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Abstract. We study a general scenario of simultaneous contests that
allocate prizes based on equal sharing: each contest awards its prize to
all players who satisfy some contest-specific criterion, and the value of
this prize to a winner decreases as the number of winners increases. The
players produce outputs for a set of activities, and the winning crite-
ria of the contests are based on these outputs. We consider two vari-
ations of the model: (i) players have costs for producing outputs; (ii)
players do not have costs but have generalized budget constraints. We
observe that these games are exact potential games and hence always
have a pure-strategy Nash equilibrium. The price of anarchy is 2 for
the budget model, but can be unbounded for the cost model. Our main
results are for the computational complexity of these games. We prove
that for general versions of the model exactly or approximately comput-
ing a best response is NP-hard. For natural restricted versions where
best response is easy to compute, we show that finding a pure-strategy
Nash equilibrium is PLS-complete, and finding a mixed-strategy Nash
equilibrium is (PPAD∩PLS)-complete. On the other hand, an approxi-
mate pure-strategy Nash equilibrium can be found in pseudo-polynomial
time. These games are a strict but natural subclass of explicit congestion
games, but they still have the same equilibrium hardness results.

Keywords: contest theory · equilibrium analysis · computational
complexity

1 Introduction

Contests are games where players, who are assumed to be strategic, make costly
and irreversible investments to win valuable prizes [36]. Typically, the prizes have
monetary value, which incentivizes the players to make the costly investments.
In some scenarios, the prizes may be associated with reputation and social sta-
tus. For example, many online forums and websites depend upon user-generated
content to provide value to their customers, and award badges, which do not
have any monetary value but provide social reputation (e.g., StackOverflow and
Quora); see, e.g., [23].
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In the presence of multiple simultaneous contests, each player may explicitly
select one or more contests and invest efforts so as to win the associated prizes.
Moreover, sometimes contest participation is implicit: players engage in various
activities, and each contest awards prizes to some of the players based on their
performance in a specific subset of activities.

Consider, for instance, the setting where several social media platforms or
news websites compete to attract customers. The potential customers are not
homogeneous: e.g., some may be interested in politics, while others focus on
sports or technology. It is therefore natural to model this setting as a set of
simultaneous contests, with each individual contest corresponding to a group of
customers with similar preferences. The platforms can take actions that make
them more attractive to potential customers. Indeed, some of the actions, such
as improving the interface, or increasing the update frequency, may impact the
platform’s performance with respect to several customer groups. That is, we can
think of platforms as engaging in several activities, with their performance in
each contest depending on the effort they invest in these activities. Different
customer groups may value different mixtures of activities in different ways:
e.g., while consumers of financial and sports news care about frequent updates,
those who read the gossip column are happy with daily or even weekly updates.
Thus, by increasing her investment in an activity, a player may improve her
performance in several—but not all—contests.

In this work, we study a formal model that can capture scenarios of this type.
In our model, there are several players and several simultaneous contests, as well
as a set of activities. Each player selects their effort level for each activity (and
may incur a cost for doing so, or face budget constraints), and each contest j has
its own success function, which specifies combinations of effort for each activity
that are sufficient to succeed in j. In addition to that, we assume that each
contest allocates identical prizes to all agents that meet its criteria1: e.g., if, to
win contest j, it suffices to produce 2 units along activity �, then the player who
produces 3 units along � and the player who produces 30 units along � receive
the same prize from j; however, the value of the prize in contest j may depend
on the number of players who meet the criteria of j. We refer to this setting as
multi-activity games.

From the perspective of the player, we distinguish between two models: (1)
the cost model, which has cost functions for producing output, and (2) the budget
model, which has generalized budget constraints (feasible subsets of the space).
The cost functions and the budget constraints may be different across players,
capturing the fact that some players may be able to perform better in some
activities compared to others.

