO
Ck+1(N) isthe unique state such that (qo, Ci+1(N), N) isan imminent return situation,
and the induction hypothesisis again true.

(Induction step). Let ng have at least one child that is not a leaf. We make a
down-transition to configuration ¢; ;. Consider an arbitrary child n of ng. Again,

92 G. GOTTLOB AND C. KOCH

initially, ¢ 1(n) uniquely depends on g (and the tree). We have discussed the case
of leaf nodes above, so assume that n isnot aleaf. At any step k of the run before
the return to ng such that n € Cy, only a down transition is possible. This again
assigns a state to each child of n only depending on cx(n) (and thus on gp and k).
Let] > k bethe crossing index on n subsequent to k, the time at which we return
to n from the excursion down its subtree. The transition to configuration ¢ is an
up transition, and as by our induction hypothesis the imminent return situation
(ck(n), ¢ _1(n"), n") for each child n" of n only depends on cx(n) and n” (and ck(n)
in term only depends on qo and k), there is again only one possible up transition to
n to be made. Asdiscussed above, if (¢ (n), label(n)) € U, weare done, otherwise,
we continue with adown transition.

We have not made any assumptions about i. Thus, given g and n (with parent
No), for al i, j such that (c;(ng), c;(n), n) is an imminent return situation and
Ci(No) = o, Cj(n) isthesame. [

Now we can state our result for ranked queries. Observe that in a ranked query
automaton A = (Q, X, F,'s, 84,8, Sroots Siear» A), the sets Q, X, and F as well
as the graphs of the functions 84, 8§, 8o, diear, @nd A are finite. Asit is easy to
verify, the following LOGSPACE transformation does not depend on the details
of the representation of 4. (Notably, we do not assume an artificialy inflated
representation, such as states, labels, or ranks encoded in unary.)

THEOREM 4.11. Given aranked query automaton, an equivalent monadic dat-
alog query can be computed in logarithmic space.

PrROOF. We first provide an intuition and overview of the ideas used in this
proof. After that, the simulation will be described in detail.

(1) Let A be aranked query automaton. The monadic datalog program P to be
defined below aims at computing exactly all the state assignments made during
therun of A, in no particular order, formalized as the “history” of A,

H = {(g,n) | n € C; and ¢;(n) = q for somei}.

(2) We do not try to model configurations. Instead, we define P in such a way
that it monotonically computes state assignment atoms occurring at any time
during the run of A. Asafirst attempt, these can be assumed to be of the form
g(n), where q isa state from .A and n is anode of the input tree.

Theencoding mirrorsthefour kindsof transitions of Definition 4.8 so closely
that isiseasy to seethat itiscomplete. Thatis, al state assignmentsmade during
therun of A are certain to be in the fixpoint of our program.

(3) Rules for down, root and leaf transitions in P cannot cause a violation of
soundness by themselves. They each only need a single state assignment as
preconditionintheir body to“fire” and thus cannot infer state assignment atoms
that do not eventually become true during the run of A. To extend soundness
to up transitions, we alter our encoding to use predicate names that are pairs of
state names. An atom (qo, q)(n) intuitively means that at some point i during
therun of A, ¢;(n) = q and the parent of node n was assigned state g the last
time (beforei) that it was part of a configuration. We will show that this tweak
ensures the desired soundness for up transitions as well.

Now we describe the simulation in detail. As mentioned, predicate names are
pairs (of state names) in (Q U {v}) x Q. The symboal ~ denotes adummy state which

Monadic Datalog and Web Information Extraction 93

wewill assignto theimaginary parent of the root node whenever a state assignment
to the root node has to be made.
The encoding P of A isthefollowing set of rules. Foral q,q’, qs, . . ., On € Q
andforala, ai,...,an € X,
(1) (Sart state) We add the single rule
(v, S)(X) <« root(x).
where s isthe start state of A;
(2) (Uptransition) If 8,((dy, a1), ..., {(Om. @m)) = q’, we add the rules
(Go, a')(X) < (do, A)(X), .
childi(x, x1), ..., childm(X, Xm),
(9,) (xa), ..., (g, Gm) (Xm),
label,, (X1), - . -, label s, (Xm)-
foral go € (Q U {+});
(3) (Down transition) If §,(q, a, M) = Q1 - - - gm, we add the rules
(d,Gi)(Xi) < (do, Q)(x), childi(x, X;), labela(x).
foral1<i <m,qoe (QU{));
(4) (Root transition) If 8,0t(q, @) = ', we add therule
(v, q/>(x) < (V’ q)(x)s Iabela(X), r‘OOt(X)'
(5) (Leaf transition) If 8, (g, @) = ', we add the rules
<QO’ q/>(x) < (qu q)(X), |abe|a(X), Ieaf(X)
foral qo € (Q U {+});
(6) (Acceptance) If q € F, we add the rules
accept(x) < root(x), (do, 4)(x).

forall go € (Q U {+));
(7) (Selection function) Finally, for eachg € Q anda € X with A(g, a) = 1, we
add

query(x) < (do,)(x), labela(x), accept(y).
for each o € (Q U {+}).

Of course, al datalog variablesx, X, y in our encoding range over nodesin domy.

Givenaquery automaton, the equival ent monadic datal og program P asdiscussed
above can be computed in logarithmic space without difficulty.

It remains to be shown that our reduction is also correct. For aset X € 77, let

7 (X) ;= {{(d.n) | (3do) (do.)(n) € X}.

We claim that 7 (75’) = H, and show this next.

Regarding the completeness of 7.7, it is easy to see that the state assignmentsin
our fixpoint 7, are certain to subsume those in H, that is, 7 (75’) 2 H. Consider
the definitions of transitions and runs in Definition 4.8. The rules of P closely
mirror an operational (rule-based) version of these definitions with (superficially)
weakened preconditions. For example, the definition of down transitions says that
if ci(n) = g, adown transition § (g, a, m) = ¢ - - - gm Ccan be executed, resulting
incyi1(n;) = q; foral 1 < j < m. (Moreover, the definition states that ¢; is

94 G. GOTTLOB AND C. KOCH

undefined on ny, ..., Ny and ¢ 1 is undefined on n, which is not relevant to our
completeness claim.) Rather than requiring that node n must be in state g in the
immediately preceding configuration, the down transition rules of P only require
that n must have been assigned q in some earlier configuration, plus a condition
on an earlier state of the parent of n that by our definition of P always holds when
the down transition precondition of Definition 4.8 holds. An anal ogous observation
can be made for the remaining kinds of transitions.

The other direction (i.e., soundness of 7;’) can be shown by induction over the
computation of 73

— Initially, we obtain 7> = {(r, s)(root;)} by applying the start state rule. (Clearly,
n(7p) S H.)

—Let X (with 7(X) € H) be the set of facts obtained so far in the fixpoint
computation. Rules in P which correspond to root, leaf, and down transitions
have only a single state assignment premisein their bodies. If the premiseistrue
with respect to X (and thus H), the state assignment (qo, q)(n) inferred by such
arule must again be in some configuration of the run of A and thus be sound
(i.e, (q,n) € H).

—It is easy to verify by inspection of our program P that if atom (g, gk)(nk)
evaluatesto true and q # v, then g is the state that was assigned to the parent of
Ny the most recent time it was visited. If (gx, label(ny)) € U, then (q, gk, nk) is
an imminent return situation.

Let X (with 7(X) € H) be the set of facts obtained so far in the fixpoint
computation, and let an up transition rule of P infer {(qo, q')(n) from

(q’ Q1)(n1), BRI <q7 Qm>(nm) e X

(where (g1, 1abel(ny)), . .., (m, label(ny,)) € U and the nodes ny, ..., ny, are
the children of noden). Clearly, (4, gz, n1), ..., (4, Om, Nm) @eimminent return
situations. By Lemma4.10, theq;, . . ., gm only depend on the state g asthe most
recent state assignment to the parent of ny and on the tree. By the induction hy-
pothesisst (X) € H, at somepointi duringtherunimmediately precedingadown
transition from node n, ¢;j(n) = g. The subsequent computations in the subtree
of n are captured by the imminent return situations (q, g, n1), .. ., (4, Om, Nm)-
Since al these can befoundin X, they follow oni in the automaton run aswell.
It follows that 77 (X U {{go, g')(n)}) € H.

