
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 66 (2003) 775–808

Robbers, marshals, and guards: game theoretic and logical
characterizations of hypertree width$

Georg Gottlob,a,� Nicola Leone,b and Francesco Scarcelloc

a Inst. für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria
b Department of Mathematics, University of Calabria, I-87030 Rende, Italy

c DEIS, University of Calabria, I-87030 Rende, Italy

Received 24 September 2001; revised 15 June 2002

Abstract

In a previous paper (J. Comput. System Sci. 64 (2002) 519), the authors introduced the notion of
hypertree decomposition and the corresponding concept of hypertree width and showed that the
conjunctive queries whose hypergraphs have bounded hypertree width can be evaluated in polynomial time.
Bounded hypertree width generalizes the notions of acyclicity and bounded treewidth and corresponds to
larger classes of tractable queries. In the present paper, we provide natural characterizations of hypergraphs
and queries having bounded hypertree width in terms of game-theory and logic. First we define the Robber
and Marshals game, and prove that a hypergraph H has hypertree width at most k if and only if k marshals
have a winning strategy on H, allowing them to trap a robber who moves along the hyperedges. This game
is akin the well-known Robber and Cops game (which characterizes bounded treewidth), except that
marshals are more powerful than cops: They can control entire hyperedges instead of just vertices. Kolaitis
and Vardi (J. Comput. System Sci. 61 (2000) 302) recently gave an elegant characterization of the
conjunctive queries having treewidth ok in terms of the k-variable fragment of a certain logic L
(¼ existential-conjunctive fragment of positive FO). We use the Robber and Marshals game to derive a
surprisingly simple and equally elegant characterization of the class HW ½k� of queries of hypertree width at
most k in terms of guarded logic. In particular, we show that HW ½k� ¼ GFkðLÞ; where GFkðLÞ denotes the
k-guarded fragment of L: In this fragment, conjunctions of k atoms rather than just single atoms are
allowed to act as guards. Note that, for the particular case k ¼ 1; our results provide new characterizations
of the class of acyclic queries. We extend the notion of bounded hypertree width to nonrecursive stratified

ARTICLE IN PRESS

$A preliminary version of this paper appeared in the Proceedings of the 20th ACM Symposium on Principles of

Database Systems (PODS’O1), Santa Barbara, May 2001.
�Corresponding author.

E-mail addresses: gottlob@dbai.tuwien.ac.at (G. Gottlob), leone@unical.it (N. Leone), scarcello@unical.it

(F. Scarcello).

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0000(03)00030-8

Datalog and show that the k-guarded fragment GFkðFOÞ of first-order logic has the same expressive power
as nonrecursive stratified Datalog of hypertree width at most k:
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction and overview of results

Conjunctive queries (CQs) have been studied for a long time in database theory. This class of
queries, equivalent in expressive power to the class of Select-Project-Join queries, is probably the
most fundamental and most thoroughly analyzed class of database queries.

There is currently a renewed interest in complexity questions related to CQs. Specifically, the
combined complexity [31] of certain classes of CQs, is a hot topic of recent database research. The
combined complexity is the complexity of evaluating a query on a database measured both in
terms of the size of the query and the size of the database. While this problem is known to be NP-
complete in general [5], and in PTIME for the restricted class of acyclic queries [15,33], several
recent papers [6,10,14,18,20,21,23] identify and analyze very large parameterized classes of
conjunctive queries whose evaluation is tractable. The reason for this quest is twofold. Firstly,
it is well-known that the problem of conjunctive query containment is essentially the same as
the problem of CQ evaluation [5]. Conjunctive query containment is of central importance
in view-based query processing [1,30] which arises, e.g., in the context of data warehousing.
Secondly, conjunctive query evaluation is essentially the same problem as constraint satisfaction,
one of the major problems studied in the field of AI, and there has been a lot of recent interaction
between the areas of query optimization and constraint satisfaction (see Vardi’s survey
paper [32]).

In this paper, we adopt the logical representation of a relational database [2,29], where data
tuples are identified with logical ground atoms, and conjunctive queries are represented as
Datalog rules. In particular, a Boolean conjunctive query (BCQ) is represented by a rule whose
head is variable-free, i.e., propositional. We are interested in polynomially solvable classes of
conjunctive queries that are determined by structural properties of the query hypergraph or query
graph. The hypergraph HðQÞ associated with a conjunctive query Q is defined as HðQÞ ¼ ðV ;HÞ;
where the set V of vertices consists of all variables occurring in the body of Q; while the set H of
hyperedges contains, for each atom A in the rule body, the set varðAÞ of all variables occurring
in A:

Example 1. Consider the following query Q1:

Q1 : ans’aðS;X ;T ;RÞ4bðS;Y ;U ;PÞ4f ðR;P;VÞ4
gðX ;YÞ4cðT ;U ;ZÞ4dðW ;X ;ZÞ4eðY ;ZÞ

Fig. 1(A) shows its associated hypergraph.
The query graph GðQÞ of a conjunctive query Q (also referred to as its Gaifman graph) is the

primal graph of the hypergraph HðQÞ; i.e., the graph whose vertices are those of HðQÞ and
whose edges connect a pair of distinct variables X ;YAV iff fX ;YgDh for some hAH: If each

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808776

atom in the body of a query contains exactly two variables, then the hypergraph associated with
the query is identical to its primal graph.

A structural query decomposition method1 is a method of appropriately transforming a
conjunctive query into an equivalent tree query (i.e., acyclic query given in form of a join tree) by
organizing its atoms into a polynomial number of clusters, and suitably arranging the clusters as a
tree (see Fig. 1(B)). Each cluster contains a number of atoms. After performing the join of the
relations corresponding to the atoms jointly contained in each cluster, we obtain a join tree of an
acyclic query which is equivalent to the original query. The resulting query can be answered in
output-polynomial time by Yannakakis’s well-known algorithm [33]. In case of a Boolean query,
it can be answered in polynomial time.

The tree of atom-clusters produced by a structural query decomposition method on a given
query Q is referred to as the decomposition of Q: Fig. 1(B) shows a possible decomposition of
query Q1 of Example 1.

The efficiency of a structural decomposition method essentially depends on the maximum size
of the produced clusters, measured (according to the chosen decomposition method) either in
terms of the number of variables or in terms of the number of atoms. For a given decomposition,
this size is referred to as the width of the decomposition. For example, if we adopt the number of
atoms as width, then the width of the decomposition shown in Fig. 1(B) is 2. Intuitively, the
complexity of transforming a given query into an equivalent tree query is exponential in the width.
In fact, for each of the (polynomially many) clusters, the complexity of performing the join of all
relations is bounded by the width.

Various structural query (or CSP) decomposition methods have been introduced in both
database theory and AI. We can divide these methods in two main groups: Graph-based methods
and hypergraph-based methods. The first group uses the query graph GðQÞ for defining a
decomposition,2 while the second group relies on the query hypergraph HðQÞ:

ARTICLE IN PRESS

Fig. 1. (A) Hypergraph HðQ1Þ; and (B) a width 2 hypertree decomposition of HðQ1Þ in Example 1.

1 In the field of constraint satisfaction, the same notion is known as structural CSP decomposition method, cf. [14].
2 Sometimes, instead of using the query graph, another graph called the variable-atom incidence graph [6] (or the

hidden variable encoding [26]) is used. This is irrelevant to the results of the present paper. In particular, the comparison

results shown in Fig. 2 remain the same for both graphs.

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 777

The known graph based decomposition methods are: biconnected components [11], cycle cutset
[8], tree clustering [9], and tree decompositions [6,23,25]. The hypergraph-based decomposition
methods are hinge decomposition [21,22], hinge decomposition with tree clustering [21], cycle
hypercutset [14], and hypertree decomposition [16]. A compact description of each of these
methods is given in [14], where we have compared the various methods. Fig. 2 shows the result of
this comparison. This figure in addition mentions another method ðo�Þ which is known to be
equivalent to the tree-clustering method [9].

An arrow from method D1 to method D2 in Fig. 2 indicates that D2 is strongly more general
than D1: This means that the following conditions hold: (i) whenever method D1 produces
decompositions of bounded width on a class C of input queries, also method D2 produces
bounded-width decompositions; and (ii) for some classes of hypergraphs, D2 produces bounded-
width decompositions, while D1 produces decompositions having unbounded width. Since this
relationship is transitive, also a directed path between two methods indicates the same
relationship. The picture is complete in the sense that there is a directed path from method D1

to method D2 if and only if D2 strongly generalizes D1: On the other hand, whenever two methods
are not related by a directed path, then they are incomparable to each other. (For a more precise
explanation of this figure and more subtle relationships between the methods, refer to [14].)
Hypertree width was also compared to the notion of clique width [7] in [18], where it is shown that
hypertree width of a hypergraph strongly dominates the clique width of the associated incidence
graph. Note that determining whether a graph or hypergraph has clique width smaller than a
given constant is currently not known to be tractable. For this reason, the notion of bounded
clique width is currently not considered in the query tractability hierarchy depicted in Fig. 2.

From Fig. 2 it is clear that the method of treewidth is the most general graph-based
decomposition methods. This method is based on the well-known concepts of tree decomposition

and graph treewidth as introduced by Robertson and Seymour [25]. Treewidth is, in a precise
sense, the absolutely most general graph-based decomposition method. In fact, Grohe,

ARTICLE IN PRESS

Fig. 2. Query tractability hierarchy.

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808778

Schwentick, and Segoufin have shown in a very recent paper [20] that, for any class C of graphs of
unbounded treewidth, the evaluation problem for the class QC of all conjunctive queries whose
query graph is in C is not fixed-parameter tractable, and is thus unlikely to be tractable. (See also
the discussion at the end of Section 2, where we compare these results to tractability results for
queries with bounded hypertree width.)

Treewidth is an extremely well-studied concept and has been characterized in various ways. We
recall two very elegant and useful characterizations: the game theoretic characterization of graph
treewidth by Seymour and Thomas [28], and the logical characterization of query treewidth by
Kolaitis and Vardi [23].

Game theoretic characterization of treewidth: the robber and cops game [28]

The robber and cops game is played on a graph G ¼ ðV ;EÞ by a robber and k cops, where
k41: The robber stands on a vertex p; and can at any time run at great speed along the paths of
G: She is not permitted to run through a vertex controlled by a cop, however. Each of the k cops
either stands on a vertex or is in a helicopter. The goal of the cops is to land one of them via
helicopter on the vertex occupied by the robber, while the robber clearly tries to avoid her capture.
Helicopters allow cops to move arbitrarily. The flying cops can see the robber, but also the robber
can see the helicopters approaching and change vertex before they land. Seymour and Thomas
proved that a graph has treewidth at most k if and only if k þ 1 cops have a winning strategy for
this game on G: Moreover, they show that such a strategy exists if and only if the cops can capture
the robber in a monotonic way, i.e., never returning to a vertex that a cop has previously vacated,
which implies that the moving area of the robber is monotonically shrinking.

Logical characterization of treewidth

Kolaitis and Vardi [23] proved that the class of all queries having treewidth ok coincides in

expressive power with the class Lk; which is the class of all queries that can be formulated in the k-
variable fragment of first-order logic (FO) whose connectives are restricted to existential
quantification and conjunction (i.e., :; 3; and 8 are disallowed). The logic L is the simplest and
most basic logic for database querying that allows for nested quantification; in [23], this class is
called (FO4;þ:

The game-theoretic characterization of treewidth was profitably used as a tool for proving
several results on treewidth. Moreover, it provides a nice intuitive understanding of the notion of
treewidth. The logical characterization allows us to precisely assess the expressive power of the
bounded treewidth queries.

More recently, Flum et al. [10] generalized the logical characterization of bounded treewidth by
lifting it from the level of conjunctive queries to the level of nonrecursive stratified Datalog. In
particular, they defined, for each integer k; a version of nonrecursive stratified Datalog where all
rule bodies correspond to queries of treewidth pk þ 1; and showed that this formalism is

equivalent in expressive power to FOk; i.e., to k-variable first-order logic.
Let us now turn to the hypergraph-based methods. As clearly stated in Fig. 2, the method of

hypertree width is more general than all other currently known methods. This method was
introduced in [16] as a generalization of the method of query width by Chekuri and Rajaraman [6],

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 779

which is not considered in Fig. 2 because queries of k-bounded query width are not efficiently
recognizable [16] for each constant kX4: The queries of hypertree width at most k are
polynomially recognizable for every constant k and, moreover, the hypertree decomposition
method generalizes the query decomposition method [16].