Our model is very general: we impose very mild and natural constraints on the
contests’ success functions and prize allocation rules. In particular, we assume

1 The motivation for equal sharing allocation is somewhat similar to that of propor-
tional allocation (e.g., in Tullock contests [34]), with equal sharing becoming relevant
in situations where the contests use explicit rules (or criteria) to decide on an allo-
cation.
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that the total value of the prizes allocated to the winners of each contest is a
monotonically non-decreasing and concave function of the number of winners;
these assumptions capture the idea that the value of an award decreases as it gets
awarded to a larger number of players (see, e.g., [23]). A specific instantiation of
this model is a contest that has a fixed total prize of V , and every winner gets a
share of V/k if there are k winners.

Besides our social media platform example, several other situations can be
modeled using contests with equal sharing allocation of prizes, where players
compete by engaging in activities valued by multiple contests. For instance,
funding agencies are generally not able to perfectly discriminate among the appli-
cants to select the most deserving ones. They might score candidates based on
attributes such as strength of proposal, publication history, and management
experience, and allocate their budget to one of the eligible candidates or dis-
tribute it among them. Because of this uniform distribution of the funding, from
the perspective of an expected utility maximizing applicant, this situation can
be approximated using a contest with an equal sharing allocation with a fixed
total prize.

1.1 Our Results

We observe that, under mild assumptions, multi-activity games are exact poten-
tial games [27] (see Definition 4). This guarantees the existence of a pure-strategy
Nash equilibrium (PNE). Moreover, an approximate PNE can be computed in
pseudo-polynomial time. In fact, a sequence of ε-better/best2 response moves
converges to an ε-PNE, with the number of steps proportional to 1/ε (and
pseudo-polynomial in other parameters). For the budget model, for the natural
definition of social welfare in these games, we observe that the price of anarchy
(PoA) is at most 2 and the price of stability (PoS) can be close to 2, so both
these bounds are tight.3 However, for the cost model, for meaningful definitions
of social welfare, the PoS can be infinite.

We then study the computation complexity of finding an equilibrium in these
games, which is the main focus of our paper. This portion of the paper concen-
trates on a specific instantiation of the model, where the contests’ criteria and
the players’ budget constraints are all linear; let us call this model the linear
model. (Here, we discuss the results for the budget model. With similar assump-
tions, similar results hold for the cost model as well.) We show that, for the
linear model, it is NP-hard for a player to best respond to the strategies of
other players. This hardness result holds even for a game with only one player;
in other words, the hardness is due to the optimization problem that a player
faces while playing the game. We also prove that there exists no polynomial-
time approximation scheme unless P=NP. (Here, NP-hardness for best-response
2 An ε-better response move increases the utility of a player by at least ε.
3 The price of anarchy (stability) is the ratio between the social welfare of the optimal

solution and the social welfare of an equilibrium solution, in the worst case over
instances of the problem, and in the worst (best) case over corresponding equilibrium
solutions.
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directly implies NP-hardness for equilibrium computation.) On the positive side,
we obtain fixed-parameter tractability results: we show that best response is
polynomial-time computable if either the number of contests or the number of
activities is a constant.

The NP-hardness result for best-response motivates us to further restrict our
model: we assume that a player can produce output only along a small (polyno-
mial) number of portfolios of activities. Mathematically, a portfolio corresponds
to a direction in the activity space along which a player can produce output. This
restricted model captures salient features of the original model: e.g., it maintains
the property that the contests can have overlapping criteria.

With a simple transformation of the activity space, the portfolio model can
be converted to an equivalent model where a player produces output along a
single activity only, i.e., only along the axes, where an activity in the new model
corresponds to a portfolio in the old model. In our discussion, we call this new
model the single-activity model to differentiate it from the original model, which
we call the multi-activity model.

The positive results for the multi-activity model automatically carry over to
the single-activity model. Additionally, it is computationally easy for the players
to best respond in the single-activity model. However, we get a different hard-
ness result. Even for the linear model, it is PLS-complete to compute a PNE and
(PPAD∩PLS)-complete to compute a mixed-strategy Nash equilibrium (MNE).
These hardness results, particularly the (PPAD∩PLS)-hardness result, are inter-
esting because single-activity games form a strict, structured and well-motivated
subclass of explicit congestion games (a contest awards a 1/k fraction of a fixed
prize to each winner if there are k winners, but a congestion game can have a
cost that is an arbitrary function of the number of winners), yet finding an MNE
in these games has the same computational complexity as finding an MNE of
explicit congestion games [4] (and finding a fixed-point of gradient descent [18]).
We also prove some fixed-parameter tractability results with respect to the num-
ber of players and the number of contests.