Thus, our claim that 7w (7,9) = H istrue.

The definition of the selection function for a query automaton nicely coincides
with the monotone semantics of monadic datalog. In part (7) of our monadic datalog
encoding, we have defined the query predicate query. Clearly, on atreet,

{n| Aacceptst, (q,n) € H, and A(q, label(n)) = 1} = {n | query(n) € 7’}.
Thus, the query defined by P isindeed equivalent to the query defined by A. [

Next we consider the corresponding problem over unranked trees. Analogously
to query automata for ranked trees, we define the class of strong query automata
over unranked trees. Let two-way deterministic finite (string) automata (2DFA) be
defined in the normal way (e.g., Hopcroft and Ullman [1979]).

Monadic Datalog and Web Information Extraction 95

Definition 4.12 (Neven and Schwentick 2002). A strong unranked query au-
tomaton (SQA"Y) isatuple

vA == (Qv Ev Fa S’ 8']" Sl,v 8—9 8[‘0017 6|&3f5)">’

where Q, F, s, U, D, 8, S0t ad A are as in Definition 4.8. Let Uy, and
Ustay be two digoint regular subsets of U*. The transition function for up tran-
stions is now of the form 8, : Uy, — Q, and the transition function for down
trangitions is of the foom §, : D x N — Q* (where N is the set of natural
numbers). For each (q,a) € D, L,(q,a):={5,(q,a,i) | i € N} is regular;
foreach j € N, §,(q, a, j) must be astring of length j; and for each q € Q,
the language L4(q) :={w e U* | é;(w) = q} must be regular. The transi-
tion function é_ : Ugay — Q* isfor so-called stay transitions. We require this
function to be computed by a 2DFA B = (S, X5 =Q x ¥, %, 83, F3, L, R)
over the string (c1(ny), label(ny)), ..., {(c1(nm), label(ny)) with a selection func-
tion g : Sx X — QU {1} that—anytime during its run—maps nodes to states
such that, upon the termination of 13, each node has been assigned exactly one state
in Q. A makes a stay transition at a node n (whose children areng, ..., np) from
aconfigurationc; : C; —» Qtoc,: C, — Qif

@ nq,...,Nnm € Cyq,

(b) C2=Cy,

() 6-((ca(ny), label(ny)), .. ., (ca(nNm), label(Nm))) = c2(ny) - - - C2(Nm), and
(d) cyisidentical toc, onCy — {ny, ..., Nm}.

We require that at each node, at most one stay transition is made (this is a
decidable property [Neven and Schwentick 2002] for a given SQAY).

The definitions of configurations, leaf, root, up and down transitions, run, and
accepting run carry over from Definition 4.8. The query computed by .4 and the
tree language defined by .4 are defined analogously to Definition 4.8.

Definition 4.12 leaves it open in which form the regular languages L (g, a)
are provided. It is clear that each regular language L | (g, a) must be of density 1.
(A regular language L < X* is said to be of constant density d iff for each i,
IL N X' < d.) Asaspecia case of an interesting result for regular languages of
polynomial density [Szilard et a. 1992; Yu 1997], we have that

ProPOSITION 4.13. Each regular language of constant density over alphabet
¥ can be denoted by a finite union of regular expressions of the form uv*w (where
theu, v, w are words over X).

Conversdly, it is clear that every regular language defined by such a regular
expression has constant density.

In the following, we will make the assumption that al languages L | (q, a) are
provided in this normal form.® Definition 4.12 also does not specify the form in
which languages L 4+(q) are provided. Without loss of generality, we assume each
such language represented by an NFA.

9 Notethat Definition 4.12 precisely recapturesthe definition of SQAY intheoriginal reference[Neven
and Schwentick 2002]. However, throughout the proofs of that article, languages are always assumed
to bein the normal form of Proposition 4.13, so we make the same assumption.

96 G. GOTTLOB AND C. KOCH

THEOREM 4.14. Given a SQA", an equivalent monadic datalog query can be
computed in logarithmic space.

Proor. The proof works analogously to the onefor the case of ranked queries,
with the following changes to the encoding of the automaton (which now is an
SQAY) in monadic datal og.

(1) Down transitions: Let L (g,a) € Q* be provided as a regular expression
(U uivi*'w;, where the u;, vi, and w; are words over an alphabet consisting of
the states of the query automaton.

Intuitively, we need to define a monadic datalog program that checks, at a
node n with children ny - - - ny, whether at least one expression u;v;'w; has a
word of length m. Thisis done in steps (a) to (e). If such a matching uivi"wi
is possible, the nodes n; - - - Ny, are assigned the new states according to the
matched word of states u;vkw; in step (f). The encoding that follows is not
completely trivial, therefore we provide an example below (Example 4.15).

We proceed as follows, for eachii.

(a) First, we use temporary predicatesto mark the |u; | leftmost child nodes of
n as space to be occupied by u; (1 < k < |ui|, go € Q U {+}):

utmpq,i'l(xl) <~ (o, Q)(x), firstchild(x, x1), labela(x).
utmpy ; « 1(Xkg1) < utmpq’i,k(xk), nextsibling(Xy, Xk 1).
(b) Next, we mark the |w;| rightmost children of n as space to be occupied by
wi (L<1 < |wil,do € QU {s}):

thpq,i,lwﬂ(x’) <~ (o, g)(x), lastchild(x, x).
wtmpg ;| _1(X) < witmpg; (), nextsibling(x’, x).

(c) All nodes before those marked w; are marked as such:
bwtmpq’i(x’) < wtmpy ; 1(X), nextsibling(x’, x).
bwtmp, ; (x) < bwtmp ; (x), nextsibling(x’, x).

(d) Next wetry to assign a multiple of |v;| markings to the (Ju;| + 1)th node
up to the rightmost node marked “beforew;”. For each 1 < m < |vi|,

vtmpg ; 1(X) < utmpg; ,, (X), nextsibling(x, x'), bwtmp, ; (x).
vtmpq’i,mﬂ(x’) <« vtmpqvi,m(x), nextsibling(x, x), bwtmpq’i(x’).
vtmpq’iyl(x/) <« vtmpg; ,(X), nextsibling(x, X)), bvvtmpq)i(x/).

(e) If the number of v;-markings assigned isindeed amultiple of |v; |, mark the
temporary facts computed so far (for each subexpression i) as* successful”
(u; vi*'w; contains aword of the right length).

SuCCq,i (X) <= utmpy; ,((X), nextsibling(x’, x), wtmpg ; 1(x).
succq i (n') <« vtmpq’i,‘vi‘(x/), nextsibling(x’, x), wtmpy ; 4(X)-
SUCCqi (X) <« succy,i(x), nextsibling(x, x').
sucCq,i (X') < succyi(x), nextsibling(x’, x).
(f) Finally, foreach« € {u,v,w}andeach 1 < | < |a;j| where o isthe jth
symbol in «;, we create rules to compute new state assignments
(9, 0)(X) <« succy,i(x), atmpq’i,j(x).

Monadic Datalog and Web Information Extraction 97

L(U; uivi'w;) hasdensity onebecause L | (q, a) hasdensity one; thus, there
is a most one word of states (q, o) that is “written” (in terms of atoms,
inferred by the program). Clearly, thisistrue evenif thereis more than one
i such that u;v;"w; matches that word.

(2) Up transitions: Let B = (Q, S, §, F) be a nondeterministic finite automaton
for L4(do) (that is, its alphabet isU). For each g, € (Q U {v}),02 € Q, we
create rules as follows:

(8) Foreachs’ € §(so, (0, @),

tmpqz’s,(x) <« firstchild(xg, X), (G, q)(x), labela(x).
(b) Foreachs € 4(s, (g, a)),
tmpg, ¢(X') < tmpg, (X), nextsibling(x, x), (02, g)(x), labela(X’).
(c) Foreachs e F,
bckq, (X) < tmpg, 5(x), lastsibling(x).
bckg, (Xo) < nextsibling(Xo, X), bckg, (X).
(d1, Go)(Xo) <= (01, 92)(Xo), firstchild(xo, X), bckg,(X).

That is, we traverse a set of siblings from left to right to check whether their
state-and-label pairs of the sibling nodes constitute aword of language L 4 (o).
When we reach a final state of B on the last sibling, we go back to the first
sibling and from there to the parent. Then we assign the new state and thus
make our up transition.