Precise definitions of the concepts of hypertree decomposition and hypertree width are
given in Section 2, and tools for computing and drawing hypertree decompositions are
available at the hypertree decomposition homepage [27]. Let us just give an informal explanation
here. In principle, a hypertree decomposition of a conjunctive query is a clustering of the
query atoms as in Fig. 1(B), where the following classical connectedness condition for join-trees
holds: If X is a variable occurring in the query, then the set of clusters in which X occurs spans a
connected subtree of the decomposition tree. However, a hypertree decomposition may deviate in
two ways from this principle: (1) An atom already used in some cluster may be reused in some
other cluster; (2) If an atom is reused, some of its variables may not be required to fulfill the
connectedness condition. Thus, each cluster v has a set of associated atoms lðvÞ and a set of
effective variables wðvÞ that are subject to the connectedness condition, while all variables that
appear in the atoms of lðvÞ but are not included in wðvÞ are ‘‘ineffective’’ for v and do not count
w.r.t. the connectedness condition. Example 2 in Section 2 shows a hypertree decomposition with
reused atoms.

At a first glance, the definition of hypertree width may seem to be rather ad hoc and intuitively
hard to grasp. In particular, until recently, it was not clear to the authors and to many of their
colleagues, whether the class HW ½k� of conjunctive queries of hypertree width pk corresponds to
a robust class that can be described in natural (i.e., less formal) terms and whether HW ½k� can be
compared to other well-known classes of queries in terms of expressive power. In view of the nice
characterizations of treewidth, these somewhat vague questions give rise to the following more
punctual questions, that are the main topics of the present paper:

* Is there a simple game-theoretic characterization of HW ½k�?
* Is there a logic for HW ½k�?
* Can the notion of hypertree width be generalized to the context of nonrecursive stratified

Datalog, and if so, does this provide us with an interesting characterization of some large
fragment of first-order logic?

We show in this paper that all three questions have an affirmative answer.

Game theoretic characterization of hypertree width: the robber and marshals game

We describe a new game, the robber and marshals game (R&Ms game). A marshal is more
powerful than a cop. While a cop can control a single variable only, i.e., a vertex of the query
hypergraph, a marshal controls an entire hyperedge (corresponding to a query atom). In the
R&Ms game, the robber moves on variables just as in the robber and cops game, but now
marshals instead of cops are chasing her. During a move of the marshals from the set of
hyperedges E to the set of hyperedges E0; the robber cannot pass through the vertices in B ¼
ð,EÞ-ð,E0Þ; where, for a set of hyperedges F ; ,F denotes the union of all hyperedges in F :
Intuitively, the vertices in B are those not released by the marshals during the move. As in the
monotonic robber and cops game, it is required that the marshals capture the robber by

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808780

monotonically shrinking the moving space of the robber. The game is won by the marshals if they
corner the robber somewhere in the hypergraph. We show that the class HW ½k� exactly
corresponds to the class of all queries Q such that k marshals have a winning strategy on the
hypergraph HðQÞ:

Logical characterization of hypertree width

We characterize HW ½k� in terms of a guarded logic. Recall that L denotes the existential
conjunctive fragment of positive FO: We show that HW ½k� ¼ GFkðLÞ; where GFkðLÞ denotes the
k-guarded fragment of L: Here, up to k atoms may jointly act as a guard. Note that for each k;
the k-guarded fragment is a subfragment of the loosely guarded fragment as defined (in the context
of full FO) by Van Benthem [4], where an arbitrary number of atoms may jointly act as guards,
see also [19].

For the particular case k ¼ 1; our characterization gives us a new characterization of the acyclic
queries stating that the acyclic queries are precisely those expressible in the guarded fragment of L:
In order to prove these results, we play the robber and marshals game on the appropriate query
hypergraphs. Thus, our proof of the logical characterization of HW ½k� already takes profit of the
game-theoretic characterization of HW ½k�:

Generalization

We generalize the notion of bounded hypertree width from the context of conjunctive queries to
the context of nonrecursive stratified Datalog programs (NRS-DATALOG). We define the class
NRS-DATALOG½k� as restriction of NRS-DATALOG, where each rule-body has hypertree-with
pk and satisfies some additional syntactical conditions. We then show that NRS-DATALOG½k�
has the same expressive power as k-guarded FO, i.e., the generalized version of guarded FO;
where a guard may consist of a conjunction of up to k atoms.

The rest of this paper is organized as follows. Section 2 contains the basic definitions. Section 3
describes the robber and marshals game and characterizes HW ½k� in terms of this game. Section 4
deals with the logical characterization of HW ½k�: Section 5 describes the generalization to
nonrecursive stratified Datalog. The paper is concluded with the description of a number of
interesting open problems in Section 6.

2. Preliminaries and basic definitions

Since we always deal with hypergraphs corresponding to conjunctive queries, the vertices of any
hypergraph H ¼ ðV ;HÞ can be viewed as the variables of some conjunctive query. Thus, we will
often use the term variable as a synonym for vertex, when referring to elements of V ; and we
assume that every variable in V occurs in at least one edge of H: Moreover, for the hypergraph
H ¼ ðV ;HÞ; varðHÞ and edgesðHÞ denote the sets V and H; respectively. For any set of edges
H 0DedgesðHÞ; let varðH 0Þ ¼

S
hAH 0 h: More generally, for any formal object a; varðaÞ designates

the set of variables occurring in a:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 781

We assume w.l.o.g. that all hypergraphs under consideration are connected, i.e., their primal
graph consists of a single connected component. All our definitions and results easily extend to
general hypergraphs.

A hypertree for a hypergraph H is a triple /T ; w; lS; where T ¼ ðN;EÞ is a rooted tree, and w
and l are labelling functions associating to each vertex pAN sets wðpÞDvarðHÞ and
lðpÞDedgesðHÞ: If T 0 ¼ ðN 0;E0Þ is a subtree of T ; we define wðT 0Þ ¼

S
vAN 0 wðvÞ: We denote the

set of vertices N of T by verticesðTÞ; and the root of T by rootðTÞ: Moreover, for any pAN; Tp

denotes the subtree of T rooted at p:

Definition 1. A hypertree decomposition of a hypergraph H is a hypertree HD ¼ /T ; w; lS for H
which satisfies all the following conditions:

1. for each edge hAedgesðHÞ; there exists a decomposition vertex pAverticesðTÞ such that
varðhÞDwðpÞ (we say that p covers h);

2. for each YAvarðHÞ; the set fpAverticesðTÞ j YAwðpÞg induces a (connected) subtree of T ;
3. for each pAverticesðTÞ; wðpÞDvarðlðpÞÞ;
4. for each pAverticesðTÞ; varðlðpÞÞ-wðTpÞDwðpÞ:

Note that the inclusion in condition 4 is actually an equality, because condition 3 implies the
reverse inclusion.

The width of a hypertree decomposition /T ; w; lS is defined as maxpAverticesðTÞjlðpÞj:
The hypertree width hwðHÞ of H is the minimum width over all its hypertree decom-
positions.

An edge hAedgesðHÞ is strongly covered in HD if there exists pAverticesðTÞ such that
varðhÞDwðpÞ and hAlðpÞ: In this case, we say that p strongly covers h: A hypertree decomposition
HD of hypergraph H is a complete decomposition of H if every edge of H is strongly covered
in HD:

Proposition 1 (Gottlob et al. [16]). For each hypergraph H having hwðHÞ ¼ k; there exists a
complete k-width hypertree decomposition of H:

The acyclic hypergraphs are precisely those hypergraphs having hypertree width one [16].
Let k be a fixed positive integer. We say that a hypergraph H has k-bounded hypertree-width if

hwðHÞpk:
In [16], it is proven that deciding k-bounded hypertree width is in LOGCFL; and thus it is a

quite easy and highly parallelizable task. Moreover, from the results in [17] it follows that even
computing a k-width hypertree decomposition (if any) is feasible in polynomial time and

parallelizable, since this problem belongs to the functional version LLOGCFL of LOGCFL: A
polynomial time algorithm for computing hypertree decompositions is described in [13], and its
implementation is available on the Web [27].

For a query Q; we define the hypertree width hwðQÞ of Q as the hypertree width of its associated
hypergraph HðQÞ; and we say that Q has k-bounded hypertree-width if hwðQÞpk:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808782

Example 2. Consider the following conjunctive query Q2:

ans’aðS;X ;X 0;C;FÞ4bðS;Y ;Y 0;C0;F 0Þ4cðC;C0;ZÞ
4dðX ;ZÞ4eðY ;ZÞ4f ðF ;F 0;Z0Þ4gðX 0;Z0Þ
4hðY 0;Z0Þ4jðJ;X ;Y ;X 0;Y 0Þ

Fig. 3 shows a (complete) hypertree decomposition HD2 of HðQ2Þ: In figure, the cluster of
atoms enclosed in a vertex p represents the label lðpÞ of p: The set of variables appearing in
(the atoms of) p represents the label wðpÞ of p; the anonymous variable ‘-’ is placed in the
arguments whose corresponding variables are in varðlðpÞÞ � wðpÞ: Thus, the presence of an
anonymous variable in an atom A reveals that atom A is reused with a subset of its variables.
For instance, let us name p the child of the root. Then, we have lðpÞ ¼ fa; bg and wðpÞ ¼
fS;X ;X 0;C;F ;Y ;Y 0;C0;F 0g: For the left child q of p; we have lðqÞ ¼ f j; cg and wðqÞ ¼
fX ;Y ;C;C0;Zg: The atom with predicate j; appearing in the root, is then reused in two further
clusters of the decomposition (together with c and f ; respectively).

Decomposition HD2 has width 2, as 2 is the maximum cardinality of the clusters of the
decomposition. Since Q2 is a cyclic query and only acyclic queries have hypertree width 1, it
follows that hwðQ2Þ ¼ 2:

This query highlights the importance of reusing query atoms (actually, the edges corresponding
to them) in the clusters of hypertree decompositions, whose allowance is a key feature of this
method. The reuse of atom with predicate j (appearing in three clusters of the decomposition) with
a subset of its variables is strongly needed to get such a low-width hypertree decomposition.
Indeed, the decomposition method based on the query width [6], which forbids such a reuse of
atoms, is less efficient than the hypertree-decomposition method on this query, as there exists no
query decomposition of width 2 for Q2 (the query width of Q2 is 3) [16].

Let H be a hypergraph, let VDvarðHÞ be a set of variables, and X ;YAvarðHÞ: Then X is ½V �-
adjacent to Y if there exists an edge hAedgesðHÞ such that fX ;YgDh � V : A ½V �-path p from
X to Y is a sequence X ¼ X0;y;Xc ¼ Y of variables such that Xi is ½V �-adjacent to Xiþ1; for
each iA½0yc� 1�: A set WDvarðHÞ of variables is ½V �-connected if, for all X ;YAW ; there is a
½V �-path from X to Y :

ARTICLE IN PRESS

Fig. 3. A 2-width hypertree decomposition of HðQ2Þ:

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 783

A ½V �-component is a maximal ½V �-connected nonempty set of variables WDvarðHÞ � V : For
any ½V �-component C; let edgesðCÞ denote the edges of H having some variable belonging to

C; i.e., edgesðCÞ ¼ fhAedgesðHÞ j h-Ca|g: Note that, by the maximality of components,
varðedgesðCÞÞ � CDV immediately follows.

Remark 1. Before concluding this section, we would like to discuss an apparent (but not real)
contrast of the tractability of queries of bounded hypertree width with recent results in [20]. Grohe
et al. [20] show that, for any class C of graphs, the evaluation problem for the class QC of all
conjunctive queries whose query graph is in C is fixed-parameter tractable if and only if C has
bounded treewidth. This means that if C has unbounded treewidth, QC is intractable unless some
unexpected collapse of fixed-parameter complexity classes happens. On the other hand, many
classes of queries of bounded hypertree width have unbounded treewidth but are still tractable.
The simplest example is the class ACYCLIC of acyclic Boolean queries (i.e., those of hypertree
width one), which is generally considered one of the most important classes in the database
literature. It is trivial to see that ACYCLIC has unbounded treewidth, but it is well-known that
queries in this class can be answered in polynomial time [33]. At a first glance, this seems to be in
contradiction with the above mentioned result of [20]. However, it is easy to see that the class of
acyclic queries cannot be represented as a class QC encompassing all queries whose query graphs
lie in some class C: In other terms, there exists no class C of graphs such that ACYCLIC ¼ QC :
Therefore, the results of [20] simply do not apply to this class, nor do they apply to many other
classes of bounded hypertree-width queries. The reason is that acyclicity and bounded hypertree
width rely on properties of hypergraphs associated with CQs, rather than on the less informative
query graphs.

Note that if one assumes a fixed database schema, then a class of queries has bounded treewidth
if and only if it has bounded hypertree width. The notion of bounded hypertree width is thus of
particular relevance in cases where the database schema is part of the input, i.e., when combined
complexity in its general setting is considered. But even in case of a fixed database schema
hypertree decompositions may be extremely useful because the hypertree width of a query can be
drastically smaller than its treewidth and thus lead to much better evaluation algorithms.