The rest of this paper is organized as follows. After summarizing the related
work (Sect. 1.2), in Sect. 2 we introduce the general multi-activity model. We
also prove the existence of PNE, the pseudo-polynomial convergence of ε-best-
response dynamics to ε-PNE, and present our PoA results. In Sect. 3 we establish
the hardness of best-response in linear multi-activity models. Section 4 focuses
on the single-activity model and presents our results on PLS-completeness and
(PPAD∩PLS)-completeness. Some proofs are omitted due to space constraints.

1.2 Related Work

The model of simultaneous contests with equal sharing allocation of prizes has
been studied before in the literature [26,36]. At a high level, our contribution
is to (i) generalize the model and extend the positive results and (ii) study the
complexity of computing equilibria.

The linear budget model with a fixed total prize has previously been stud-
ied by May et al. [26], to model situations such as the social media platform
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example discussed earlier. Their theoretical results are similar to our positive
results: (i) they prove existence of PNE by showing that the game is an exact
potential game; (ii) they establish a PoA bound of 2. For (i), existence of PNE,
we give a simpler proof by explicitly constructing the potential function that lifts
these results to our general model. Our proof also makes it transparent that the
PNE exists because of the equal sharing property of the contests (the congestion
property), and the other restrictions of the model of May et al. [26]—the linear
budget constraints, the linear criteria of contests, and the fixed total prize—are
not necessary for the result. Moreover, the proof clarifies that using the budget
model is also non-essential, as the result holds for the cost model as well. For
(ii), the PoA bound, May et al. [26] prove the result from first principles. In
contrast, we use the result of Vetta [35] for submodular social welfare functions
to derive the same result in our—more general—setting. In summary, we extend
the positive results of [26] to a general model (and we also study computational
complexity, which was not considered by May et al. [26]). May et al. [26] perform
an empirical study and show that the real-life behavior of social media curators
resembles the predictions of the model. Bilo et al. [7] consider a model similar to
the single-activity model of our paper and show inclusion in the class PLS (but
no hardness results).

Models of simultaneous contests that do not have activities (i.e., the players
directly produce outputs for each contest, or, equivalently, there is a one-to-one
mapping between the activities and the contests) have been extensively studied.
Cost-based models where the prizes are awarded based on the players’ ranks have
been considered by a number of authors [2,3,5,15], including empirical work
[3,15,25,38]. Colonel Blotto games, where the players have budget constraints
and the prize is awarded to the highest-output player for each contest, were
proposed by Borel [12], and have received a significant amount of attention
in the literature (e.g., [1,6,9–11,20–22,30,30,32,33,37]). Simultaneous contests
with proportional allocation have been studied by, e.g., [19,29,39].

Two very recent related papers are by Birmpas et al. [8] and Elkind et al. [16].
Both these papers do not have activities, i.e., the players produce output directly
for the contests, which makes their models a bit different (simpler) than ours,
but they add complexity along other dimensions. Therefore, their results are
not directly comparable to ours. Birmpas et al. [8] have both budgets and costs
in the same model, and they give a constant factor PoA bound by augmenting
players’ budgets when computing the equilibrium welfare (but not when com-
puting the optimal welfare). Elkind et al. [16] consider a model with only one
contest and in the case of incomplete information. Their focus is on mechanism
design, and for one of the objectives studied in the paper, they prove that the
optimal contest distributes its prize equally to all players who produce output
above some threshold, similar to the contests in our paper.