(3) Stay transitions: The encoding of a2DFA with aselection function X isstraight-
forward. Each transition only depends on a single state assignment. As dis-
cussed for the case of query automata for ranked trees earlier, this condition
entails that the computation of the union of all the configurations run through
by the 2DFA as afixpoint of our monadic datalog program and the application
of aselection function A to thisset issound. Since, by Definition 4.12, each tree
node may only be involved in a stay transition once, there are no difficulties
in managing temporary predicates to assure the soundness of the simulation of
the 2DFA.

An analogous result to Lemma 4.10 can be stated for unranked trees as well.
The correctness proof of the altered simulation works analogously to the proof of
Theorem 4.11. Again the reduction can be computed in LOGSPACE. [

We conclude this section by a clarifying example of the construction for down
transitions in the previous proof.

Example 4.15. Consider anodeng labeled “a” whichisin state q inthe current
configurationc;. Let L (g, @) = (0100)*U(0100)*a1. Wefirst decomposetheregular
expression into the two subexpressions u1viwy and Uvaw, withuy = wy = U =
€, V1 = Vo = (010p), and w, = g;. Assume that the current node ng to which we
apply the down transition has four children. The fixpoint computation of the mona-
dic datalog encoding for down transitions proceeds in the stages (a)—(f) shown in
Figure 2. In stage (d), theword v, can only be assigned oncefully and in part for the
second time (as n4 is blocked by the word w;). Thus, succgy > cannot beinferred in
stage (€). The first subexpression, however, can be used to generate a four-symbol
word 01900100, and consequently to make a down transition.

98 G. GOTTLOB AND C. KOCH

nq no n3 Ng
(@ uviwa
UV W2
(b) uviwg
UV W2 wtmpg 2,1

(©) uiviwy | bwtmpg: bwtmpg: bwtmpg: bwtmpg 1
Upvywp | bwtmpgo bwtmpgo bwimpg 2

(d) uviwg | vimpgii vimpgi2 vimpg i1 vimMpg 12
UpVoWp | VIMPg21 VIMpgo2 ViMpg2:

(6) uviwy | succq1 SUCCq, 1 SUCCq, 1 SUCCq, 1
UpViW2

() uviwi | (9, 01) (9, o) (9, 1) (9, o)
UpViW2

FIG. 2. Stagesin the down transition computation of Example 4.15.

The reductions presented in this section also constitute alternative proofs of the
expressiveness results of the previous section, as the two forms of query automata
presented capture unary M SO queries over trees.

PROPOSITION 4.16 ([NEVEN AND SCHWENTICK 2002]). A unary query over
ranked trees is MSO-definable iff there is a ranked query automaton which com-
putesit. A unary query over unranked trees is MSO-definable iff there is an SQAY
that computesit.

COROLLARY 4.17. For each unary MSO query over ranked (unranked) trees,
there exists a monadic datalog program over 1, (t,) that defines the same query.

ProoOF. By Proposition 3.3, all monadic datalog queries can be expressed
in MSO. The other direction immediately follows from our reductions of
Theorem 4.11 and Theorem 4.14. [

Moreover, monadic datalog (over trees) also inherits a hardness result for the
guery containment problem from query automata. By the query contai nment prob-
lemfor query automata, we refer to containment between the sets of nodes selected
by two such automata rather than containment of the tree languages accepted. For
its role in query minimization, containment between two distinguished predicates
of two monadic datalog programsis the prototypical query optimization problem.

PROPOSITION 4.18 ([COSMADAKISET AL. 1988]). Containment of monadic
datalog queries over arbitrary finite structures is EXPTIME-hard and in
2-EXPTIME.

PROPOSITION 4.19 ([NEVEN AND SCHWENTICK 2002]). The query contain-
ment problem for ranked query automata as well as for SQAY is EXPTIME-
complete.

Proposition 4.19 and our reductionsimply that the EXPTIM E-hardness result of
Proposition 4.18 aready holds for trees:

COROLLARY 4.20. The query containment problem for monadic datalog over
7« aswell asover 7, is EXPTIME-hard.

Monadic Datalog and Web Information Extraction 99

ProoF. By Proposition 4.19, the query containment problem for query
automata is EXPTIME-hard. Since EXPTIME is closed under LOGSPACE-
reductions and Theorems 4.11 and 4.14 offer LOGSPACE-reductions from query
automatato monadic datal og programs, the query containment problem of monadic
datalog is EXPTIME-hard aswell. [

The evaluation of a monadic datalog query has the strong points of guaranteed
termination and even running time linear in the size of the program and linear in
the size of the tree. Thisisin stark contrast to runs of query automata which, even
if they terminate, may take superpolynomially many stepsto do so. Our simulation
of query automata in monadic datalog allows for an efficient means of evaluating
guery automata. We demonstrate thisfor ranked query automata, but the same case
can be made for unranked query automata as well.

Example 4.21. Given an integer o > 1, let § = 2* and let Az be a ranked
(K = 2) query automaton over alphabet = = {a} withstatesQ = {q;; | 1 <i <
B+1, 1< | < p+1}, satdateqs 1, singlefinal stateqy g1, D = {(q;j, @) | 1 <
I <p+1 1<j=<pLU={g+1,a)]|1=<i <p+1}, andtransitionfunctions
defined as 6'(g.j, @, 2) = (Gi1,q;.1), 8" ((Gipr1, @), (j.p1+1,@) = Gij+1, and
Sleat (G, @) = Qipraforl <i < p+1,1<] < B. Any selection function will
do as we only care about the length of the run.

Now consider runs of .Ag on complete binary treesinwhich all nodes are labeled
a. Let n = |dom|, which is proportional to the size of the tree. In a run of Ag
on such a tree, from each nonleaf node v, once visited, we first make g down
transitions before we return to the parent of v with an up transition. Each node at
depth d isthus visited ©(8Y) times. Obviously, the depth of acomplete binary tree
is log,(Jdom;| + 1) — 1. Therefore, such a run takes work ©(n - p'o%+D-1y —
O(n - (151)%F) = (1)).

The encoding of any query automaton .4, in monadic datalog, on the other hand,
runsin time linear in the size of the tree and quadratic in the size of Az (which is

proportional to g% = 22%), that is, in time O(8* - n) = O(2* - n).

5. ANormal Formfor Monadic Datalog on Trees

Aswe show in this section, each monadic datal og program can be efficiently rewrit-
ten into an equivalent program using only very restricted syntax. This motivates a
normal form for monadic datalog over trees.

Definition 5.1. A monadic datalog program P over ty (zy) isin Tree-Marking
Normal Form (TMNF) if each rule of P is of one of the following three forms:

(D) p(x) < po(x). (2) P(X) <= Po(X0). B(xo.X). (3) P(X) <= Po(X). P1(X).

where the unary predicates pp and p; are either intensional or of 7, (z,,) and B is
either Ror R, where R isabinary predicate from 7, (7).

For our main result of this section, the signature for unranked trees may extend
7 to include the natural child relation—Ilikely to be the most common form of
navigation in trees—and the “lastchild” relation; “lastchild(x, y)” istrueiff yisthe
rightmost child of x.

100 G. GOTTLOB AND C. KOCH

THEOREM 5.2. For each monadic datalog program P over t, U {child,
lastchild} (respectively,), there is an equivalent program in TMNF over
(respectively, ;) which can be computed in time O(|P)).

In order to prove this, we need to introduce a number of auxiliary results. The
main stepswetaketo transform an arbitrary program P intoonein TMNF will beto
(2) trandate P into a program in which each ruleisacyclic (in avery strong sense)
but which extends the signature to caterpillar expressions (Lemma 5.4, 5.5, and
5.6), to (2) simplify the acyclic rules (Lemmab.7 and 5.8), and to (3) rewrite these
short and simplerulesinto onesthat do not use caterpillar expressions (Lemmabs.9).

We have to put some emphasis on mapping programs to TMNF in linear time,
as our result on the complexity of Elog~ (Corollary 6.4) depends on it. Thus, we
will start by introducing some graph-theoretical background.

Given a directed graph (digraph) G = (V, E), a depth-index map is a (total)
functiondgs : V — Z suchthat dg(v) + 1 = dg(w) iff (v,w) € E.

ProPosITION 5.3. Givenadigraph G, adepth-index map dg existsiff all paths
between (not necessarily distinct) nodesv, w in G have the same length.