3. The robber and marshals game

An informal description of the R&Ms game was given in the Introduction. Here we formally
define the R&Ms game played on an hypergraph H ¼ /V ;HS:

A k-configuration is a pair ðM; rÞ; where M is a set of cardinality at most k of edges, and r is a
variable. Intuitively, M is the set of edges occupied by the k marshals and r is the variable where
the robber stands on. Note that the set M may contain less than k edges. This case occurs when
two marshals stand on the same edge of the hypergraph (or at the beginning of the game, when
there are no marshals at all). A k-configuration ðM; rÞ is a capture k-configuration if rAvarðMÞ;
i.e., the robber has been captured by the marshals. In this section, we always consider at most k
marshals. Thus, whenever it does not lead to confusion, we drop the k; e.g., we will write directly
‘‘configuration’’, rather than ‘‘k-configuration.’’

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808784

If ðM; rÞ is a capture configuration, then the escape space of r with respect to M; denoted by
EscapeðM; rÞ; is the empty set; otherwise, it is the ½varðMÞ�-component of H that contains r:
Indeed, at any time, the robber can run arbitrarily fast to any variable ½varðMÞ�-connected to r:

The initial configuration of a game is ð|; r0Þ; where r0 is any arbitrarily chosen variable of the
hypergraph. Since there are no marshals on the hypergraph and we assumed H to be connected,
the escape space for the initial configuration is the set of all variables V :

Let ðMi; riÞ be the configuration at the ith step. If this is not a capture configuration, the
marshals move to a new set of edges Miþ1: While the marshals are moving, the robber can move
to any variable riþ1 which is ½varðMiÞ-varðMiþ1Þ�-connected to ri: Note that ri does not
belong to varðMiÞ; hence at least ri is ½varðMiÞ-varðMiþ1Þ�-connected to itself. The pair
/ðMi; riÞ; ðMiþ1; riþ1ÞS is a feasible step. If EscapeðMiþ1; riþ1ÞgEscapeðMi; riÞ; we say that an
escape step occurred, and the robber has won. Otherwise, the game continues with the next step.
Thus, in every successful game for the marshals, the escape spaces for the robber monotonically
decrease at each step. In this case, we say that the (escape space) narrowing property holds.

Example 3. Let us play the robber-and-marshals game on the hypergraph HðQ1Þ of query Q1 in
Example 1. Let S be the variable chosen by the robber as her first position. Fig. 4 shows the initial
configuration of the R&M game on HðQ1Þ: Note that, since at this point there is no marshal on
the hypergraph, the escape space of the robber is the set of all variables varðHðQ1ÞÞ:

We can easily recognize that two marshals can always capture the robber and win the game by
using the following strategy: Independently of the initial position of the robber, the two marshals
initially move on edges fa; bg; and thus control variables T ; X ; S; R; P; Y ; U : After this move of
the marshals, the robber may be in V ; in Z or in W ; as shown in Figs. 5A, 6A, and 6B,
respectively.

If the robber is in V ; then the marshals move on edge f ; and capture the robber, as shown in
Fig. 5B (note that the robber cannot escape from V during this move, as both P and R—the only
possible ways to leave V—are kept under marshals’ control during the move).

Otherwise, if the robber is on Z or on W (see Figs. 6A and 6B, respectively), then the marshals
move on fg; cg; as shown in Fig. 7A. Since they keep the control of X ; Y ; T ; and U during the

ARTICLE IN PRESS

Fig. 4. The initial configuration of the R&M game on HðQ1Þ:

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 785

move, then the robber can escape only to variable W : Therefore, a further move on edge d allows
the marshals to eventually capture the robber, as shown in Fig. 7B.

In general, a strategy for a player in a positional game is a function sðHist;PosÞ which, for a
given history Hist of past moves and a given current position Pos, determines the next move of the
player. In order to define strategies for the marshals in the R&Ms game, we assume without loss of
generality that the game is history-independent. Indeed, it is easy to see that repetitions are not an
issue in the rules of the R&Ms game. Moreover, observe that the robber can move freely along
the edges of the hypergraph while the marshals are moving. In particular, if /ðM; rÞ; ðM 0; r0ÞS
is a feasible step. EscapeðM; rÞ ¼ EscapeðM; sÞ; and EscapeðM 0; r0Þ ¼ EscapeðM 0; s0Þ; then
/ðM; sÞ; ðM 0; s0ÞS is a feasible step, too. Therefore, intuitively, it makes no sense for marshals
to assume that the robber is at a particular vertex within a determined escape space, when they
have to decide their next move. The only relevant information for the marshals is the current
escape space of the robber. Thus, we now focus on the family of strategies where the marshals
choose their next move just on the basis of the escape space of the robber, i.e., those strategies

ARTICLE IN PRESS

Fig. 5. (A) The second configuration if the robber goes to V ; (B) move of the marshals with the robber on V (capture

position).

Fig. 6. The second configuration if the robber goes to Z (A); or the robber goes to W (B).

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808786

where marshals make a unique move for all the locations of the robber belonging to the same
escape space. For the interested reader, we formally prove in the appendix that these strategies are
in fact equivalent to general strategies where marshals can choose different moves for different
positions of the robber within the same escape space.

We define a compact k-configuration, or simply a k-configuration, if no confusion arises, as a
pair ðM;CÞ such that M is a k-location, and C is an escape space for the robber w.r.t. M; i.e., it is
either the empty set or a ½varðMÞ�-component of H:

A strategy may be conveniently represented as a function s that, given a compact k-
configuration ðM;CÞ; returns a k-location sðM;CÞ for the marshals.

Let C; C0 and Z be sets of variables. We say that C is ½Z�-connected to C0 if there are variables
XAC and YAC0 such that X is ½Z�-connected to Y :

Given a strategy s for k marshals, the game tree for s is a rooted tree T whose vertices are
compact k-configurations of the game, defined as follows. Capture configurations correspond to

vertices having the form ðM; |Þ; for some M; i.e., vertices where the robber has an empty escape-
space. Moreover, escape steps are pairs of compact k-configurations /ðM;CÞ; ðsðM;CÞ;C0ÞS
such that C0gC: The leaves of T are either configurations obtained through escape steps, or

capture configurations. The root of T is ð|;VÞ; because the (unique) escape space with respect to
no marshals is the set of all the variables V (as we assumed that the hypertree is connected). Let
ðM;CÞ be a nonleaf vertex, M 0 ¼ sðM;CÞ; and R be the set of all the ½varðM 0Þ�-components which

are ½varðMÞ-varðM 0Þ�-connected to C: If R ¼ |; then ðM;CÞ has the unique child ðM 0; |Þ
(capture configuration); otherwise, ðM;CÞ has a child ðM 0;C0Þ for each C0AR: A strategy is
winning if and only if all the leaves of its game tree are capture configurations.

Note that, for any strategy s; there are many configurations that cannot occur at all during the
game, i.e., they do not belong to the game tree for s: Clearly enough, the value of s on such
configurations is inessential for the game. Thus, in the rest of this paper, we will explicitly define
only the relevant values of any strategy s: For each other configuration ðM;CÞ; without loss
of generality, we assume the marshals do not move from their position M; i.e., we set a
sðM;CÞ :¼ M:

ARTICLE IN PRESS

Fig. 7. (A) Move of the marshals if the robber stands on W or on Z; (B) the marshals capture the robber in W :

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 787

Example 4. The strategy informally illustrated in Example 3, is a winning strategy. Precisely, its s
function is defined as follows:

sð|; varðHðQ1ÞÞÞ ¼ fa; bg;
sðfa; bg; fVgÞ ¼ f f g;
sðfa; bg; fW ;ZgÞ ¼ fg; cg;
sðfg; cg; fWgÞ ¼ fdg:

The game tree of this strategy is shown in Fig. 8.
Observe the similarity between game trees and hypertree-decomposition trees. Fig. 9 exhibits a

hypertree decomposition of hypergraph HðQ1Þ in Example 1 where, for each vertex v; we show in
the figure the set of variables wðvÞ and the set of edges lðvÞ: There is a visible correspondence
between the game tree depicted in Fig. 8 and the hypertree decomposition of Fig. 9. Moreover,
note that this hypertree decomposition is in normal form, because all the conditions of Definition
2 are satisfied. (For instance, for the root r; wðrÞ ¼ fP;R;S;T ;U ;X ;Yg and there are two ½r�-
components, namely C1 ¼ fVg and C2 ¼ fW ;Zg: Observe that C1 and C2 are the ½r�-components
associated with the left and the right children of the root, respectively, according to condition 1 in
Definition 2.) Another hypertree decomposition of HðQ1Þ; represented in a different way, is

ARTICLE IN PRESS

Fig. 8. The game tree of the strategy in Example 4.

Fig. 9. A hypertree decomposition of hypergraph HðQ1Þ in Example 1.

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808788

shown in Fig. 1b. However, this decomposition is not in normal form, because the pair of vertices
composed by the rightmost leaf and its parent violate condition 2 of Definition 2.

In fact, we next prove that every game tree of a winning strategy for k marshals on a
hypergraph H can be transformed into a legal hypertree decomposition of width k of H which is
almost isomorphic to the game tree.

Lemma 1. If k marshals have a winning strategy in the R&Ms game on a hypergraph H; then H has
hypertree width at most k:

Proof. Assume that k marshals have a winning strategy in the R&Ms game on a hypergraph H
and let T be the game tree for s on H:

From s and T ; we define a hypertree dðsÞ ¼ /T 0; w; lS: The tree T 0 of dðsÞ is equal to T ; but it
misses the last level of T : Since s is a winning strategy, this means that T 0 misses all and only the
capture configurations of T : Note that every game tree contains at least two vertices, because
the root is not a capture configuration. Let v ¼ ðM;CÞ be a nonleaf vertex of T ; v0 be the
corresponding vertex in T 0; and M 0 ¼ sðM;CÞ: Then, the labels of v0 are

* lðv0Þ ¼ M 0; and
* wðv0Þ ¼ varðM 0Þ; if v0 is the root of T 0; otherwise, wðv0Þ ¼ varðM 0Þ-ðwðuÞ,CÞ; where u is

the parent of v0 in T 0:

For instance, from the strategy in Example 4 and its game tree shown in Fig. 8, we obtain the
hypertree decomposition shown in Fig. 9.

We recall from Section 2 that, for any ½V �-component C; edgesðCÞ denotes the set of edges
having some variable belonging to C and that varðedgesðCÞÞ � CDV holds.

First we claim that, for any nonroot vertex s ¼ ðM;CÞ of T ;

varðedgesðCÞÞ � CDwðr0Þ; ð1Þ

where r0 is the vertex of T 0 corresponding to the parent of s in T :
To prove 1, we use structural induction on the tree T 0:
Basis. This claim trivially holds for the children of the root of T 0; say r0; because wðr0Þ ¼

varðlðr0ÞÞ; by construction.
Induction step: Assume that (1) holds for some vertex s0 of T 0: Let r0 be the parent of s0 in T 0; and

ðM;CÞ the vertex of T corresponding to s0: We show that (1) holds for any child t0 ¼ ðM 0;C0Þ of
s0; i.e., that varðedgesðC0ÞÞ � C0Dwðs0Þ: By construction, lðr0Þ ¼ M and lðs0Þ ¼ M 0: Since C0 is a
½varðM 0Þ�-component, varðedgesðC0ÞÞ � C0Dvarðlðs0ÞÞ holds. Let YAvarðedgesðC0ÞÞ � C0: Then,
YAvarðedgesðCÞÞ; because C0DC: Therefore, either YAvarðedgesðCÞÞ � C and hence, by the
induction hypothesis, YAwðr0Þ; or YAC: In both cases, it follows that YAwðs0Þ: Indeed, by
construction, wðs0Þ ¼ varðlðs0ÞÞ-ðwðr0Þ,CÞ: This concludes the proof of the claim.