The complexity class PLS (Polynomial Local Search) and the concepts of
PLS-hardness and PLS-completeness were introduced by Johnson et al. [24].
PLS consists of discrete local optimization problems whose solutions are easy
to verify (the cost of a given solution can be computed in polynomial time and
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its local neighborhood can be searched in polynomial time). Similar to NP-hard
problems, PLS-hard problems are believed to be not solvable in polynomial time.
Several natural problems, such as finding a locally optimal solution of Max-Cut,
were shown to be PLS-complete by Schaffer [31]. The problem of finding a PNE in
explicit congestion games (which always have a PNE) is also PLS-complete [17],
from which it follows that better or best response dynamics take an exponential
time to converge in the worst case [24].

The class PPAD (Polynomial Parity Arguments on Directed graph) was intro-
duced by Papadimitriou [28]. Like PLS problems, PPAD problems always have
solutions. For PPAD, the existence of a solution is based on a parity argument:
In a directed graph where each vertex has at most one predecessor and one suc-
cessor, if there exists a source vertex (i.e., a vertex with no predecessor), then
there exists some other degree-1 vertex. One of the most well-known results in
algorithmic game theory is that the problem of finding a mixed-strategy Nash
equilibrium (MNE) is PPAD-complete [13,14].

Recent work has determined the complexity of computing an MNE of an
explicit congestion game. The class PPAD∩PLS represents problems that can
be solved both by an algorithm that solves PPAD problems and by an algorithm
that solves PLS problems. Finding an MNE of an explicit congestion game is in
PPAD∩PLS: indeed, this problem can be solved either by finding a PNE (which
is also an MNE) using an algorithm for PLS problems or by computing an MNE
using an algorithm for PPAD problems. Recently, Fearnley et al. [18] proved that
finding a fixed-point of a smooth 2-dimensional function f : [0, 1]2 → R using
gradient descent is complete for the class PPAD∩PLS; based on this result,
Babichenko and Rubinstein [4] proved that finding an MNE of an explicit con-
gestion game is also (PPAD∩PLS)-complete. PLS-complete, PPAD-complete,
and (PPAD∩PLS)-complete problems are considered to be hard problems with
no known polynomial-time algorithms.

2 General Model, Pure Nash Equilibrium, and Price
of Anarchy

In this section, we formally define the general multi-activity model, prove the
existence of pure Nash equilibria, and show that the price of anarchy (PoA) is 2
for the budget variant of the model and +∞ for the cost variant.

We consider a set of n players, N = [n],4 who simultaneously produce output
along k activities, K = [k]. There are m contests, M = [m], which award prizes
to the players based on their outputs. The contests may have different prizes
and may value the activities differently.

We study two models: in one, the players have output production costs; and
in the other, the players have generalized output budgets. Player i ∈ N chooses
an output vector bi = (bi,�)�∈K ∈ R

k
≥0.

4 Let [�] = {1, 2, . . . , �} for any positive integer � ∈ Z>0.
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– Cost. Player i incurs a cost of ci(bi) for producing bi, where ci : Rk
≥0 → R≥0

is a non-decreasing cost function with ci(0) = 0 (normalized).
– Budget. The player does not incur any cost for the output vector bi, but bi

is restricted to be in a set Bi ⊆ R
k
≥0. We assume that 0 ∈ Bi, i.e., players are

always allowed to not participate.5

Technically, the budget model is a special case of the cost model, and all the
positive results for the cost model automatically carry over to the budget model.
We make the distinction because when we study the restricted linear models in
Sect. 3, the linear cost model and the linear budget model will have different
formulations.

Let b = (bi)i∈N = (bi,�)i∈N,�∈K . Each contest j ∈ M is associated with a
pair of functions fj : Rk

≥0 → R≥0 and vj : N → R≥0. The function fj , which
is an increasing function such that fj(0) = 0, determines the set of winners of
contest j: we say that player i wins contest j if fj(bi) ≥ 1 and set Nj(b) =
{i ∈ N | fj(bi) ≥ 1}. Let nj(b) = |Nj(b)|. The function vj determines how
the prizes are allocated: each player in Nj(b) receives a prize of vj(nj(b)). The
total prize allocated by contest j is then nj(b) ·vj(nj(b)). We make the following
assumptions about the function vj , which are necessary for our price of anarchy
bounds.