In particular, if G contains a (directed) cycle, no depth-index map exists for
G. We can decide whether a depth-index map exists for G, and at the same time
compute a map dg if it does, in time O(|V| + |E|) by a straightforward traver-
sal of G (assigning, say, ds(v) = O for the first node v visited in each con-
nected component of G, visiting neighborsviaoutgoing aswell asincoming edges,
and marking nodes as visited to ensure linear runtime). Even though depth-index
maps on a graph are not unique, al depth-index maps are equally well suited for
our purposes.

Given an undirected graph G = (V, E), the set of connected componentsC of G
isdefined in the normal way. Notably, | JC = V and themembersof C are pairwise
disjoint. The connected components of adigraph G are are those of the shadow of
G, that is, of the undirected graph obtained from G by ignoring the edge directions.

A multigraph is a pair (V, E) of digoint sets together withamap E — V U
[V]? assigning to each edge either one or two vertices, its ends. (By [V]? we
denote the two-element subsets of V.) The query graph of a monadic datalog
ruler over signature I" is the multigraph G, = (V, E), withV = Vars(r), E =
{erx,y | R(X,y) € Body(r)} and er x,y — {X, y}. So, for aruler with Body(r) =
{R(X, y), R(y, x)}, the query graph hastwo undirected edgeser x y, €r y,x With the
same ends, {x, y}.1° A ruleis called acyclic iff its query graphisacyclic (i.e., isan
undirected forest).

LEMMA 5.4. Every monadic datalog program P over 1, (t,) can be rewrit-
ten in time O(|P]) into an equivalent program over z,« () in which each rule
isacyclic.

PrROOF. We only consider programs over t,,. Since unranked trees represented
using 7, can be viewed as binary trees, 7, can be treated as a special case of
T« FOr each ruler e P, we proceed as follows. Let G = (Varg(r), E) with

10 This rule would be considered cyclic because there are two different paths between x and y.

Monadic Datalog and Web Information Extraction 101

E = {(x,y) | (3K) child(x, y) € Body(r)} be a digraph. If no depth-index map
ds : Vars(r) — Z on G exists, r is unsatisfiable and no output is produced for r.

Otherwise, we proceed asfollowsfor each 1 < k < K. Let Gx = (Vars(r), Ex)
be the digraph with Ex = {(X, y) | childk(x, y) € Body(r)} and let Cx be the set
of connected components of Gi. For each connected component C € Cy and for
each depth-index i, replace all occurrences of the variablesin the equival ence class
{x € C | dg(x) =1i}inr by any single variable of that equivalence class. If the
query graph of theruler’ thus obtained is cyclic, r’ (and r) isunsatisfiable. If r is
acyclic, we add r’ to the output and proceed to the next rule of P.

The method described can be easily implemented to runin linear time. Moreover,
the output is also equivalent to the input. Assume that no depth-index dg can be
computed for r. By Proposition 5.3, thismeansthat G containsacycle or two paths
of different length. Since the union of therelations child, (for 1 < k < K) isatree,
no satisfying variable assignment can exist for r then, and r isindeed unsatisfiable.
Unsatisfiablerules can be removed from the program without changing its meaning.

The rule r’ obtained from r by merging variables is equivalent to r. Clearly,
r’ is precisely the rule we would obtain by simplifying r using the bidirec-
tional functional dependencies of the childy relations (cf. Proposition 4.1) with the
classical Chasetechnique (cf. Aho et al. [1979], Maier et al. [1979], and Abiteboul
et al. [1995]).

Since G does not contain a directed cycle, cycles of the query graph of r’ must
containtwo atoms Ry (X1, ¥), Ro(Xo, ¥), where Ry # R,. However, these, two atoms
taken together are certainly unsatisfiable, as each node can only be a kth child for
at most onek. [J

LEMMA 5.5. Everymonadicdatalogprogram®P over t, U{child} canberewrit-
ten in time O(]P]) into an equivalent program over t,, U {nextsibling*} in which
each ruleisacyclic.

ProoOF. For eachruler € P, we proceed as follows.

(1) Let Gos = (Vas, Ens) be the digraph having Vis = Vars(r) and B = {{x, y) |
nextsibling(x, y) € Body(r)}, C the set of connected components of Gy, and
G = (C, Ey) thedigraph of the child relations coarsenedto C ({(Cy, Cy) € Eg
iff C1, C, € C and there are variables x; € C1 and x> € C, such that an atom
firstchild(xs, x2) or child(x1, X2) occurs in Body(r)). If no depth-index map
d: C — Zongraph Gy, exists, thenr is unsatisfiable and we are donefor r.

(2) Digraph G, is now acyclic, and we traverse it bottom-up, unifying variables
X1, X2 that are parents of variablesin the same connected component of C. Let
dmin = Min{d(C) | C € C} be the smalest and dynx = max{d(C) | C € C}
the largest depth-index in d on C. Let C[i] = {C € C | d(C) = i},
for each i. For each i from dma tO dmin + 1, we compute the bipartite
graph B; with nodes Vars(r) U C[i] and edges {(x,C) | x € Varg(r),C €
C[i], 3y € C suchthat firstchild(x, y) € Body(r) or child(x, y) € Body(r)}.
Let Cg denote the set of connected components of B;. For each C < Cg,
merge the variables of Vars(r) N C inr into one.!! Update C[i — 1] and

1 Here and bel ow, we mean by thisto replace all occurrences of variablesin the given setinr by any
single variable from the set (say, the lexicographically first one), or by anew variable.

102 G. GOTTLOB AND C. KOCH

lezs) o {z2,24) {z1,z3} 5 {2224}

{1'5,237}

n T
g} {Im, 3?11}

(©) (d)

Fic. 3. Trandation into acyclic rule; f,c,n denote respectively “firstchild”, “child”, and
“nextsibling”.

."179

> S]
{Iw-,if/u} 12 Yy

the portions of the data structures for G, Gy, and d rel ating to depth-index
i — 1 accordingly.

(3) For each connected component C € C[dmin] Of graph G,s, compute a depth-
index map dc : C — 7Z on the subgraph of G, induced by C; if no such
depth-index map exists, r is unsatisfiable and we are done for r. For each i,
merge the variables of {x € C | dc(x) =i} inr into one. We update the parts
of our data structures relating to depth-index dmin.

(4) We traverse the component graph Gy, top-down, starting at the components
withsmallestindex i = dmin Uptodmex — 1. ForeachC e C[i] andeach x € C,
we merge the variables F, = {y | firstchild(x, y) € Body(r)} into one. This
can either be done by building a bipartite graph asin step (2) or ad-hoc, since
after step (2), sets Fy,, Fx, must be digoint for x; # X2. Then we simplify the
“nextsibling” atoms of depth-index i + 1 as described in step (3) for depth-
index dmin.

(5) Finally, for each component C € C such that there is an atom child(x, y),
y € C, but no atom firstchild(x, z), for any z € C, proceed as follows. Choose
precisely one y € C such that child(x, y) € Body(r). If there is an atom
firstchild(x, y’), add nextsibling*(y’, y). Otherwise, add atomsfirstchild(x, yo)
and nextsibling*(yo, Y), where yg isanew variable. Finally, removeall “child”
atomsfromr.

An example illustrating the rewriting technique is shown in Figure 3. In (a), the
body of input ruler is sketched; (b) showstherule after the completion of step (2);

Monadic Datalog and Web Information Extraction 103

(c) after step (4), and (d) shows the final result. Merged variables are displayed as
sets rather than as single variables to support the presentation.

It is not difficult to verify that the described rewriting technique runs in linear
time. Most notably, the two traversals of Gy, (by depth-index) in steps (2) and
(4) only change parts of the data structures pertaining to the respective current
depth-index in each iteration and therefore only consume linear time in total.

Itisalso correct. The graph of the “child” relation is atree, so if no depth-index
map d existsfor Gy, r isindeed unsatisfiable (see the related argument in the proof
of Lemma5.4) and can be dropped. Step (2)—in conjunction with the preparations
of step (1)—is simply an elaborate linear-time method of “chasing” the functional
dependency “child”: $2 — $1 (i.e,, that each node has at most one parent) inr and
simplifying r accordingly. At the end of step (1) G is acyclic, and after step (2)
G, is aforest. The important observation is just that this functional dependency
does not interfere with the others—in case we unify two variables when returning
top-down (using the bidirectional functional dependencies of “nextsibling” and
“firstchild” onvariables“higher up” inr), no further variables can be unified using
the functional dependency of “child”.