We next prove that dðsÞ fulfills all the properties of Definition 1 and is thus a hypertree
decomposition of H:

Property 1. 8hAedgesðHÞ(vAverticesðT 0Þ s.t. hDwðvÞ:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 789

Let h be any edge of H: Recall that the root of T is ð|; varðHÞÞ; i.e., the escape space
for the robber is the whole set of the variables, and, trivially, hDvarðHÞ: Then, escape
spaces monotonically decrease at each step along every branch of the game tree. It follows

that there exists the deepest vertex r ¼ ðM;CÞ such that h-Ca| and, for each child

ðM 0;C0Þ of r; h-C0 ¼ |: Recall that every configuration that is a child of r has the same
marshals’ location M 0 ¼ sðM;CÞ: This entails that hDvarðM 0Þ; otherwise some YAh � varðM 0Þ
should belong to an escape space w.r.t. M 0 of some child of r; because any variable
XAh-C would be ½varðMÞ-varðM 0Þ�-connected to Y ; through the edge h: Let A ¼ h � C; and
B ¼ h-C: Note that BDC and ADvarðedgesðCÞÞ � C; since hAedgesðCÞ: Now, consider
the vertex r0 of T 0 corresponding to r: From (1), for its father t0; varðedgesðCÞÞ � CDwðt0Þ
holds. Moreover, lðr0Þ ¼ M 0; and we observed that hDvarðM 0Þ: By construction, wðr0Þ ¼
varðlðr0ÞÞ-ðwðt0Þ,CÞ: Therefore, wðr0Þ+varðlðr0ÞÞ-ðA,BÞ; hence hDwðr0Þ; and thus dðsÞ fulfills
property 1.

Property 2. For each variable YAvarðHÞ; the set fvAverticesðT 0Þ j YAwðvÞg induces a connected
subtree of T 0:

Assume that property 2 does not hold. Then, there exists a variable YAvarðHÞ and two vertices
v1 and v2 of T 0 such that YAðwðv1Þ-wðv2ÞÞ but the unique path from v1 to v2 in T 0 contains a
vertex s such that YewðsÞ: Note that, by the construction above, Y belongs to wðv0Þ; for some
vertex v0 of T 0; only if either Y is in the w label of the father of v0; or Y belongs to the escape space
C of the vertex v of T corresponding to v0: We say that C is the escape space associated with v0 (via
v). W.l.o.g assume that v1 is adjacent to s and that v2 is a descendant of s in T 0; i.e.,
v2AverticesðT 0

sÞ: There are two possibilities to consider:

* v1 is a child of s and v2 belongs to the subtree T 0
p of another child p of s:

Since YewðsÞ; from the above discussion and the narrowing property of strategies, it follows
that Y belongs to both the escape space associated with v1 and the escape space associated with
p: This is a contradiction, because the escape spaces associated with the children of any vertex
are pairwise disjoint.

* s is a child of v1 and v2 belongs to the subtree T 0
s of T 0 rooted at s:

Again, by our construction and the discussion above, YewðsÞ and YAwðT 0
sÞ; entails that Y

belongs to the escape space associated with s: This contradicts the narrowing property of
strategies. Indeed, YAwðv1Þ means that the marshals are controlling this variable and thus Y

does not belong to the escape space associated with v1: However, this set should include the
escape space associated with s; as sAT 0

v1
:

Property 3. 8pAverticesðT 0Þ; wðpÞDvarðlðpÞÞ:

Follows from the definition of the w labelling in our construction.

Property 4. 8pAverticesðT 0Þ; varðlðpÞÞ-wðT 0
pÞDwðpÞ:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808790

Assume a vertex p in T 0 does not fulfill this property, and let ðM;CÞ the label of its
corresponding vertex in T : Since wðpÞDwðT 0

pÞ; this means that there is a vertex s in the subtree T 0
p

that witnesses this violation, i.e., such that varðlðpÞÞ-wðsÞD/ wðpÞ: Without loss of generality,
assume there is no other witness of this violation that is closer to p than s; and let r be the parent
of s in T 0

p: Thus, there is a variable YAvarðlðpÞÞ-wðsÞ such that YewðpÞ and YewðrÞ: Let

ðM 0;C0Þ be the vertex corresponding to s in T : By construction, wðsÞ ¼ varðlðsÞÞ-ðwðrÞ,C0Þ:
Since YewðrÞ; it follows that YAC0: However, T is a winning strategy, then C0CC; and hence we
get YAC that, together with YAlðpÞ; entails YAwðpÞ; a contradiction. &

The converse also holds, i.e., each k-width hypertree decomposition in a certain form, formally
defined below, gives rise to a winning strategy s for k marshals whose game tree is very similar to
the decomposition tree. To prove this result, we first need some additional notation and a normal
form for hypertree decompositions.

Let HD ¼ /T ; w; lS be a hypertree for H: For any vertex v of T ; we will often use v as a
synonym of wðvÞ: In particular, ½v�-component denotes ½XðvÞ�-component; the term ½v�-path is a
synonym of ½wðvÞ�-path; and so on.

Definition 2 (Gottlob et al. [16]). A hypertree decomposition HD ¼ /T ; w; lS of a hypergraph H
is in normal form ðNFÞ if, for each vertex rAverticesðTÞ; and for each child s of r; all the following
conditions hold:

1. there is (exactly) one ½r�-component Cs such that wðTsÞ ¼ Cs,ðwðsÞ-wðrÞÞ;
2. wðsÞ-Csa|; where Cs is the ½r�-component satisfying condition 1;
3. varðlðsÞÞ-wðrÞDwðsÞ:

Proposition 2 (Gottlob et al. [16]). For each k-width hypertree decomposition of a hypergraph H
there exists a k-width hypertree decomposition of H in normal form.

Intuitively, each subtree rooted at a child node s of some node r of a normal form
decomposition tree serves to decompose precisely one ½r�-component. We next introduce a useful
notation for such components. If HD ¼ /T ; w; lS is an NF hypertree decomposition of a
conjunctive query Q; we can associate a set treecompðsÞDvarðQÞ with each vertex s of T as
follows.

* If s ¼ rootðTÞ; then treecompðsÞ ¼ varðQÞ;
* otherwise, let r be the father of s in T ; then, treecompðsÞ is the (unique) ½r�-component Cs such

that wðTsÞ ¼ Cs,ðwðsÞ-wðrÞÞ:
Note that, since sAverticesðTsÞ; also wðTsÞ ¼ Cs,wðsÞ holds.

We recall from [16] two important properties of NF hypertree decompositions.

Lemma 2 (Gottlob et al. [16]). Let /T ; w; lS be an NF hypertree decomposition of a hypergraph
H; and r be a vertex of T : Then, C ¼ treecompðsÞ for some child s of r if and only if C is an ½r�-
component of H and CDtreecompðrÞ:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 791

Lemma 3 (Gottlob et al. [16]). Let /T ; w; lS be an NF hypertree decomposition of a hypergraph
H; s a vertex of T ; and C a set of variables such that CDtreecompðsÞ: Then, C is an ½s�-component if

and only if C is a ½varðlðsÞÞ�-component.

Lemma 4. If a hypergraph H has hypertree width k; then k marshals have a winning strategy in the

R&Ms game on H:

Proof. Let HD ¼ /T ; w; lS be a k-width hypertree decomposition of H: By Proposition 2, we
may assume without loss of generality that H is in normal form. From HD we build a winning

strategy s as follows. If s is the root of T ; define sð|; varðHÞÞ ¼ lðsÞ: Otherwise, let v be the
parent of s in T and C ¼ treecompðsÞ: Then, define sðlðvÞ;CÞ ¼ lðsÞ: Note that s has been defined
only on configurations of a particular form; but we will see that the other configurations are
inessential, as they do not arise in the game tree of s:

For instance, from the hypertree decomposition in normal form shown in Fig. 9, we obtain the
strategy in Example 4.

Let T 0 be the game tree of s: We next show that T 0 has precisely the same tree shape as T ; but it
has one further level of vertices than T ; i.e., T is isomorphic to the subgraph T 0

nl of T 0 which does

not contain the leaves of T 0 (e.g., see Figs. 9 and 8.)

Claim A. There exists a transformation g from T to T 0 such that, if s is a vertex of T with parent v;
then

A1. gðsÞ ¼ ðlðvÞ; treecompðsÞÞ;
A2. gðvÞ is the parent of gðsÞ in T 0; and

A3. if s is not a leaf of T ; then s and gðsÞ have precisely the same number of children.

Proof. We proceed by induction on the depth of the vertices of T : We inductively define g and
prove properties A1–A3:

Basis of the induction (depth 1): Let v and v0 be the root of T and the root of T 0; respectively.

The image gðvÞ of v under g is obviously set to v0: By definition of game tree, v0 ¼ ð|;VÞ;
where V ¼ varðHÞ: Since sðv0Þ ¼ lðvÞ; v0 has precisely one child s0 ¼ ðlðvÞ;CÞ for each

½varðlðvÞÞ�-component C (as every ½varðlðvÞÞ�-component is ½|�-connected to V). On the other
hand, by Lemma 2, v has exactly one child s for each ½wðvÞ�-component. Therefore, v has
one child s for each ½varðlðvÞÞ�-component, as wðvÞ ¼ varðlðvÞÞ for the root v of an hypertree
decomposition (it follows immediately from item 4 of Definition 1). Therefore, v and
gðvÞ have, respectively, a child s and a child s0 for each ½varðlðvÞÞ�-component. Thus, we set
gðsÞ ¼ ðlðvÞ;CÞ; where C is the ½varðlðvÞÞ�-component treecompðsÞ: Properties A1–A3 are
evidently satisfied.

Induction step: Assume that properties A1–A3 hold for depth n: We prove that they hold for
depth n þ 1 as well.

Let v be a vertex of T of depth n; and v0 ¼ gðvÞ: By the induction hypothesis, gðvÞ ¼
ðlðpÞ; treecompðvÞÞ; where p is the parent of v: If v is a leaf of T ; then we are done. Otherwise, from
Lemma 2, v has exactly a child si for each ½wðvÞ�-component C contained in treecompðvÞ; where C is
also a ½varðlðvÞÞ�-component, by Lemma 3.

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808792

On the other hand, from the definition of s and from the definition of game-tree, the vertex gðvÞ
has exactly a child s0i ¼ ðlðvÞ;CiÞ for each ½varðlðvÞÞ�-component Ci which is ½varðlðpÞÞ-varðlðvÞÞ�-
connected to the set of variables treecompðvÞ: Clearly, every ½varðlðvÞÞ�-component contained in
treecompðvÞ is also ½varðlðpÞÞ-varðlðvÞÞ�-connected to treecompðvÞ (as it contains some variable in
treecompðvÞ which is not in varðlðvÞÞ). We next show that also the converse holds, i.e., every
½varðlðvÞÞ�-component which is ½varðlðpÞÞ-varðlðvÞÞ�-connected to treecompðvÞ is contained in
treecompðvÞ:

By contradiction, suppose that the converse does not hold. Then, there is a ½varðlðvÞÞ�-
component C which is ½varðlðpÞÞ-varðlðvÞÞ�-connected to treecompðvÞ; but it is not contained in
treecompðvÞ: The edge h connecting C to treecompðvÞ must necessarily contain a variable X which
is in treecompðvÞ and a variable Y of C which is either in lðpÞ � lðvÞ or in lðvÞ � lðpÞ: Since C is a
½varðlðvÞÞ�-component, Y cannot be in lðvÞ; and it therefore belongs to lðpÞ � lðvÞ: From property
1 of Definition 1, there is a vertex r of HD such that hDwðrÞ: If r belongs to the subtree of HD

rooted at v; then it violates the connectedness condition (property 2 of Definition 1) for variable
Y ; otherwise, it violates the connectedness condition for variable X (a contradiction).

Therefore, v and gðvÞ have, respectively, a child si and a child s0i; for each ½varðlðvÞÞ�-component

which is contained in treecompðvÞ: We set gðsiÞ ¼ ðlðvÞ;CÞ; where C is the ½varðlðvÞÞ�-
component treecompðsiÞ: Properties A1–A3 are satisfied. &

By virtue of Claim A, the tree shape of the game-tree T 0 is equal to the shape of T ; up to the
leaves of T : However, if s0 is the image gðsÞ of a leaf s of T ; then Claim A does not say anything
about its possible children. We next show that the leaves of T 0 are children of the images under g
of leaves of T :

Let l be a leaf of T with parent v; and let gðlÞ ¼ ðlðvÞ; treecompðlÞÞ be its image. Since l is a leaf

of T ; treecompðlÞ is contained in varðlðlÞÞ: Therefore, the child of gðlÞ in T 0 is ðlðlÞ; |Þ; and it is a
leaf of T 0:

Hence, every leaf of T 0 is a capture configuration, and s is a winning strategy for k marshals
on H: &

Lemmas 1 and 4 imply the following theorem, which states the relationship between the R&Ms
game played on a hypergraph and its hypertree decompositions.

Theorem 1. A hypergraph H has hypertree width at most k if and only if k marshals have a winning
strategy in the R&Ms game on H:

Since deciding whether a hypergraph has bounded hypertree width is in LOGCFL [16], we
immediately get the following upper bound on the complexity of playing the R&Ms game.

Corollary 1. Let k be a fixed constant. Deciding whether k marshals have a winning strategy in the
R&Ms game on a hypergraph H is in LOGCFL.

It is worthwhile noting that, from the equivalence between acyclic and hypertree-width-one
hypergraphs, we get a nice game characterization of acyclic hypergraphs.