1. vj(�) is a non-increasing function of �: vj(�) ≥ vj(� + 1).
2. � · vj(�) is a non-decreasing function of �: � · vj(�) ≤ (� + 1) · vj(� + 1).
3. � · vj(�) is a weakly concave function of �, i.e., (� + 1) · vj(� + 1) − � · vj(�) is a

non-increasing function of �: (�+2)·vj(�+2)−2·(�+1)·vj((�+1)+�·vj(�) ≤ 0.
This condition says that the rate of increase in the total prize allocated by a
contest j weakly decreases as the number of winners increases.

Some examples of functions vj that satisfy these conditions are:

– x·vj(x) = x or vj(x) = 1. Here, the total value of the prize scales linearly with
the number of winners, i.e., the prize awarded to a winner does not change
as the number of winners increases.

– x · vj(x) = 1 or vj(x) = 1/x. Here, the total value of the prize remains
constant, i.e., the prize awarded to a winner decreases and is equal to the
inverse of the number of winners.

– x ·vj(x) =
√

x or vj(x) = 1/
√

x. This sits between the previous two examples.
Here, the total value of the prize increases, but the prize awarded to a winner
decreases as the number of winners increases.

The utility of a player i in the cost and the budget model is, respectively,

uC
i (b) =

∑

j∈M

vj(nj(b)) · 1{i∈Nj(b)} −ci(bi), uB
i (b) =

∑

j∈M

vj(nj(b)) · 1{i∈Nj(b)}

5 The budget model has an alternative interpretation—each player selects a subset of
activities among a feasible set of subset of activities for that player—as discussed in
Sect. 2.3.
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where 1{...} is the indicator function; we omit the superscripts B and C if they
are clear from the context.

We will be interested in stable outcomes of multi-activity games, as captured
by their Nash equilibria.

Definition 1 (Pure-Strategy Nash Equilibrium (PNE)). A pure strategy
profile b = (bi,b−i) is a pure Nash equilibrium (PNE) if for every i ∈ N and
every action b′

i of player i we have ui(b) ≥ ui(b′
i,b−i).

Definition 2 (Mixed-Strategy Nash Equilibrium (MNE)). A mixed
strategy profile μ = ×�∈[n]μ� is a mixed Nash equilibrium (MNE) if for every
i ∈ N and every distribution over actions μ′

i of player i we have Eb∼μ[ui(b)] ≥
Eb′

i∼μ′
i,b−i∼μ−i

[ui(b′
i,b−i)], where μ−i = ×� �=iμ�.

We now give definitions of the price of anarchy and the price of stability,
which will be used to study the efficiency of equilibria in our models.

Definition 3 (Price of Anarchy (PoA) and Price of Stability (PoS)).
Let G denote a class of games and let I ∈ G denote a particular instance of
the game. For a given instance of a game I, let Action(I) denote the set of
action profiles and Eq(I) denote the set of all MNE. Let sw(b) denote the social
welfare for an action profile b ∈ Action(I). The price of anarchy and the price
of stability for class G are defined as, respectively,

PoA = max
I∈G

maxb∈Action(I) sw(b)
minμ∈Eq(I) Eb∼μ[sw(b)]

; PoS = max
I∈G

maxb∈Action(I) sw(b)
maxμ∈Eq(I) Eb∼μ[sw(b)]

.

I.e., the PoA (PoS) is the ratio between the optimal social welfare and the equi-
librium social welfare in the worst (best) case over possible equilibria and in the
worst case over instances of the game.

2.1 Existence of Pure-Strategy Nash Equilibrium

We start by showing that multi-activity games are exact potential games. We
then use the classic result of Monderer and Shapley [27] to conclude that multi-
activity games always have pure Nash equilibria.

Definition 4 (Exact Potential Games). [27] A normal form game is an
exact potential game if there exists a potential function φ such that for any
player i with utility function ui, any two strategies bi and b′

i of player i, and
any strategy profile b−i of the other players it holds that

ui(b′
i,b−i) − ui(bi,b−i) = φ(b′

i,b−i) − φ(bi,b−i).