When going top-down in steps (3) and (4), we act as if chasing the functional
dependencies of “nextsibling” at depth-index i before we merge nodes at depth
i + 1 using the functional dependency “firstchild”: $1 — $2. By proceeding in a
different order, we might miss out on variablesthat could be merged. After step (4),
we have either found r to be unsatisfiable or the connected components of G, have
been transformed into linear chains and for each C € C thereisat most onex € C
such that thereisan xo with firstchild(xo, X) € Body(r). In step (5), we rewrite such
aruleinto an acyclic one, which is equivalent to the input rule from P. [J

LEMMA 5.6. Every monadic datalog program P over z, U {child, lastchild}
can berewrittenintime O(|P|) into an equivalent programover . U {nextsibling*}
in which each ruleisacyclic.

ProOOF. We replace each occurrence of an atom lastchild(x, y) in P by
child(x, y), lastsibling(y) and employ Lemma 5.5 to obtain aprogram P’ in which
eachruleisacyclic, inwhich wereplace each atom lastsibling(x) by lastchild(xg, X)

(Xo isanew variable). Correctness and linear runtime are easy to verify. [

Note that the purpose of the previous three lemmata is not to detect all unsat-
isfiable rules or to minimize rules, just to render them acyclic. (And indeed, our
superficial treatment of “lastchild” atoms and our disregard for unary predicates
such as “root” and “leaf” leaves many opportunities for further optimization.)

The following agorithm decomposes acyclic rulesinto ones that contain at most
asingle binary atom in the body.

LEMMA 5.7. Let P be a monadic datalog program over finite structures o
consisting only of unary and binary relationsin which each ruleisacyclic. Then, P
can be rewritten in time O(|P]) into an equivalent monadic Datalog LIT program.

ProoF. For aruler, we cal avariable x an ear of r iff x occursin precisely
one binary atom of Body(r).

Given amonadic datalog program P over arbitrary unary and binary predicates,
we apply the following steps as long as there is at least oneruler € P with head
variable g that hasan ear x # q: Let S (X) = {Pi(X), ..., Pn(X), R(Xx, x)} bethe

104 G. GOTTLOB AND C. KOCH

set of all atomsover x inr. Since x isan ear, thereisonly (at most) one binary atom
containing x, al other atomsin S (x) are unary. (If the binary atom linking x and
X" in the query graph of r is actually of the form Ry(x’, X), let R = Ro‘l.) Remove
al atoms of S(x) fromr and insert (r, x).R(x’) instead, where (r, X).R is a new
predicate. Add a new rule with (r, x).R(X") as head and S (x) as body.

Clearly, the program computed by this procedure is equivalent to the input pro-
gram. It can also be easily madeto runin linear time. On its termination, each rule

in the output isin monadic Datalog LIT. [

LEMMA 5.8. Letr bean acyclic monadic datalog rule over relations that are
either unary or binary. Then, r can be decomposed in linear time into a monadic
datalog programin which each rule is of one of the three forms

P(X1) <= pu(X1), P2(X2). P(X) <= Po(Xo), R(Xo, X). P(X) <= Po(X0), R(X, Xo).
where x; (p1) may but does not have to be different from x, (p,).

PrOOF. Little postprocessing of the output of the algorithm of the proof of
Lemma5.7 is needed to decomposer into rules of these three forms. All we need
to do is—in case |Body(r)| > 2—to replace pairs p1(x), p2(y) of unary atomsinr
(where y either does not appear elsewhereinr or x = y) by an atom p(x) (where
p isanew predicate) and add therule p(x) < pi(x), p2(y). to the output. [

LEMMA 59. LetT beasetof binary relationsand let p be a unary predicate.
Given a caterpillar expression E over T, there is an O(|E|) time algorithm for
computing a monadic datalog program over I" that defines the unary predicate

p.E :={x | (Ixo) p(xo) istrueand (xo, X) € [E]}.

ProoF. By Proposition 2.4, we may assume without loss of generality that E
is syntactically a regular expression over the alphabet ' U {R™! | R € T'}. It is
well known that each regular expression can be trandated in linear time into an
equivalent nondeterministic finite automaton with e-transitions Ag = (Q, s, 8, F)

(cf. Hopcroft and Ullman [1979]). Let I'; denote the unary and I', the binary
relations of T'. It is easy to see that the monadic datal og program

Pe = {s(X) < p(x).}
U {g2(X) <= qu(X). | (0, €, O2) € 3}
U {g2(x) <= u(X0), r(Xo, X). | (O, T, 02) € 3,1 € I'p}
U {02(X) < Gu(X0), (X, Xo). | (Gu.T ™1 02) € 8,1 € Ty}
U {ga(X) < u(x), P(X). | (G, P, G) € 80 (G, P4,) €8, p € ')
U {p.E(X) < a:(x). 1 ar € F}
can be computedinlinear time. Theideaemployed in the encoding is reminiscent of

Yannakakis' [1981] semi-join-based algorithm for evaluating acyclic conjunctive
gueries and indeed defines p.E onthebasisof Ag. [

Clearly, the techniques of the proofs of Lemma 5.7 and Lemma 5.9 are remi-
niscent of long-known results on the evaluation of acyclic conjunctive queries (cf.
Yannakakis [1981] and Abiteboul et al. [1995]). However, our notion of acyclicity
used for rules is more restrictive and tailored towards the class of rules produced
by Lemma5.4 and Lemma5.5.

Monadic Datalog and Web Information Extraction 105

Example 5.10. Therelation“child” isdefinable by the regular path expression
firstchild.nextsibling* over .. A (deterministic) finite automaton for “child” is

o firstchild @a nextsibling
q1

Our monadic datalog representation of p.childis

au(X) < p(x). 02(X) < gu(xo), firstchild(xo, X).
p.child(x) < qz(X). 02(X) < ga2(Xp), nextsibling(xg, X).

We are now in the position to prove the main theorem of this section.

PrROOF OF THEOREM 5.2. We first apply Lemma 5.4 (for 7,,) or Lemma 5.6
(for 7, U {child, lastchild}) to obtain an acyclic program P’ from the input program
P. Next, werewriteeachruler of P’ into an equivalent ruleinwhichthequery graph
is connected. For instance, arule p(x) < pi(x), p2(y). with distinct variables
x and y is rewritten into rule p(x) < pi(X), E(X,y), p2(y). where E is the
caterpillar expression (< | € | <™1) and < is the document order relation (cf.
Example 2.5). Then, we apply Lemma 5.8 to obtain a(connected) monadic Datal og
LIT program with at most two body atoms in each rule and in which al rules are
connected. (Thetransformation used in Lemma5.8 preserves connectedness; given
arule that is connected as input, the output rules are connected as well.) Thisis
aready our TMNF normal formsyntax. Finally, weeliminatecaterpillar expressions
from the program using the technique from Lemma 5.9. Asiis easy to verify, the
rewriting technique of Lemma 5.9 only produces TMNF rules. [

Remark 5.11. As shown in the proof of Lemma 5.9, TMNF programs con-
taining at most one intensional predicate in each rule body are sufficient to encode
caterpillar expressionsrelative to, say, the root node. Caterpillar expressions corre-
spond in expressive power to tree-local languages and tree-walking automata and
are conjectured to capture only a proper subset of the regular tree languages (cf.
Neven [2002] and Briggemann-Klein and Wood [2000]). The nonexistence of a
morerestrictive normal form than TMNF (where in rules of form (3) the predicates
p1 must befrom t, or 7)) thus depends on thewidely held (but as of yet unproven)
conjecture that tree-walking automata are less expressive than M SO over trees.

We conclude this section by a simple result, whose relevance is due to the re-
lationship between caterpillar expressions and XPath queries [World Wide Web
Consortium 1999]. The containment problem for XPath is currently being actively
investigated (e.g. Neven and Schwentick [2003] and Miklau and Suciu [2003]).

We call a single-rule program {Q(x) < root.E(x).}, where E is a caterpillar
expression over t Or 1, a unary caterpillar query. Let Q; and Q, be unary
caterpillar queries. Q1 is caled contained in Q, iff the result for Q1 is contained
in the result for Q, on all trees.