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 793

Corollary 2. A hypergraph H is acyclic if and only if one marshal has a winning strategy in the
R&Ms game on H:

4. Logical characterization

In this section we give a logical characterization of queries of bounded hypertree width. We
show that, for each constant k; a simple and appealing fragment GFkðLÞ of FO precisely captures
the class HW ½k� of queries whose hypertree width is bounded by k: For simplicity, we limit our
attention here to Boolean queries and, accordingly, to closed first-order formulas. However, our
characterization extends to non-Boolean queries and to formulas with free variables.

Definition 3. We denote by L the fragment of FO sentences that are built from query atoms,
existential quantifiers, and conjunctions. Moreover, we denote by ACYCLIC the class of all
acyclic conjunctive queries, and by HW ½k� the class of all conjunctive queries having hypertree
width at most k:

Note that Kolaitis and Vardi [23] denoted the fragment L by (FO4;þ: They pointed out that the

expressive power of this fragment is the same as the expressive power of conjunctive queries. We
next generalize the well-known notion of guarded formulas to the case where, rather than just one
guard, formulas may have up to k guards, for some k40:

Definition 4. Let L be a logic which is either FO; or a restriction thereof. Then, the set of the k-
guarded formulas of L is the smallest set of formulas GkðLÞ such that

* every atom of L belongs to GkðLÞ;
* let } be any binary connective of L and let j1;j2AGkðLÞ: Then, j1}j2AGkðLÞ;
* if : is a connective of L and jAGkðLÞ; then :jAGkðLÞ;
* let a1;y; ai be atoms, with 1pipk; and let j be a formula in GkðLÞ: If

freeðjÞDvarða1Þ,?,varðaiÞ; then, for each tuple of variables %y; the formula
j0 : (%yða14?4ai4jÞ belongs to GkðLÞ: Moreover, the set of atoms fa1;y; aig is referred
to as the guard of j0 and is denoted by guardðj0Þ:3

The k-guarded fragment GFkðLÞ consists of all k-guarded sentences of L: For k ¼ 1; we also
write GFðLÞ and simply refer to it as the guarded fragment of L:

Example 5. Consider the following formula F; equivalent to query Q1 of Section 1:

F ¼ (S;X ;T ;R;Y ;U ;PðaðS;X ;T ;RÞ4bðS;Y ;U ;PÞ4ð(Vf ðR;P;VÞÞ
4ð(ZðgðX ;YÞ4cðT ;U ;ZÞ4ð(WdðW ;X ;ZÞÞ4eðY ;ZÞÞÞÞ

ARTICLE IN PRESS

3 Note that, given that we omit parentheses in conjunctions of multiple atoms, for some formulas c; guardðcÞ may

not be uniquely determined because several leading conjunctions of atoms may cover the free variables in the remaining

conjuncts. In case of such an ambiguity we may always choose the smallest such sequence as the guard guardðj0Þ:
Moreover, we extend in the obvious way the last item of Definition 4 to the trivial case where j is empty and

corresponds to the truth constant true and is actually not written, i.e., where j0 is simply (%yða14?4aiÞ:

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808794

The formula F is a 2-guarded formula, i.e., FAGF2ðLÞ: The guard of formula F is guardðFÞ ¼
faðS;X ;T ;RÞ; bðS;Y ;U ;PÞg: For the inner existential formulas c1 ¼ (Vf ðR;P;VÞ;
c2 ¼ (ZðgðX ;YÞ4cðT ;U ;ZÞ4ð(WdðW ;X ;ZÞÞ4eðY ;ZÞÞ and c3 ¼ (WdðW ;X ;ZÞ; we have
the following guards: guardðc1Þ ¼ f f ðR;P;VÞg; guardðc2Þ ¼ fgðX ;YÞ; cðT ;U ;ZÞg; and
guardðc3Þ ¼ fdðW ;X ;ZÞg:

Definition 5. A formula is straight if

1. each of its bound variables is quantified over only once, and
2. each quantified variable occurs in some atom within the scope of its quantifier.

Lemma 5. Every formula in GFkðLÞ is equivalent to some straight formula of GFkðLÞ:

Proof (Sketch). To achieve condition 1, it is sufficient to suitably rename variables which are
multiply quantified. To achieve condition 2, it is sufficient to remove vacuous quantifications. It is
easy to see that these adjustments preserve k-guardedness. &

Definition 6. Let FAGFkðLÞ be a straight formula. The conjunctive query QF associated with
F is the query ‘‘ans’bodyF’’, where bodyF consists of the conjunction of all atoms occurring
in F:

Example 6. The query QF associated with the 2-guarded straight formula F of Example 5 is the
query Q1 of Example 3.

Lemma 6. Let FAL be a straight sentence. Then QF � F; i.e., for each database DB; DBFF if and
only if DBFQF:

Proof (Sketch). It suffices to move all quantifiers of F in front. We get an equivalent formula in
prenex form which is in turn equivalent to the conjunctive query QF: &

Notation. For straight sentences FAL; HðFÞ denotes the hypergraph HðQFÞ:

Definition 7. A straight sentence FAL is connected if HðFÞ is connected.4 Then, F is
disconnected if HðFÞ consists of more than one connected components.

Lemma 7. Let FAGFkðLÞ be a disconnected straight sentence whose hypergraph HðFÞ has r
connected components C1;y;Cr: Let Q1;y;Qr be the Boolean conjunctive queries corresponding

to these components. Then there exist connected sentences F1;y;FrAGFkðLÞ such that F �
F14F24?4Fr and, for 1pipr; QFi

¼ Qi: Moreover, hwðQFÞ ¼ maxfhwðQiÞ j 1piprg:

ARTICLE IN PRESS

4 Here, we refer to the standard notion of component in hypergraph theory, which corresponds to the notion of

½|�-component defined in Section 2.

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 795

Proof. For 1pipr; obtain Fi from F by simply eliminating all atoms not belonging to
component Ci; and by eliminating all quantifiers over variables outside Ci: Each formula Fi is still
k-guarded: all relevant guards for the remaining variables have their variables in Ci and were thus
not removed. By definition of Fi it holds that QFi

¼ Qi: Moreover, by repeated application of the
rule

(xyðC1ðxÞ4C2ðyÞÞ � ½ð(xC1ðxÞÞ4ð(yC2ðyÞÞ�
which is valid for disjoint lists of variables x and y; we get that F � F14F24?4Fr: Finally, the
hypertree width of any hypergraph consisting of the union of a number of connected components
is (by the definition of hypertree width) equal to the maximum of the hypertree widths of
the components. This applies in particular to HðFÞ ¼ HðQFÞ ¼

S
1pipr HðQiÞ; and thus

hwðQFÞ ¼ maxfhwðQiÞ j 1piprg: &

Definition 8. Let F be a straight sentence in GFkðLÞ and let C be a set of variables occurring in F:
Then we denote by GFðCÞ the smallest guarded subformula of F containing all quantifiers that
quantify over the variables in C:

The following lemma follows immediately from Definition 8.

Lemma 8. Let F be a straight sentence in GFkðLÞ; let M and M 0 be sets of edges from HðFÞ; and let

C be a ½varðMÞ�-component and C0 a ½varðM 0Þ�-component. If C0DC; then GFðC0Þ is a subformula of
GFðCÞ:

Lemma 9. Let F be a straight sentence in GFkðLÞ; where HðFÞ is connected. Let C be a ½varðMÞ�-
component of HðFÞ; where MDedgesðHðFÞÞ: Then GFðCÞ is an existential subformula of F:

Proof. First note that if an atom A contains some variable from C then A must occur within
GFðCÞ and cannot occur in F outside GFðCÞ because F is a sentence and hence all its variables are
quantified.

Towards a contradiction assume that GFðCÞ is a conjunctive subformula a4b of F: Note that a
and b partition the variables of C: Then, some variable of C; say x; must occur in a and not in b;
and some variable y must occur in b but not in a: (This follows from both the fact that every
variable is quantified only once in F and that GFðCÞ is minimal.) However, x and y are both in C

and are thus ½varðMÞ�-connected, hence there is a chain of variables x ¼ x1;x2;y;xr ¼ y in C and
there are atoms A1½x1;x2�;A2½x2; x3�;y;Ar�1½xr�1;xr� of F; where A½u; v� means that u and v both
occur in A: But then one of these atoms Ai½xi; xiþ1� must be such that xi occurs only in a and xiþ1

occurs only in b: This, however, is impossible, because then the atom Ai½xi; xiþ1� could neither
belong to a nor to b: Contradiction. The claim is proved. &

Definition 9. A strong hypertree decomposition of a hypergraph H is a hypertree decomposition
/T ; w; lS of H such that, for each vertex v of T ; wðvÞ ¼ varðlðvÞÞ: The strong hypertree width
strhwðHÞ of H is the smallest integer h such that there exists a strong hypertree decomposition of
width h of H: Accordingly, if H is a hypergraph corresponding to a query Q; then we define

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808796

strhwðQÞ :¼ strhwðHÞ: The set of all conjunctive queries Q such that strhwðQÞpk is denoted by
STRHW ½k�:

Lemma 10. STRHW ½k� ¼ HW ½k�; i.e., for each conjunctive query Q there exists an equivalent

conjunctive query Q0 such that strhwðQ0Þ ¼ hwðQÞ; and vice-versa.

Proof. The direction STRHW ½k�DHW ½k� follows trivially from the definition of strong hypertree
width. Let us show that HW ½k�DSTRHW ½k�: Let Q be a query and let D ¼ /T ¼ ðV ;EÞ; w; lS
be a hypertree decomposition of HðQÞ of width hpk which is not strong. By Proposition 1, we
may assume, without loss of generality, that D is a complete hypertree decomposition.

Since D is not a strong hypertree decomposition, there are vertices pAT such that some variable
XAlðpÞ does not belong to wðpÞ: We next show that D can be transformed into a width h strong
hypertree decomposition of a query Q0 equivalent to Q: Intuitively, for each vertex containing
such problematic variables, the new query Q0 contains a new atom where these variables are
suitably replaced by fresh ones.

Note that a hyperedge e may occur in the l-labels of multiple nodes. A hyperedge occurrence
can be described as a pair ðe; vÞ; where e is a hyperedge, v is a vertex of T ; and eAlðvÞ: Let Occ

denote the set of all hyperedge occurrences in D: We assume w.l.o.g. that there is a function
f : Occ-atomsðQÞ such that

S
aAOcc f ðaÞ ¼ atomsðQÞ: In fact, if such a function does not exist,

then we can transform as follows the complete decomposition D to a complete decomposition D�

of the same width, for which such a function exists. First associate with each occurrence ðe; vÞ all
query atoms A such that varðAÞ ¼ e: Note that each occurrence has at least one associated atom
and all of atomsðQÞ is covered this way; however, to some occurrences, more than one query
atoms may be associated. For each occurrence ðe; vÞ which has only one associated query atom A;
let f ðe; vÞ :¼ A: For each occurrence ðe; vÞ to which several atoms are associated, do the following.
Choose one particular associated atom A among this set and let f ðe; vÞ :¼ A: For each atom BaA

associated with ðe; vÞ; create a new child vB of v; let lðvBÞ :¼ fvarðBÞg ¼ feg and wðvBÞ ¼
wðvÞ-varðBÞ; and define f ðe; vBÞ :¼ B: It is obvious that f is a function with the desired property,
and that D� is a hypertree decomposition of H having the same width as D (we just added leaves
with singleton l-labels to D).

We transform Q to Q0 and D to D0 ¼ /T ; w0; l0S such that Q � Q0 and D0 is a strong hypertree
decomposition of HðQ0Þ:

For each vertex v of T ;

* l0ðvÞ is obtained from lðvÞ by replacing, in every edge eAlðvÞ; each variable of varðlðvÞÞ � wðvÞ
by a new variable not occurring anywhere else. (Note: This replacement is done in the label lðvÞ
only, not in the query itself.) Denote the corresponding variable substitution by Wv: We thus

have l0ðvÞ ¼ feWv j eAlðvÞg:
* w0ðvÞ :¼ varðl0ðvÞÞ:

We furthermore define headðQ0Þ ¼ headðQÞ and

bodyðQ0Þ :¼
[

vAT

f f ðe; vÞWv j eAlðvÞg:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 797

Note that atomsðQÞDatomsðQ0Þ: In fact, by the completeness of decomposition D; each atom of Q

is entirely covered by wðvÞ for some vertex v of T and thus survives while lðvÞ is transformed into

l0ðvÞ: It is not hard to see that the resulting Q0 is equivalent to Q and that D0 is a correct strong
hypertree decomposition for Q0 having the same width h as T : &

Remark 2. At a first glance, the above lemma may suggest that one could give up on general
hypertree decompositions and concentrate on strong hypertree decompositions instead, given that
STRHW ½k� ¼ HW ½k�: We have two good reasons for not doing so. First, the equality
STRHW ½k� ¼ HW ½k� is valid at the semantical query level only, but not at the syntactic level.
For many conjunctive queries Q; it holds that strhwðQÞ4hwðQÞ: Second, it can be seen that the
problem of determining whether strhwðQÞpk is NP-hard for fixed constants kX4: (This is
implicit in our proof for the NP-hardness of checking for bounded query width in [16].)