Theorem 1. [27] Exact potential games always have a pure-strategy Nash equi-
librium. Indeed, every pure strategy profile that maximizes φ is a PNE.
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We define the potential functions for the multi-activity budget and cost games
as, respectively,

φB(b) =
∑

j∈M

∑

�∈[nj(b)]

vj(�), φC(b) =
∑

j∈M

∑

�∈[nj(b)]

vj(�) −
∑

i∈N

ci(bi); (1)

we omit the superscripts B and C if they are clear from the context. We use
these potential functions to prove the existence of PNE in multi-activity games.
In Sect. 4, we shall also use them to study the complexity of computing equilibria
in these games.

Theorem 2. A multi-activity budget/cost game is an exact potential game, and
hence has a pure-strategy Nash equilibrium.

We note that the crucial property required for the proof of Theorem 2 is the
equal sharing property; some of the other assumptions made in our model, e.g.,
that the cost functions ci(bi) are non-decreasing, � ·vj(�) are non-decreasing and
weakly concave, etc., are not essential for the proof. We also note that for a
restricted version of the model the same result was proved by [26,36], but we
believe that our proof using the potential function is simpler.

2.2 Approximate Pure-Strategy Nash Equilibrium Using
Better-Response

The characterization in Theorem 2 is very useful for finding approximate equi-
libria of multi-activity games.

Definition 5 (ε-Pure-Strategy Nash Equilibrium). A pure strategy profile
b = (bi,b−i) is an ε-PNE if for every i ∈ N and every action b′

i of player i we
have ui(b′

i,b−i) ≤ ui(b) − ε.

Definition 6 (ε-Better-Response). For a pure strategy profile b = (bi,b−i),
a player i ∈ N , and an action b′

i of player i, the move from bi to b′
i is an

ε-better-response move if ui(b′
i,b−i) > ui(b) + ε.

From the definitions above, it is immediate that a pure strategy profile is an
ε-PNE if and only if it does not admit any ε-better-response moves. Now, as
multi-activity games are exact potential games, each ε-better-response increases
the potential by at least ε. As the potential function is bounded from above,
a sequence of ε-better-response moves necessarily terminates, and the resulting
profile is an ε-PNE.

Corollary 1. In multi-activity games, any sequence of ε-better-response moves
arrives to an ε-PNE in at most n · m · (maxj vj(1))/ε steps.

Corollary 1 provides a pseudo-polynomial bound in the number of steps
required for convergence to an approximate PNE, which can be meaningful in
situations where the prizes (i.e., the values vj(1)) are not very large. It also
implies that an ε-PNE can be computed in pseudo-polynomial time if we can
compute ε-better-responses efficiently.
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2.3 Social Welfare, Price of Anarchy, and Price of Stability

To start, let us briefly discuss what would be a natural definition(s) of social
welfare for multi-activity games.

Consider first the budget model. From the perspective of the players, social
welfare naturally corresponds to the total prize allocated. This definition is also
natural from the perspective of the contests. Indeed, consider the motivating
example involving the social media curators (players) and subscribers (contests).
The welfare of the curators corresponds to the total subscribers’ attention they
receive, which is equal to the total prize allocated. On the other hand, the welfare
of the subscribers corresponds to the compatible curators who serve them, which
again corresponds to the total prize allocated. For this definition of social welfare,
we prove an upper bound of 2 on the price of anarchy (PoA) and a lower bound
of 2 − o(1) on the price of stability (PoS), so both of these bounds are tight.

For the cost model, the formulation of social welfare can be similarly moti-
vated, with or without subtracting the cost. If one assumes that the cost to the
players is a sunk cost, then it is reasonable to subtract it from the social welfare.
On the other hand, if one assumes that the cost gets transferred to the contest
organizers (or the society), then it should not be subtracted. In any case, for
both of these definitions, the PoS (and therefore, PoA) turns out to be infinite.