COROLLARY 5.12. For unary caterpillar queries, the containment problemis
PSPACE-complete,

PROOF. The construction of the proof of Lemma5.9 only uses monadic linear
datalog (i.e., where each rule contains at most one intensional predicate in the
body), for which it is known that the containment problem is PSPACE-complete

106 G. GOTTLOB AND C. KOCH

[Cosmadakis et al. 1988]. Membership of our containment problem in PSPACE
follows. PSPACE-hardness follows by a straightforward reduction of the PSPACE-
hard containment problem for regular expressions (on words) to thisproblem. [

6. Visual Tree Wrapping: The Elog Language

We now make a bridging step from the main topic of this article so far, monadic
datalog over trees, to extracting information from parse trees of Web documents.

So far, we have only shown how to define unary queriesin monadic datalog, but
will now briefly sketch the definition of wrappers. In our framework, awrapper is
defined asaset of unary queries, “information extraction functions’, that select tree
nodes. A monadic datal og program can compute aset of such queriesat once. Each
intensional predicate of a program selects a subset of dom and can be considered
to define one information extraction function.

Given aset of information extraction functions, one natural way to wrap aninput
tree t isto compute a new label for each node n (or filter out n) as a function of
the predicates assigned using the information extraction functions. The output tree
is computed by connecting the resulting | abeled nodes using the (transitive closure
of) the edge relation of t, preserving the document order of t. We do not formalize
this operation here; the natural way of doing thisis obvious.

6.1. MONADIC DATALOG AS A WRAPPER PROGRAMMING LANGUAGE. In the
previous section, we have shown that monadic datal og has the expressive power of
our yardstick MSO (on trees), can be evaluated efficiently, and is a good (easy to
use) wrapper programming language. Indeed,

—The existence of the normal form TMNF of Section 5 demonstratesthat rulesin
monadic datalog never have to be long or intricate.

—The monaotone semantics makes the wrapper programming task quite modular
and intuitive. Differently from an automaton definition that usualy has to be
understood entirely to be certain of its correctness, adding a rule to a monadic
datalog program usually does not change its meaning completely, but adds to
the functionality.

—Handling unranked trees is a necessity in wrapping Web documents. The use
of the signature z,, (or even t,, U {child}) with monadic datalog introduces no
notational difficulties. Working on unranked trees is just as simple as working
on ranked trees.

—Wrappersdefined in monadic datal og only need to specify queries, rather thanthe
full sourcetrees on which they run. Thisisvery important to practical wrapping,
because thisway changes in parts of documents not immediately relevant to the
objects to be extracted do not break the wrapper.

This property of monadic datalog programs is shared with the wrapping lan-
guages of theimplemented tree-based wrapping systems [Sahuguet and A zavant
2001; Liu et al. 2000; Baumgartner et a. 20014], but not by query automataor at-
tribute grammars (or string-based wrapping frameworks, for that matter). Unary
queriesin monadic datal og are less work-intensive to define than their query au-
tomata or attribute grammar counterpartsin thefirst place, and are subsequently
less costly to maintain.

Monadic Datalog and Web Information Extraction 107

Only one of the four desiderata from the introduction remains to be addressed,
thevisual specification of wrappers. Inthe remainder of this section, weintroduce a
framework for satisfying it which is based on the existing wrapping language El og.

Elog programs can be completely visually specified. The fragment Elog~ pre-
sented below is closely related to monadic datalog over trees and allows to express
precisely the same unary queries. Thus, the capability of specifying unary queries
entirely visually is also inherited by MSO.

6.2. VISUAL WRAPPER SPECIFICATION. As discussed in the introduction, by
visual wrapper specification, we refer to the process of interactively defining a
wrapper from few example documents using ideally mainly “mouse clicks’.

The visual wrapping processin systemssuch asLixto [Baumgartner et al. 20014,
2001b] heavily relies on one main operation performed by users: By marking a
region of a Web document displayed on screen using an input device such as a
mouse, the node in the document tree best matching the selected region can be
robustly determined. By selecting a reference region followed by a second region
inside the former, it is possible to define a fixed path 7 in an example document.

We introduce a special predicate for checking such paths.

Definition 6.1. Let X be an aphabet not containing “_". For stringsz € (X U
_)*, the predicate subelem,; is defined inductively as follows:

subelem.(X,y) = X =Y.
subelem_.(x, y) := child(x, z), subelem,(z, y).
subelem, (X, y) := child(x, 2), labely(2), subelem,(z, y).

Thesymbol ‘' thusisawildcard matching any symbol and allowsto generalize
from visually gathered paths. Note that the definition of subelem is nonrecursive
and for each path 7, subelem, is defined through a fixed conjunction of child
and label atoms. (Theorem 5.2 showed how to eliminate child atoms to obtain
programs strictly over 7,,.) Theterm x = y isnot an atom. We assume that when
we encounter it while rewriting asubelem atom into a set of monadic datalog atoms
over 1., we replace each occurrence of variable y in the rule by x. For example,
subelem, p(X, y) is a shortcut for child(x, z), labela(2), child(z, y), labely(y),
where zisanew variable.

Subsequently, we refer to monadic intensional predicates as pattern predicates
or just patterns. Patterns are a useful metaphor for the building blocks of wrappers.

Given an example document representative for a family of documents to be
wrapped, a user may be guided in the graphical specification of arule as follows.

—First, adestination pattern p is named (which may be new) and a parent pattern
Po is selected from among the patterns defined so far. Initialy, the only pattern
available isthe “root” pattern.

The “root” pattern corresponds to the extensional predicate root of 7, and is
the only exception to the correspondence of patterns and intensional predicates.

—The system can then display the document and highlight thoseregionsinit which
correspond to nodes in its parse tree that are classified pg using the wrapper
program specified so far.

—A new rule is defined by selecting—by a few mouse clicks over the ex-
ample document—a subregion of one of those highlighted. The system can

108 G. GOTTLOB AND C. KOCH

automatically decide which path 7 relative to the highlighted region best de-
scribes the region selected by the user.

—Therule p(x) < po(Xo), subelem,(xg, X). obtained in this way can then be
refined by generalizing the path or adding conditions. These tasks can be carried
out visually aswell (see Baumgartner et a. [20014]).

Very few example documents are needed for defining a wrapper program: It is
only required that for each ruleto be specified, there exists adocument in which an
instance of the parent pattern can be recognized and an instance of the destination
pattern relatesto it in the desired manner.

The process outlined is used in the Lixto system and is described in more detail
in Baumgartner et al. [2001b, 2000a], where many examples and screenshots are
dedicated to the visual specification process.

6.3. THE CORE FRAGMENT: ELOG™. In the remainder of this section, we in-
troduce various simplified fragments of the wrapping language Elog presented in
Baumgartner et a. [2001b, 2000a]. By these simplifications we obtain wrapping
languages whose theoretical aspectsare simpler to study. Certain redundancies and
artifacts of the Elog language are neither eliminated nor discussed in great de-
tail here; they witness Elog's lineage as a practical language that has grown over
time.

We start with the wrapping language Elog—, which is basically a fragment of
monadic datalog over trees. Later, we add some sophistication to the way in which
trees can be extracted, and define the fragment Elog} which uses a very restricted
kind of binary intensional predicates to allow to skip certain nodes of the input
tree in the wrapping process. While Elog} slightly extends the supported builtin
predicates as compared to Elog—, both fragments are just as expressive asMSO in
their power to define unary queries.

Definition 6.2. Let IT = (X U {_})* denote our language of fixed paths. The
language Elog~ is afragment of monadic datal og over

(root, leaf, firstsibling, nextsibling, lastsibling, (subelem,),cn, (contains;), cm)

where “root”, “leaf”, “nextsibling”, and “lastsibling” are as in ., “firstsibling”
has the intuitive meaning symmetric to “lastsibling”, “subelem,” was defined in
Definition 6.1, “contains,” is equivalent to “subelem,.”, except that e-paths must
not be used, “leaf”, “firstsibling”, “nextsibling”, “lastsibling”, and “contains’ are
called condition predicates, and rules are restricted to the form

P(X) < po(Xo), subelem,(xo, x), C, R.

such that p is a pattern predicate, po—the so-called parent pattern—is either a
pattern predicate or “root”, R (pattern references) is a possibly empty set of atoms
over pattern predicates, and C is a possibly empty set of atoms over condition
predicates. Moreover, the query graph of each rule must be connected.