We next provide a very natural logical characterization of conjunctive queries having hypertree
width at most k in terms of k-guarded formulas. For two query languages or logics L1 and L2; we
write L1 ¼ L2 in order to express that L1 and L2 allow one to formulate exactly the same class of
queries, where a query is defined semantically as a mapping from finite structures to finite
structures (or to ftrue; falseg; if we restrict ourselves to Boolean queries). The equality L1 ¼ L2 is
thus a semantic equality and does not mean that L1 and L2 express the same syntactic queries, nor
that the syntactic queries expressible in L1 can be efficiently translated into equivalent syntactic
queries of L2 or vice versa.

Theorem 2. HW ½k� ¼ GFkðLÞ:

Proof. We first show that GFkðLÞDHW ½k�: Let FAGFkðLÞ be a k-guarded sentence. By virtue of
Lemma 5 we assume w.l.o.g. that F is straight. By Lemma 6, F is equivalent to the conjunctive
query QF: It thus suffices to prove that QFAHW ½k�: If HðFÞ is not connected, then, by Lemma 7,
proving that QFAHW ½k� amounts to proving that, for a number of formulas FiAGFkðLÞ whose
hypergraph HðFiÞ is connected, it holds that QFi

AHW ½k�: Therefore, we may assume w.l.o.g.
that F is connected.

To prove that QFAHW ½k�; we play the robber and marshals game on the hypergraph HðFÞ ¼
HðQFÞ:

In particular, we show that there is a winning strategy for k marshals on this hypergraph.

Note that, since HðFÞ is connected, varðFÞ is a ½|�-component. By Lemma 9, F ¼ GFðvarðFÞÞ
itself must be an existential formula.

Let us define a strategy s as follows:
If M is a position for the marshals and C is an ½M�-component, then sðM;CÞ ¼

guard�ðGFðCÞÞ; where, for each existentially quantified k-guarded subformula C of F;
guard�ðCÞ denotes the set of hyperedges of HðFÞ that correspond to the atoms of guardðCÞ:

Note that, as defined in Section 3, the game always begins with the k-configuration ð|;VÞ;
where V ¼ varðFÞ is the set of variables of the hypergraph. Thus the starting move of s is well

determined by sð|;VÞ ¼ guard�ðFÞ: Moreover, at any time of the game, for every node ðM;CÞ;
by Lemma 9, the formula GFðCÞ is an existential subformula of F:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808798

In order to show that s is a winning strategy for k marshals on HðFÞ; it suffices to show by
induction that each nonleaf vertex ðM;CÞ of the game tree T w.r.t. strategy s fulfills the following
property PðM;CÞ:
PðM;CÞ: For each child ðM 0;C0Þ of ðM;CÞ in T ; it holds that C0CC:
Indeed, this property entails that there are no escape steps and that, eventually, each branch

ends up in a capture configuration. To prove P; we use induction on the depth dðM;CÞ of ðM;CÞ
in the tree T (where the root has depth 0).

Induction basis: dðM;CÞ ¼ 0: In this case, we have M ¼ | and C ¼ V ¼ varðFÞ: The formula F
is of the form (x; yðguardðFÞ4CÞ; where x ¼ varðguardðFÞÞ is a nonempty list of variables (for
otherwise ðM;CÞ would be a leaf of T), and y is a possibly empty list of superfluous variables not

occurring anywhere else. Then, M 0 ¼ sð|;VÞ ¼ guard�ðFÞ: Thus, by the definition of game tree,

the children of the root ð|;VÞ are all the vertices ðguard�ðFÞ;C0Þ where C0 is a ½varðguard�ðFÞÞ�-
component of HðFÞ: All occurrences of the variables of C0 are entirely inside the guarded formula
C; therefore C0DC: Moreover, the variables in x belongs to guard�ðFÞ and hence do not belong
to C0: Therefore C0CC:

Induction step: Assume that property P holds for all non-leaf vertices of T at depth i � 1X0:
Let ðM;CÞ be a nonleaf vertex at depth i and let ðM0;C0Þ be its parent node in T : Let ðM 0;C0Þ be
a child of ðM;CÞ in T : We have to prove that C0CC: If C0 is the empty escape space, then we are
done. Otherwise, C0 is a ½varðM 0Þ�-component, where M 0 ¼ sðM;CÞ ¼ guard�ðGFðCÞÞ:

Let us first show that C0DC: To show this, it suffices to prove that during the move M-M 0 of
the marshals, the robber is unable to escape outside C: Towards a contradiction, assume the
contrary. Then, there are a variable tAC0 � C and a variable sAC such that there is a
½varðMÞ-varðM 0Þ�-path from s to t: Note that teC; hence s is not ½varðMÞ�-connected to t: It
follows that there exist a variable zAvarðMÞ � varðM 0Þ and a variable uAC such that:

* t is ½varðMÞ-varðM 0Þ�-connected to z; and
* u and z both occur in some atom A½u; z� of QðFÞ (possibly with other variables).

Intuitively, during the move M-M 0 of the marshals, the robber can leave C; going from s to t by
crossing the ‘‘bridge’’ atom A½u; z�:

Consider the subformula GFðCÞ of F: This subformula is of the form ð(%yÞðG4CÞ where G is the
guard of GFðCÞ; i.e., G consists of the conjunction of all atoms of the set guardðGFðCÞÞ: Recall
that the set varðGÞ ¼ varðM 0Þ contains all free variables of C:

Assume zAfreeðCÞ: Then z must also belong to varðGÞ ¼ varðM 0Þ and thus
zAvarðMÞ-varðM 0Þ which is impossible, given that zAvarðMÞ � varðM 0Þ:

Now assume that z belongs to the set boundðCÞ of bound variables of C: By the induction
hypothesis we have CCC0 and therefore, by Lemma 8, GFðCÞ is a subformula of GFðC0Þ: Since z

appears in M ¼ guard�ðGFðC0ÞÞ but does not appear in M 0 ¼ guard�ðGFðCÞÞ; the formula GFðCÞ
must be a proper subformula of GFðC0Þ: It follows that C is a proper subformula of GFðC0Þ: Our
assumption that zAboundðCÞ implies that z cannot occur outside C; however, it does occur in
M ¼ guard�ðGFðC0ÞÞ; and guardðGFðC0ÞÞ is outside C: Therefore, z cannot belong to boundðCÞ:

Given that z is neither in freeðCÞ nor in boundðCÞ and does not even occur in the guard of
GFðCÞ; the atom A½u; z� must occur somewhere in F outside the subformula GFðCÞ: But this is
impossible: The variable u belongs to C and is, by definition of GFðCÞ; existentially quantified

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 799

within the subformula GFðCÞ: Given that F is a straight sentence, u cannot appear in F outside of
the subformula GFðCÞ:

In summary, we have refuted the assumption that during the move M-M 0 the robber can
escape outside C; and we have thus proven that C0DC:

To prove PðM;CÞ; it remains to show that this inclusion is proper, i.e., that C0CC: By
definition, GFðCÞ is the smallest guarded subformula of F that quantifies over all variables from
C: We have GFðCÞ ¼ ð(%yÞðG4CÞ where G is the guard and C is a guarded subformula. Assume
that no variable from C appears in the quantifier prefix of GFðCÞ: Then C is a guarded
subformula containing all quantifiers for the variables of C: This contradicts the minimality of
GFðCÞ: It follows that at least for one variable xAC; a quantification ‘(x’ appears in the quantifier
prefix of GFðCÞ: Given that xAC; some atom A½x� in which x appears must occur in GFðCÞ: If
A½x� occurs in C; then it occurs freely in C and therefore x must also occur in the guard G: If A½x�
does not occur in C; it must be one of the guard atoms of G: Thus, in any case, the variable x must
occur in the guard G: But varðM 0Þ ¼ varðGÞ; and therefore x occurs in M 0 and cannot occur in C0:
Thus C0CC: This concludes the proof that GFkðLÞDHW ½k�:

We now show that HW ½k�DGFkðLÞ: Let Q be a conjunctive query and let /T ; w; lS be a width
k hypertree decomposition of HðQÞ: By Proposition 1, we may assume, without loss of generality,
that /T ; w; lS is a complete hypertree decomposition. Moreover, by Lemma 10 and its proof, we
may assume, without loss of generality, that it is a strong hypertree decomposition, i.e., for each
vertex vAverticesðTÞ; it holds that varðlðvÞÞ ¼ wðvÞ:

We construct from Q an equivalent formula FQAGFkðLÞ as follows. The root r0 of T

corresponds to the entire formula FQ ¼ formðr0Þ and each vertex v of T corresponds to a

subformula formðvÞ of FQ such that the composition of FQ from these subformulas exactly

corresponds to the structure of T :
In particular, for each vertex v of T ; define formðvÞ ¼ ð(%yÞðG4CÞ; where

* (%y is a quantifier prefix that existentially quantifies over all variables in varðlðvÞÞ that do not
already appear in varðlðuÞÞ for some predecessor u of v in T ;

* G consists of the conjunction
V

eAlðvÞ firstðeÞ; where firstðeÞ is the lexicographically first atom A

of Q such that varðAÞ ¼ e; and
* C is the conjunction of all other atoms A of Q such that varðAÞDvarðlðvÞÞ and ofV

wAchðvÞ formðwÞ; where chðvÞ denotes the set of the children of v in T :

It is very easy to see that FQ ¼ formðr0Þ is in GFkðLÞ and is equivalent to Q: In particular, the

guardedness of FQ follows immediately from the fact that the decomposition /T ; w; lS satisfies

the connectedness condition for variables. &

Note that, as recently observed by J. Flum (pers. comm.), and independently noticed by
ourselves, a direct proof of the relationship GFkðLÞDHW ½k� is also possible. This direct proof,
rather than recurring to the robber and marshals game, directly constructs a strong hypertree
decomposition from a straight GFkðLÞ sentence. In essence, the direct proof takes the k-guards of
the formula as l-labels of a strong hypertree decomposition, starting with the main (i.e., outer
level) guard guardðFÞ; and recursively adding a child labelled by guardðCÞ for each guarded

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808800

subformulas C of the next nesting level. It then remains to show that the constructed labelled tree
is effectively a hypertree decomposition. Both proofs are very similar; in fact, the winning strategy
s defined in the proof of Theorem 2 and the hypertree decomposition obtained in the sketched
direct proof correspond to each other. We used the game-theoretic proof in order to exhibit
robbers and marshals ‘‘at work’’.

Not surprisingly, given the relationship between acyclic queries and bounded hypertree-width
queries, the above result also gives a very simple yet elegant logical characterization of acyclic
conjunctive queries.

Corollary 3. ACYCLIC ¼ GFðLÞ:

This corollary is reminiscent of two recent investigations that connect guardedness with
acyclicity in a more general context, dealing with full first-order logic FO rather than with the
fragment L:

In [12], a translation from the alternation-free fragment of fixpoint logic into a version of
Datalog called Datalog LITE is given. Restricting the domain of this translation to GFðFOÞ yields
a translation from GFðFOÞ to a form of acyclic Datalog.

A stronger, more explicit, and bidirectional connection between guardedness and acyclicity at
the full first-order level was given in a recent paper by Flum et al. [10]. Roughly speaking, they
proved that the guarded fragment GFðFOÞ of first-order logic is equivalent to the class of
nonrecursive stratified Datalog programs having acyclic rules. Note that Corollary 3 is not
directly covered as a special case of their result, because a guarded sentence of L with nested
quantified subformulas is translated in their approach (similarly as in [12]) into a Datalog
program with several acyclic rules. However, by suitable modifications of the translation,
specifically, by converting the resulting Datalog program into a single acyclic query, one obtains
an alternative way of proving Corollary 3.

5. On K-guarded first-order queries and datalog

Inspired by the interesting work of Flum et al. [10], we show in this section that the
correspondence between k-guarded formulas and queries of k-bounded hypertree width can be
lifted to the more expressive contexts of full first-order logic and stratified Datalog, respectively.

We assume the reader to be familiar with the basics of Datalog. A literal is an atom (positive
literal) or a negated atom (negative literal). As usual in deductive databases, we consider safe
Datalog programs, i.e., programs where, for each rule H’B; every variable occurring either in
the head H; or in some negated literal in the body B; must occur also in some positive literal in B:
We denote the set of literals of the body B by litðBÞ: Predicates defined by the rules of a Datalog
program are called intensional database ðIDBÞ predicates, while predicates corresponding to input
database relations are called extensional database ðEDBÞ predicates. Accordingly, atoms with IDB
(resp., EDB) predicate symbols are called IDB (resp., EDB) atoms.