Budget Model. For the budget model, the social welfare is equal to the total
prize that gets allocated:

sw(b) =
∑

i∈N

ui(b) =
∑

i∈N

∑

j∈M

vj(nj(b)) ·1{i∈Nj(b)} =
∑

j∈M

vj(nj(b)) ·nj(b). (2)

To prove the upper bound of 2 on PoA, we shall use the result of Vetta [35]
for submodular social welfare functions. This result states that the PoA can be
upper-bounded by 2 if the following conditions are satisfied:

1. the utility of the players and the social welfare are measured in the same
units,

2. the total utility of the players is at most the social welfare,
3. the social welfare function is non-decreasing and submodular, and
4. the private utility of a player is at least as much as the Vickrey utility (see

Definition 8).

By definition, our model satisfies the first two requirements on this list. To show
that it also satisfies the last two requirements, we reinterpret it using a different
notation.

In the budget game, an action by a player i effectively corresponds to a
subset of the contests that i wins. The output vector produced by the player
to win a given set of contests is not important as long as the set of contests
that she wins remains the same.6 Hence, we will represent the action taken
6 Not important for PoA analysis, but very important for computational complexity:

the budget constraint for a player i boils down to selecting a subset of contests in
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by player i as a subset of elements from a set of size m, as follows: Let G
denote a set of n · m elements partitioned into n size-m sets G1,G2, . . . ,Gn,
where Gi = {gi

1, g
i
2, . . . , g

i
m}. We represent the set of feasible actions for player i

by Ai ⊆ 2Gi

: an action Ai ∈ Ai contains gi
j if and only if player i satisfies the

criteria for contest j ∈ M . Note that ∅ ∈ Ai, because we assume that each player
is allowed to not participate and produce a 0 output (which does not win her any
contests). An action profile A = (Ai)i∈N ∈ ×i∈N Ai can be equivalently written
as ∪i∈NAi ∈ ∪i∈N Ai because the sets Ai are disjoint as per our notation.

As before, let Nj(A) = {i | gi
j ∈ A} denote the players who win contest j

under action profile A, and let nj(A) = |Nj(A)|. The utility functions and the
social welfare function can be rewritten using the new set notation as follows:

ui(A) =
∑

j∈M

vj(nj(A)) · 1{gi
j∈A}; sw(A) =

∑

j∈M

vj(nj(A)) · nj(A).

Let us formally define submodular set functions.

Definition 7 (Submodular Functions). A function f : 2Ω → R is submod-
ular if for every pair of subsets S, T ⊆ Ω such that S ⊆ T and every x ∈ Ω \ T
we have

f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T ).

The next two lemmas prove that our model satisfies the conditions required
to use the result of Vetta [35].

Lemma 1. For the budget model, if the total prize allocated by a contest is a
weakly concave function of the number of winners of the contest, then the social
welfare function is submodular.

Definition 8 (Vickrey Utility). The Vickrey utility of player i at an action
profile A is the loss incurred by other players due to i’s participation, i.e.,

uVickrey
i (A) =

∑

q �=i

uq(∅, A−i) −
∑

q �=i

uq(Ai, A−i),

where ∅ is the action to not participate (or, equivalently, produce 0 output and
not win any contests).

Lemma 2. For the budget model, if the total prize allocated by a contest is a
non-decreasing function of the number of winners of the contest, then for every
profile A and every player i, the utility of i is at least as large as her Vickrey
utility, i.e., ui(Ai, A−i) ≥ uVickrey

i (A).

Theorem 3. The social welfare in any mixed-strategy Nash equilibrium of a
multi-activity budget game is at least 1/2 of the optimum social welfare.

some feasible set of subsets, say Ai ∈ 2M . The budget constraint is a concise way of
representing this Ai, and Ai may be of size exponential in the representation.



144 E. Elkind et al.

The following result complements the upper bound of 2 for PoA by giving a
lower bound of 2 for PoS, which is based upon an example in [36] and ensuring
that the equilibrium is unique.

Theorem 4. There are instances of multi-activity budget games where the social
welfare in every mixed-strategy Nash equilibrium approaches 1/2 of the optimum
social welfare as the number of players grows.