We may write rules of the form p(x) < po(Xg), subelem.(xo, X), C, R.
equivalently as p(x) < po(X), C, R. and call such rules specialization rules.

Remark 6.3. Comparedtoastrict fragment of Elog, thisdefinitionissimplified
in several respects. Infact, “leaf” doesnot exist in Elog, but can be simulated using
stratified negation, which is supported. The “root”, “firstsibling”, and “lastsibling”

relations are called “rootdocument”, “firstson”, and “lastson”, respectively, and

Monadic Datalog and Web Information Extraction 109

have additional columns. Instead of “nextsibling”, Elog provides “before” and
“after” predicates, which can be parameterized (basically by setting their distance
tolerance arguments, which specify how far apart two matching nodes may be, to
zero) to capture the meaning of “nextsibling”.

By replacing each occurrence of the “subelem” and “contains’” shortcuts by
the “child” atoms they denote (see Definition 6.1), Elog~ becomes a fragment of
monadic datalog over 7, U {child}. By Theorems 5.2 and 4.2, monadic datalog
over 7, U {child} (and thus Elog™) is still in linear time in terms of query and
data, respectively.

COROLLARY 6.4. An Elog~ program P can be evaluated on a tree t in time
O(IP| = |dom]).

Asstated next, Elog™ retainsthe wrapping power of M SO (and equally, monadic
datalog) over unranked trees.

THEOREM 6.5. A set of information extraction functions is definable in mona-
dic datalog over 1, iff it isdefinablein Elog—.

ProoF. Of course, each wrapper expressible in Elog~ is also expressible in
monadic datalog over 1. All that has to be done to tranglate from the first to the
second language isto eliminate all occurrences of “subelem” and “contains’ using
Definition 6.1.

The other direction is more interesting. By Theorem 5.2, it suffices to show that
each program in our normal form can be defined in Elog™.

Thisiseasily possible. Monadic datal og rules that contain only unary atoms are
aready correct Elog~ speciaization rules, with the exception of those containing
“label”. Rules containing “label”, for example,

p(x) < labela(X).
are trandated into
p(x) < dom(xg), subelemy(Xg, X).

A pattern “dom”, which matches any node, is easily definable using a two-rule
recursive program that assures that the root node matches pattern “dom” and so
do all children of nodes that match “dom”. In Elog™, “nextsibling” is a condition
predicate, so we rewrite normal form rules containing “nextsibling”, such as

P(X) < po(Xo), nextsibling(Xo, X).
into specialization rules, here
p(x) < dom(x), nextsibling(Xg, X), po(Xo).

In thisrule, dom(x) is the parent pattern, nextsibling(xo, x) a condition atom, and
Po(Xo) a pattern reference.
There are two cases of rules containing “firstchild”,

P(X) < po(Xo), firstchild(xp, X). and p(x) < po(y), firstchild(x, y).

The second is interesting because we want to infer patterns upward in the tree and
“subelem” predicates can only be used downward. We rewrite the rule into

p(x) < dom(x), contains), firstsibling(y), po(y).
using a speciaization rulein conjunction with a“contains” atom. [

110 G. GOTTLOB AND C. KOCH

Note at this point that the full Elog language of Baumgartner et a. [20014] is
strictly more expressive than MSO.%? For example, Elog supports so-called dis-
tance tolerancesin “before” and “ after” predicates. Let Elog,, be the new language
obtained from Elog™ by extending its “before” predicate by a distance tolerance,
which is a pair of percentage values such that whenever xg refers to a node with
k children, before, qo%-pos(Xo, X, y) requires that among the nodes reachable from
node xo viapath = € ¥*, x isat least k - ﬁ) and at most k - 1% before y. An
Elog atom notafter, (x, y) (respectively, notbe?oren (X, y)) istrueif node y does not
occur after (respectively, before) anode reachable from node x viapath w € X* in
the document (with respect to document order).

THEOREM 6.6. TheElog, languageisstrictly moreexpressivethan unary MSO
gueries over unranked trees.

Proor. Consider the Elog, program P

ap(X) <« root(xg), subelemy(Xxo, X), notaftera(Xo, X).
bo(X) < root(xg), subelemy(Xg, X), notafterp(Xo, X), notbefore,(Xg, X).
a"h"(x) <« root(x), containss(x,y). ao(y). beforey sow-s0(X. Y. 2), bo(2).

over ¥ = {a, b}.

Theleftmost children of theroot nodelabeled a and b are assigned the predicates
ap and by, respectively, if in addition there is no node labeled a at the right of the
node assigned by. If both ag and by are assigned to nodes, the [abels of the children
of the root node read from left to right must constitute a word a"b™. Let the root
node have k children. The root node is assigned a"b" if there are two children n;
and n; labeled ag and by, respectively, such that n, is k/2 nodes to the right of n;
among the children of the root node. Thus, P classifies the root node as a"b" if
and only if itslist of children is of the same form. However, it is well known that
the word language {a"b" | n > 1} is not regular, so neither is the tree language
{t | a"b"(root;) € 7). O

7. Summary and Conclusions

We studied the expressiveness and complexity of monadic datalog over trees and
the corefragment of its closerelative, the practical wrapper programming language
Elog. We showed that the expressive power of both languages is precisely that of
the unary MSO queries. As a significant by-product which may be useful in future
investigations, we discovered asimple normal form for monadic datal og over trees,
TMNF, to which every program can be translated in linear time.

In summary, we have studied a significant new practical application of logic
(programming) to information systemsfrom atheoretical perspective. The database
programming language datal og, which hasreceived considerabl e attention from the
database theory community over many years (see, e.g., Abiteboul et a. [1995]) but
has ultimately failed to attract a large following in database practice, might thus
experienceanotable”rebirth” inthecontext of treesand the Web. Indeed, for datal og

2 Full Elog supports Web crawling, stratified negation, so-called distance tolerancesin “ before” and
“after” atoms, and tree region extraction, all features missing from the fragments discussed here.
Presenting these features in detail is beyond the scope of this article, but a detailed overview of the
full Elog language is given in Baumgartner et al. [2001b, 20014)].

Monadic Datalog and Web Information Extraction 111

asaframework for selecting nodesfromtrees, the situation is substantially different
from the general case of full datalog on arbitrary databases. Monadic datalog over
trees has very low evaluation complexity, programs have a simple normal form, so
rules never have to be long or intricate, and various automata-theoretic, language-
theoretic, and logical techniques exist for evaluating programs or optimizing them
which are not available for full datal og.

Asafina remark, monadic datalog also has applications in querying XML and
checking the conformance of XML documentsto DTD’sand regul ar treelanguages.
Indeed, Core XPath [Gottlob et al. 2002], the logical core fragment of the popular
XPath language, can be mapped efficiently to monadic datal og [Gottlob and Koch
2002; Frick et al. 2003] and thus inherits its very favorable worst-case eval uation
complexity bounds.

ACKNOWLEDGMENTS. We thank Thomas Eiter, Martin Grohe, Frank Neven, and
Thomas Schwentick for insightful discussions.

REFERENCES

ABITEBOUL, S, HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
Mass.

ABITEBOUL, S, AND VIANU, V. 1999. Regular path queries with constraints. J. Comput. Syst. Sci. 58, 3,
428-452.

AHO, A. V., BEERI, C.,, AND ULLMAN, J.D. 1979. Thetheory of joinsin relational databases. ACM Trans.
Datab. Syst. 4, 3, 297-314.

ATZENI, P, AND MECCA, G. 1997. Cut and paste. In Proceedings of the 16th ACM S GACT-S GMOD-
S GART Symposium on Principles of Database Systems (PODS 97) (Tucson, Az.). ACM, New York.
BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G. 200la. Declarative information extraction, web

crawling, and recursive wrapping with lixto. In Proceedings of LPNMR' 01 (Vienna, Austria).

BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G. 2001b. Visual web information extraction with lixto.
In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB' 01).

BEERI, C., AND BERNSTEIN, P A. 1979. Computational problems related to the design of normal form
relational schemas. ACM Trans. Datab. Syst. 4, 1, 30-59.