For brevity, we will restrict our attention to closed FO sentences and Boolean Datalog queries,
but the following results can be generalized to queries with output in a similar way as done in [10].
A Boolean Datalog program P is a Datalog program jointly specified with some Boolean

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 801

‘‘output’’ atom p which occurs in one or more of its rule heads. We say that the program P

evaluates to true over a database DB if p can be derived from DB via P:
Given a set S of literals, HðSÞ is the hypergraph whose set of edges is fvarðLÞ j LASg: We

denote the class of all nonrecursive stratified (safe) Boolean Datalog programs by NRS-

DATALOG.

Definition 10. Let r : head’body; be a Datalog rule, possibly containing negative literals, and
HD ¼ /T ; w; lS a hypertree decomposition of hypergraph HðlitðbodyÞÞ: We say that a vertex v of
T is an EDB vertex if for every hyperedge eAlðvÞ there is a (positive) extensional database atom
AAlitðbodyÞ such that varðAÞ ¼ e: The hypertree HD is a rule decomposition of r if, for each non-
EDB vertex v in T ; there exists an EDB vertex w such that wðvÞDwðwÞ: The hypertree HD is a
strict rule decomposition if there exists a vertex v0 of T such that varðheadÞDwðv0Þ: The (strict)
hypertree width of r is the smallest width over its (strict) rule decompositions.

NRS-DATALOG½k� denotes the class of all NRS-DATALOG programs whose rules have strict
hypertree-width bounded by k:

Example 7. Consider the Boolean Datalog program P1 consisting of the two following rules:

r1: ans ’aðS;X ;X 0;C;FÞ4bðS;Y ;Y 0;C0;F 0Þ4cðC;C0;ZÞ
4:dðX ;ZÞ4:eðY ;ZÞ4f ðF ;F 0;Z0Þ4:gðX 0;Z0Þ

4:hðY 0;Z0Þ4jðJ;X ;Y ;X 0;Y 0Þ
r2: eðY ;ZÞ ’a0ðS;X ;T ;RÞ4b0ðS;Y ;U ;PÞ4f 0ðR;P;VÞ

4g0ðX ;YÞ4c0ðT ;U ;ZÞ4d 0ðW ;X ;ZÞ4:e0ðY ;ZÞ
All the predicates are EDB predicates but ans and e: This program belongs to NRS-DATALOG
[2], because both r1 and r2 have strict hypertree width 2. Indeed, the hypertree shown in Fig. 3 is a
width 2 rule decomposition for r1; because it is a width 2 hypertree decomposition of the
hypergraph associated with the body of r1 and, for each non-EDB vertex v (any leaf of the tree in
the figure), its parent w is an EDB vertex and wðvÞDwðwÞ: For instance, consider the leaf ve with
wðveÞ ¼ fY ;Zg; covering the hyperedge corresponding to the literal :eðY ;ZÞ: The w labelling of
its parent we is wðweÞ ¼ fX ;Y ;C;C0;Zg; and clearly wðveÞDwðweÞ: Moreover, no variable occurs
in the head of r1; and thus this rule decomposition is trivially strict.

For rule r2; note that the hypergraph associated with its body is the same as the hypergraph
shown in Fig. 1a, and it is easy to verify that the width 2 hypertree decomposition shown in
Fig. 1b for this hypergraph is, in fact, a rule decomposition for r2 (apart from the name of the
literals of r2; that are primed). Finally, note that this rule decomposition is strict, because the set
fY ;Zg of the variables occurring in the head of r2 is included in the label wðvhÞ ¼ fX ;Y ;T ;Z;Ug
of the rightmost child vh of the root of the decomposition.

Definition 11. k-guarded NRS-DATALOG is the subclass of NRS-DATALOG where every rule
body has at most k EDB atoms that act as guards, i.e., all variables occurring in the rule occur in
these atoms.

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808802

Example 8. The program P2 consisting of the following rules is in 2-guarded NRS-DATALOG:

r1: ans ’jðJ;X ;Y ;X 0;Y 0Þ4hd1ðX ;Y ;X 0;Y 0Þ
r2: hd1ðX ;Y ;X 0;Y 0Þ ’aðS;X ;X 0;C;FÞ4bðS;Y ;Y 0;C0;F 0Þ

4hd2ðX ;Y ;C;C0Þ4hd3ðX 0Y 0;F ;F 0Þ
r3: hd2ðX ;Y ;C;C0Þ ’cðC;C0;ZÞ4jðJ;X ;Y ;X 0;Y 0Þ4:dðX ;ZÞ4:eðY ;ZÞ
r4: hd3ðX 0;Y 0;F ;F 0Þ ’f ðF ;F 0;Z0Þ4jðJ;X ;Y ;X 0;Y 0Þ4:gðX 0;Z0Þ4:hðY 0;Z0Þ

In this program, the IDB predicates are ans; hd1; hd2; and hd3: All the others are EDB
predicates. Note that in the first rule the guard is the atom jðJ;X ;Y ;X 0;Y 0Þ; while in each of r2;
r3; and r4; the first two atoms act as guards.

Theorem 3. GFkðFOÞ ¼ k-guarded NRS-DATALOG ¼ NRS-DATALOG½k�:

Proof. In [12] (proof of Theorem 8.5) a translation from GFðFOÞ to 1-guarded NRS-DATALOG
is presented. By taking k-guards instead of single-atom guards, this translation is easily
generalized to a translation from GFkðFOÞ to k-guarded NRS-DATALOG. Vice versa, the well-
known standard translation from NRS-DATALOG to FO preserves k-guardedness. Thus,
GFkðFOÞ ¼ k-guarded NRS-DATALOG. It remains to show that k-guarded NRS-DATALOG is
equal to NRS-DATALOG½k�:

To see that k-guarded NRS-DATALOGDNRS-DATALOG½k�; let R be a rule of such a
program and consider the following rule decomposition /T ; w; lS of R: Let the root v0 be such
that lðv0Þ is precisely the set of edges corresponding to the guard atoms of R; and let wðv0Þ ¼
varðlðv0ÞÞ: Each other atom A of the rule gives rise to a child vA of v0 where lðvAÞ ¼ fvarðAÞg and
wðvAÞ ¼ varðAÞ: This decomposition clearly fulfill all requirements of Definition 10, and is a strict
rule decomposition. Thus, R has strict hypertree-width bounded by k: Hence the program is in
NRS-DATALOG½k�:

For the other direction, proceed as follows. Let P be a NRS-DATALOG½k� program and
R : H’B a rule in P: Then, according to Definition 10, R has strict hypertree width at most k: Let
D ¼ /T ; w; lS be a strict width k rule decomposition of R:

We assume, w.l.o.g., that D is a complete hypertree decomposition of the hypergraph HðBÞ
and, by a similar argument as in the proof of Lemma 10, that D is a strong hypertree
decomposition. We furthermore assume, w.l.o.g., that the variables of the head of R are all
contained in wðv0Þ ¼ varðlðv0ÞÞ; where v0 is the root of T (otherwise we may re-root T in the
appropriate vertex). Finally, we can assume that non-EDB vertices occur in leaves of the
decomposition only. In fact, if some non-EDB vertex v is a non-leaf vertex, then, by Definition 10,
there must be an EDB vertex w such that wðvÞ ¼ varðlðvÞÞDwðwÞ; and hence we can detach all
children of v and attach them as children of w: By repeating this operation as long as possible, we
end up with an equivalent tree decomposition /T 0; w; lS of width k; where all non-EDB vertices,
i.e., negative and IDB literals, appear in leaves only. Denote the literals corresponding to lðuÞ for
all leaf-children u of v by leaflitsðvÞ; and the nonleaf children of v by nlðvÞ: For each vertex v of T ;
denote by atomsðlðvÞÞ the set of all atoms A such that varðAÞAlðvÞ:

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 803

We now transform each non-leaf vertex v of T into a k-guarded rule ruleðvÞ of the form

ruleðvÞ: Hv’
^

AAatomsðlðvÞÞ
A4

^

BAleaflitsðvÞ
B4

^

uAnlðvÞ
Hu;

where for each node v except the root v0; Hv denotes an atom hvðinterfaceðvÞÞ with a new predicate
symbol hv; having as arguments the variables interfaceðvÞ ¼ wðvÞ-wðmvÞ; where m v denotes the
father of v in T : For the root v0; Hv0

simply denotes the head atom of R:
For instance, rules r1; r2; r3; and r4 of program P2 in Example 8 can be obtained applying the

above transformation to rule r1 of program P1 in Example 7 with the rule decomposition shown in
Fig. 3.

After having transformed each rule this way into a set of equivalent rules, the resulting Datalog
program is equivalent to the original one and is a k-guarded NRS-DATALOG program. &

We conclude this section with a complexity result for GFkðFOÞ: Under the proviso that one uses
the RAM model and a data representation such that a join between k relations can be done in

time nk (cf. the appendix of [10]), the following theorem holds.

Theorem 4. The combined complexity of GFkðFOÞ (on a RAM) is Oðdk � f 2Þ; where d is the size of
the largest relation in the database and f is the formula size.

Proof. We evaluate a GFðFOÞ formula by first transforming it into an equivalent k-guarded
NRS-DATALOG program and then evaluating that program.

As explained in [18] (see also the related discussion in [10]), the translation from GFðFOÞ to
Datalog LITE is quadratic. In the proof of Theorem 3, essentially the same method for translating
GFkðFOÞ to k-guarded NRS-DATALOG is used. Therefore, the translation from GFk to k-
guarded NRS-DATALOG is quadratic, too. In turn, evaluating a k-guarded NRS-DATALOG
program is similar to evaluating a Datalog LITE program of size c; which is feasible in time
Oðd � cÞ by translating it in time Oðd � cÞ into a propositional logic program of size Oðd � cÞ
and evaluating the latter in linear time [12]. The only difference is that now each k-guarded

rule gives rise to OðdkÞ propositional rules. The resulting propositional program has thus size

Oðdk � cÞ ¼ Oðdk � f 2Þ; whence our upper bound. &

6. Conclusion and further research

In this paper, we established two main results that make a strong case for the naturalness of the
concept of bounded hypertree width. The first main result is a characterization of bounded
hypertree width in terms of a combinatorial game. Since bounded treewidth can be characterized
in terms of a similar, but simpler, game, this result makes it possible to compare the two notions in
a game-theoretic framework. The second main result characterizes bounded hypertree width in
terms of definability in the loosely guarded fragment of first-order logic with a bounded number
of guards. This contribution reveals a connection between bounded hypertree width and
definability in a fragment of first-order logic that recently has received considerable attention
because of its applications to modal logics.

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808804

We believe that our results answer important questions on the nature and the expressive power
of bounded hypertree-width queries. They show that the concept of hypertree decomposition,
while more general, is similarly natural as the one of tree decomposition. This concept was
introduced in the context of conjunctive query processing. It was so far used in this area and in the
area of constraint satisfaction, only. Given that the method of hypertree decompositions is a
general method of problem simplification, we express the hope that it may be fruitfully used in
other areas of computer science, too.

Several interesting questions are left for future research. Let us conclude this paper by stating
three mutually related problems that we think are of particular relevance.

Problem 1. The method of hypertree decompositions can be further generalized: Let us define the
concept of generalized hypertree decomposition by just dropping condition 4 from the definition of
hypertree decomposition (Definition 1). Correspondingly, we can introduce the concept of
generalized hypertree width ghwðHÞ of a hypergraph H: This notion is strictly more general than
the notion of hypertree width (this was independently observed by Adler [3]). We can prove that
all classes of Boolean queries having bounded ghw can be answered in polynomial time. But we
currently do not know whether these classes of queries are polynomially recognizable. This
recognition problem is related to the mysterious hypergraph sandwich problem [24], which has
remained unsolved for a long time. If the latter is polynomially solvable, then also queries of
bounded ghw are polynomially recognizable.

Problem 2. The characterization of treewidth by Seymour and Thomas [28] by the robber and
cops game does not assume the monotonicity of the game. Their deep result is actually that k cops
can capture a robber if and only if they can do so monotonically. As recently shown by Adler [3],
this is not the case for robbers and marshals. In fact, Adler constructed a hypergraph on which 3
marshals have a nonmonotonic winning strategy but at least 4 marshals are needed for capturing
the robber monotonically. She also provided more complex examples that prove that for each
constant k; a gap of k is achievable between the numbers of marshals needed in the two versions
of the robber and marshals game. A tight bound of this gap in terms of the size of the input
hypergraph is currently missing.

Acknowledgments

Research supported by FWF (Austrian Science Funds) under the project Z29-INF (Wittgenstein
Award), and by MURST under Project COFIN-2000 ‘‘From Data to Information (D2I)’’ Part of
the work of Francesco Scarcello and Nicola Leone has been carried out while they were visiting
the Technische Universität Wien. The authors thank the anonymous referees and Joerg Flum for
their useful comments.

Appendix. Compact vs general strategies

In this appendix, we formally prove that general strategies, where marshals can choose different
moves for different positions of the robber staying in a given escape space, are in fact equivalent to

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 805

the strategies, here called compact strategies, defined in Section 3. Thus, this additional degree of
freedom gives in fact no additional power to marshals.

Note that general strategies requires a different formal representation. We define a general
strategy for k marshals as a function s that, given a k-configuration ðM; rÞ; returns a k-position
M 0 for the marshals. Thus, the function s depends now on the variable r the robber stands on,
rather than just on her escape space.

Given a general strategy s for k marshals, the general game tree for s is a rooted tree T whose
vertices are k-configurations of the game, defined as follows. The root of T is the configuration

ð|; r0Þ; where r0 is the variable representing the first position of the robber. Without loss of
generality, we may assume r0 is the lexicographically first variable of H: In fact, this first choice is
inessential, since there are no marshals on the hypergraph and the robber can freely run
everywhere. The leaves of T are either capture configurations or configurations resulting after
escape steps. A nonleaf vertex v ¼ ðM; rÞ of T ; has c children labelled by ðM 0; r1Þ;y; ðM 0; rcÞ;
where M 0 ¼ sðvÞ is the new position of the marshals provided by the s strategy, and r1;y; rc are
all possible choices for the robber given her previous standing variable r; and the past and the
current locations M and M 0 of the marshals (i.e., r1;y; rc are the variables ½varðMÞ-varðM 0Þ�-
connected to r). A winning general strategy for the marshals is a strategy s such that all the leaves
of the game tree for s are capture configurations.

Recall from Section 3 that we considered only the family of strategies where the marshals
choose their next move just on the basis of the escape space of the robber, i.e., those strategies
where marshals make a unique move for all the locations of the robber belonging to the same
escape space. We next call the strategies with this restriction compact strategies. Formally, we say
that a strategy s is compact if, for every pair of configurations c1; c2;Escapeðc1Þ ¼ Escapeðc2Þ
entails sðc1Þ ¼ sðc2Þ:5

Theorem A.1. There is a winning general strategy for k marshals if and only if there is a winning

compact strategy for k marshals.

Proof. The if part trivially holds, because any winning compact strategy is a winning general
strategy, as well.

To prove the only if part, consider a winning general strategy s for k marshals, and let T the
general game tree for s: We transform T into the (general) game tree for a winning compact
strategy. The root remains unchanged. We visit T breadth-first and proceed as follows. Let ðM; riÞ
be a vertex of T : Each sibling ðM; rjÞ of ðM; riÞ such that EscapeðM; riÞ ¼ EscapeðM; rjÞ is

modified in the following way. We first build a copy S of the subtree rooted at ðM; riÞ and we
change its root ðM; riÞ to ðM; rjÞ: We then replace the subtree rooted at ðM; rjÞ by S: Note that, at

each step of the transformation, we get a game tree. Indeed, consider the configuration ðM; rjÞ;
and observe that the possible moves of the robber depend solely on her escape space and on the
current and next positions of the marshals. Thus, by construction, the children of ðM; rjÞ represent

all and only the legal steps from this configuration, i.e., if the marshals move from M to M 0;
for each variable r0j; ðM; rjÞ has a child ðM 0; r0jÞ if and only if r0j is ½varðMÞ-varðM 0Þ�-connected to

ARTICLE IN PRESS

5 With a small abuse of notation, for any configuration c ¼ ðM; rÞ; we will write also sðM; rÞ instead of sðcÞ; as well

as EscapeðcÞ instead of EscapeðM; rÞ:

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808806

rj: Moreover, observe that all the leaves of this tree are capture configurations. Indeed, since s is a

winning strategy, all the leaves of the subtree rooted at ðM; riÞ; which replaced the subtree rooted
at ðM; rjÞ; are capture configurations.

Let T 0 be the tree obtained at the end of this transformation. From T 0; we define a strategy s0 as
follows. If ðM; rÞ is any vertex of T 0 different from the root, and v is its parent, then s0ðvÞ ¼ M: By
construction, the strategy s0 is compact. Furthermore, it is a winning strategy. Indeed, as observed
above, all the leaves of T 0 are capture configurations. &

References

[1] S. Abiteboul, O.M. Duschka, Complexity of answering queries using materialized views, in: Proceedings of the

17th ACM Symposium on Principles of Database Systems (PODS’98), Seattle, Washington, 1998, pp. 254–263.

[2] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley Publishing Company, Reading, MA,

1995.

[3] I. Adler, Spiele als Hilfsmittel zu Strukturuntersuchungen bei Graphen und Hypergraphen (German), Diploma

Thesis, Institut für mathematische Logik und Grundlagen der Informatik, Mathemartischa Fakultät, University of

Freiburg, Freiburg im Breisgau, Germany, 2002. Available at http://www.math.uni-freiburg.de/archiv/diplom/

isolde adler.html

[4] J. Van Benthem, Dynamic bits and pieces, ILLC Research Report, University of Amsterdam, 1997.

[5] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational databases, in:

Proceedings of the ACM Symposium on Theory of Computing (STOC’77), 1977, pp. 77–90.

[6] Ch. Chekuri, A. Rajaraman, Conjunctive query containment revisited, Theoret. Comput. Sci. 239(2) (2000)

211–229. A preliminary version appeared in: Proceedings of ICDT’97, Lecture Notes in Computer Science,

Vol. 1186, Springer, Berlin, 1997, pp. 56–70.

[7] B. Courcelle, J. Engelfried, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. System Sci. 46

(1993) 218–270.

[8] R. Dechter, Constraint networks, in: Encyclopedia of Artificial Intelligence, 2nd Edition, Wiley, New York, 1992,

pp. 276–285.

[9] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artif. Intell. 38 (1989) 353–366.

[10] J. Flum, M. Frick, M. Grohe, Query evaluation via tree-decomposition, in: Proceedings of ICDT’01, Lecture

Notes in Computer Science, Vol. 1973, Springer, Berlin, 2001, pp. 22–38.

[11] E.C. Freuder, A sufficient condition for backtrack-bounded search, J. ACM 32 (4) (1985) 755–761.

[12] G. Gottlob, E. Grädel, H. Veith, Datalog LITE: a deductive query language with linear time model checking,

ACM Trans. Comput. Logic 3 (1) (2002) 42–79.

[13] G. Gottlob, N. Leone, F. Scarcello, On tractable queries and constraints, in: Proceedings of Database and Expert

Systems Applications (DEXA’99), Lecture Notes in Computer Science, Vol. 1677, Springer, Florence, August

1999, pp. 1–15.

[14] G. Gottlob, N. Leone, F. Scarcello, A comparison of structural CSP decomposition methods, Artif. Intell. 124(2)

(2000) 243–282. A preliminary version appeared, in: Proceedings of the 16th International Joint Conference on

Artificial Intelligence (IJCAI’99), Vol. 1, 1999, pp. 394–399.

[15] G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunctive queries, J. ACM 48(3) (2000) 431–498.

An extended abstract concerning part of this work has been published, in: Proceedings of the IEEE Symposium on

Foundations of Computer Science (FOCS’98), Palo Alto, CA, 1998, pp. 706–715.

[16] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and tractable queries, J. Comput. System Sci. 64(3)

(2002) 579–627. An extended abstract concerning part of this work has been published, in: Proceedings of the

Eighteenth ACM Symposium on Principles of Database Systems (PODS’99), Philadelphia, Pennsylvania, May

1999, pp. 21–32.

[17] G. Gottlob, N. Leone, F. Scarcello, Computing LOGCFL certificates, Theoret. Comput. Sci. 270(1–2) (2002)

761–777. A preliminary version appeared, in: Proceedings of the 26th International Colloquium on Automata,

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808 807

*http://www.math.uni-freiburg.de/archiv/diplom/isolde_adler.html
*http://www.math.uni-freiburg.de/archiv/diplom/isolde_adler.html
*http://www.math.uni-freiburg.de/archiv/diplom/isolde_adler.html

Languages and Programming (ICALP’99), Lecture Notes in Computer Science, Vol. 1644, Springer, Prague, July,

1999, pp. 361–371.

[18] G. Gottlob, R. Pichler, Hypergraphs in model checking: acyclicity hypertree-width versus clique-width, in:

Proceedings of ICALP 2001, 28th International Colloquium on Automata, Languages and Programming, Crete,

Greece, July 8–12, 2001, pp. 708–719.

[19] E. Grädel, On the restraining power of guards, J. Symbolic Logic 64 (1999) 1719–1742.

[20] M. Grohe, T. Schwentick, L. Segoufin, When is the evaluation of conjunctive queries tractable? in: Proceedings of

the ACM Symposium on Theory of Computing (STOC’01), 2001.

[21] M. Gyssens, P.G. Jeavons, D.A. Cohen, Decomposing constraint satisfaction problems using database techniques,

Artif. Intell. 66 (1994) 57–89.

[22] M. Gyssens, J. Paredaens, A Decomposition Methodology for Cyclic Databases, in: Advances in Database

Theory, Vol. 2, Plenum Press, New York, NY, 1984, pp. 85–122.

[23] Ph.G. Kolaitis, M.Y. Vardi, Conjunctive-query containment and constraint satisfaction, J. Comput. System Sci. 61

(2000) 302–332.

[24] A. Lustig, O. Shmueli, Acyclic hypergraph projections, J. Algorithms 30 (1999) 400–422.

[25] N. Robertson, P.D. Seymour, Graph minors II, Algorithmic aspects of tree-width, J. Algorithms 7 (1986) 309–322.

[26] F. Rossi, C. Petrie, V. Dhar, On the equivalence of constraint satisfaction problems, in: Proceedings of the 9th

European Conference on Artificial Intelligence (ECAI’90), Stockholm, Sweden, 1990, pp. 550–556.

[27] F. Scarcello, A. Mazzitelli, The hypertree decomposition homepage, http://wwwinfo.deis.unical.it/~frank/

Hypertrees/

[28] P.D. Seymour, R. Thomas, Graph searching and a min–max theorem for tree-width, J. Combin. Theory Ser. B 58

(1993) 22–33.

[29] J.D. Ullman, Principles of Database and Knowledge Base Systems, Vol. II, Computer Science Press, Rockville,

MD, 1989.

[30] J.D. Ullman, Information integration using logical views, Theoret. Comput. Sci. 239 (2) (2000) 189–210.

[31] M. Vardi, Complexity of relational query languages, in: Proceedings of the 14th ACM Symposium on Theory of

Computing (STOC’82), 1982, pp. 137–146.

[32] M. Vardi, Constraint satisfaction and database theory, Tutorial at the 19th ACM Symposium on Principles of

Database Systems (PODS’00). Currently available at: http://www.cs.rice.edu/~vardi/papers/pods00t.ps.gz.

[33] M. Yannakakis, Algorithms for acyclic database schemes, in: C. Zaniolo, C. Delobel (Eds.), Proceedings of the

International Conference on Very Large Data Bases (VLDB’81), Cannes, France, 1981, pp. 82–94.

Further reading

B. Courcelle, Monadic second-order logic of graphs VII: graphs as relational structures, Theoret. Comput. Sci. 101

(1992) 3–33.

E. Wanke, Bounded tree-width and LOGCFL, J. Algorithms 16 (1994) 470–491.

ARTICLE IN PRESS

G. Gottlob et al. / Journal of Computer and System Sciences 66 (2003) 775–808808

*http://wwwinfo.deis.unical.it/~frank/Hypertrees/a4
*http://wwwinfo.deis.unical.it/~frank/Hypertrees/a4
*http://www.cs.rice.edu/~vardi/papers/pods00t.ps.gz

	Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width
	Introduction and overview of results
	Game theoretic characterization of treewidth: the robber and cops game [28]
	Logical characterization of treewidth
	Game theoretic characterization of hypertree width: the robber and marshals game
	Logical characterization of hypertree width
	Generalization

	Preliminaries and basic definitions
	Gottlob et™al. [16]
	The robber and marshals game
	Gottlob et™al. [16]
	Gottlob et™al. [16]
	Gottlob et™al. [16]
	Gottlob et™al. [16]
	Logical characterization
	Sketch
	Sketch
	On K-guarded first-order queries and datalog
	Conclusion and further research
	Acknowledgements
	Appendix
	Compact vs general strategies
	References
	Further Reading