BRUGGEMANN-KLEIN, A., MURATA, M., AND WooD, D. 2001. Regular tree and regular hedge languages
over non-ranked alphabets: Version 1, April 3, 2001. Tech. Rep. HKUST-TCSC-2001-05, Hong Kong
University of Science and Technology, Hong Kong SAR, China.

BRUGGEMANN-KLEIN, A., AND WooD, D. 2000. Caterpillars: A context specification technique. Markup
Lang. 2, 1, 81-106.

CERI, S., GOTTLOB, G., AND TANCA, L. 1990. Logic Programming and Databases. Springer-Verlag,
Berlin, Germany.

COSMADAKIS, S., GAIFMAN, H., KANELLAKIS, P, AND VARDI, M. 1988. Decidableoptimization problems
for databaselogic programs. |n Proceedings of the 20th Annual ACM Symposiumon Theory of Computing
(Chicago, Ill.). ACM, New York, 477-490.

COURCELLE, B. 1990. Graph rewriting: An algebraic and logic approach. In Handbook of Theoreti-
cal Computer Science, J. van Leeuwen, Ed. Vol. 2. Elsevier Science Publishers B.V., Chap. 5, 193—
242.

DONER, J. 1970. Tree acceptors and some of their applications. J. Comput. Syst. ci. 4, 406-451.

DOWLING, W. F., AND GALLIER, J. H. 1984. Linear-timeagorithmsfor testing the satisfiability of propo-
sitional horn formulae. J. Logic Prog. 1, 3, 267-284.

EBBINGHAUS, H.-D., AND FLUM, J. 1999. Finite Model Theory. 2nd ed. Springer-Verlag, New York.

FLuM, J,, FRICK, M., AND GROHE, M. 2001. Query evaluation viatree-decompositions. In Proceedings
of the 8th International Conference on Database Theory (ICDT'01), J. Van den Bussche and V. Vianu,
Eds. Lecture Notesin Computer Science, vol. 1973. Springer, New York, 22-38.

FRICK, M., AND GROHE, M. 2002. The complexity of first-order and monadic second-order logic revis-
ited. In Proceedings of the 17th Annual |EEE Symposium on Logic in Computer Science (LICS). IEEE
Computer Society Press, Los Alamitos, Calif., 215-224.

112 G. GOTTLOB AND C. KOCH

FRICK, M., GROHE, M., AND KocH, C. 2003. Query evaluation on compressed trees. In Proceedings of
the 18th Annual |EEE Symposium on Logic in Computer Science (LICS) (Ottawa, Ont., Canada). |[EEE
Computer Society Press, Los Alamitos, Calif.

GECSEG, F., AND STEINBY, M. 1997. Treelanguages. In Handbook of Formal Languages, G. Rozenberg
and A. Salomaa, Eds. Vol. 3. Springer-Verlag, New York, Chap. 1, 1-68.

GoTTLOB, G., GRADEL, E., AND VEITH, H. 2002. Datalog LITE: A deductive query language with linear-
time model checking. ACM Trans. Computat. Logic 3, 1, 42—79.

GoTTLOB, G., AND KOcH, C. 2002. Monadic queries over tree-structured data. In Proceedings of the
17th Annual |EEE Symposium on Logic in Computer Science (LICS) (Copenhagen, Denmark). |IEEE
Computer Society Press, Los Alamitos, Calif., 189-202.

GOTTLOB, G., KOocH, C., AND PICHLER, R. 2002. Efficient algorithms for processing XPath queries. In
Proceedings of the 28th International Conference on \Very Large Data Bases (VLDB'02) (Hong Kong,
China).

HoPCROFT, J. E., AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Publishing Company, Reading, Mass.

LAENDER, A. H. F, RIBEIRO-NETO, B., AND S. DA SILVA, A. 2002. DEByE—Data Extraction By Ex-
ample. Data Knowl. Eng. 40, 2 (Feb.), 121-154.

Liy, L., Py, C., AND HAN, W. 2000. XWRAP: An XML-enabled wrapper construction system for web
information sources. In Proceedings of the 16th |EEE International Conference on Data Engineering
(ICDE) (San Diego, Cdlif.). ACM, New York, 611-621.

Lixto. http://www.lixto.com.

LUDASCHER, B., HIMMERODER, R., LAUSEN, G., MAY, W., AND SCHLEPPHORST, C. 1998. Managing
semistructured datawith florid: A deductive object-oriented perspective. Inf. Syst. 23, 8, 1-25.

MAIER, D., MENDELZON, A. O, AND SAGIV, Y. 1979. Testing implications of data dependencies. ACM
Trans. Datab. Syst. 4, 4, 455-469.

MIKLAU, G., AND Suciu, D. 2003. Containment and equivalence for an fragment of XPath. J. ACM 51,
1 (Jan.), 2-45.

MiNoux, M. 1988. LTUR: A smplified linear-time unit resolution agorithm for horn formulae and
computer implementation. Inf. Proc. Lett. 29, 1, 1-12.

NEVEN, F. 2002. On the power of walking for querying tree-structured data. In Proceedings of the 21st
ACM S GACT-SSGMOD-S GART Symposium on Principles of Database Systems (PODS 02). Madison,
Wisconsin.

NEVEN, F., AND SCHWENTICK, T. 2000. Expressive and efficient pattern languages for tree-structured
data. In Proceedings of the ACM S GACT-SSGMOD-SGART Symposium on Principles of Database
Systems (PODS 00) (Dallas, Tex.), ACM, New York, 145-156.

NEVEN, F., AND SCHWENTICK, T. 2002. Query automata on finite trees. Theoret. Comput. Sci. 275,
633-674.

NEVEN, F., AND SCHWENTICK, T. 2003. XPath containment in the presence of disjunction, DTDs, and
variables. In Proceedings of the 9th International Conference on Database Theory (ICDT’ 03). 315-329.

NEVEN, F., AND VAN DEN BussCHE, J. 2002. Expressiveness of structured document query languages
based on attribute grammars. J. ACM 49, 1 (Jan.), 56-100.

PapaDIMITRIOU, C. H. 1994. Computational Complexity. Addison-Wesley, Reading, Mass.

PAPAKONSTANTINOU, Y., GUPTA, A., GARCIA-MOLINA, H., AND ULLMAN, J. 1995. A query trandlation
scheme for rapid implementation of wrappers. In Proceedings of the 4th International Conference on
Deductive and Object-oriented Databases (DOOD’95) (Singapore), Springer-Verlag, New York, 161—
186.

SAHUGUET, A., AND AZAVANT, F. 2001. Building intelligent web applications using lightweight wrap-
pers. Data Knowl. Eng. 36, 3, 283-316.

SZILARD, A., YU, S., ZHANG, K., AND SHALLIT, J. 1992. Characterizing regular languages with poly-
nomial densities. In Proceedings of the 17th International Symposium on Mathematical Foundations
of Computer Science. Lecture Notes in Computer Science, vol. 629. Springer-Verlag, Berlin, Germany,
494-503.

THATCHER, J.,, ANDWRIGHT,J. 1968. Generalized finiteautomatatheory with an applicationto adecision
problem of second-order logic. Math. Syst. Theory 2, 1, 57-81.

THOMAS, W. 1990. Automataon infinite objects. In Handbook of Theoretical Computer Science, J. van
Leeuwen, Ed. Vol. 2. Elsevier Science Publishers B.V., Chap. 4, 133-192.

THOMAS, W. 1997. Languages, automata, and logic. In Handbook of Formal Languages, G. Rozenberg
and A. Salomaa, Eds. Vol. 3. Springer-Verlag, New York, Chap. 7, 389-455.

Monadic Datalog and Web Information Extraction 113

WORLD WIDE WEB CONSORTIUM. 1999. XML Path Language (X Path) Recommendation. http://www.

w3c.org/TR/xpath/.
YANNAKAKIS,M. 1981. Algorithmsfor acyclic database schemes. In Proceedingsof the 7th International

Conference on Very Large Data Bases (VLDB'81). 82-94.
Yu, S. 1997. Regular languages. In Handbook of Formal Languages, G. Rozenberg and A. Salomaa,

Eds. Vol. 1. Springer-Verlag, New York, Chap. 2, 41-110.

RECEIVED NOVEMBER 2002; REVISED MAY 2003; ACCEPTED OCTOBER 2003

Journal of the ACM, Vol. 51, No. 1, January 2004.