Cost Model. As discussed before, we consider two definitions of social welfare
for the cost model. The first definition does not subtract the costs from social
welfare and corresponds to the definition given in (2). The second definition
subtracts the costs from the social welfare and is equal to

sw(b) =
∑

i∈N

(ui(b) − ci(b)) =
∑

j∈M

vj(nj(b)) · nj(b) −
∑

i∈N

ci(b). (3)

Next, we prove that the PoS can be unbounded for both definitions of social
welfare in the cost model.

Theorem 5. There are instances of multi-activity cost games where the social
welfare in every mixed-strategy Nash equilibrium can be arbitrarily low compared
to the optimum social welfare. This holds even if there are at most two players,
two activities, and two contests.

3 Multi-activity Games: Hardness of Best-Response

In this section, we focus on a restricted model: each contest uses a linear
criterion, and the budget constraint or the cost function of each player are
also linear. We call this model the linear multi-activity model. Formally, for
an output profile b = (bi)i∈N = (bi,�)i∈N,�∈K , the winners of contest j are
Nj(b) = {i | ∑

�∈K wj,�bi,� ≥ 1}, where wj,� ∈ R≥0 is a non-negative weight that
contest j has for activity �. Similarly, the linear budget constraint of a player i is
of the form

∑
�∈K βi,�bi,� ≤ 1, where βi,� ∈ R>0. Likewise, a linear cost function

for player i is of the form
∑

�∈K ci,�bi,�, where ci,� ∈ R>0.
We also impose another constraint: we assume that for each contest its total

prize is fixed. That is, each contest j ∈ M is associated with a total prize Vj ,
and if there are � winners, each winner gets a prize Vj/�.

We study the computational complexity of best-response in this linear multi-
activity model. Observe that it suffices to consider this problem for n = 1.
Indeed, consider a player i ∈ N . If there are � winners other than i for a given
contest j, then i gets a prize of vj(� + 1) = Vj/(� + 1) from this contest if
she satisfies this contest’s criteria, and 0 otherwise. By scaling the values of all
contests appropriately, we reduce i’s optimization problem to one where i is the
only player in the game.

In the next theorem, we prove that finding a best-response exactly or approx-
imately is NP-hard.
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Theorem 6. In the linear multi-activity model, both cost and budget, a player
cannot approximate a best response beyond a constant factor in polynomial time
unless P = NP.

We note that in a single-player case finding a best response is equivalent to
finding a PNE. We obtain the following corollary.

Corollary 2. In the linear multi-activity model, both cost and budget, the prob-
lem of computing an exact or an approximate PNE is NP-hard.

Theorem 6 proves that the problem of finding a best response in the linear
multi-activity model does not admit a polynomial-time approximation scheme.
For restricted versions of the model, a constant factor approximation can be
found. For example, for the budget model, if the contests have {0, 1} weights for
the activities, and the player has a budget that she can distribute across any of
the activities (the hard instance constructed in Theorem 6 for the budget model
satisfies these conditions), then the problem becomes a submodular maximiza-
tion problem with a polynomial-time constant-factor approximation algorithm.
However, we feel that a constant-factor approximation result is of limited use-
fulness in the context of computing a best response or a Nash equilibrium.

Next, we study the fixed-parameter tractability of the problem of computing
a best response. There are three natural parameters of the model: the number
of players n, the number of contests m, and the number of activities k. We have
already shown that the problem is NP-hard even with only one player, n = 1.
On the positive side, we show that the problem becomes tractable if either the
number of contests m or the number of activities k is a constant.

Theorem 7. In the linear multi-activity model, both cost and budget, a player
can compute a best response in polynomial time if either the number of contests
or the number of activities is bounded by a constant.

4 Single-Activity Games: PPAD∩PLS-Completeness

In this section, we focus our attention on the single-activity model, and show
that, for both cost and budget models, it is PLS-complete to find a pure
Nash equilibrium and (PPAD∩PLS)-complete to find a mixed Nash equilibrium
(MNE). Note that the set of MNE of a game is a super-set of the set of PNE,
so finding an MNE is at least as easy as finding a PNE.

In a single-activity game, for every player i there is at most one activity �
for which the output bi,� may be strictly positive; for every other activity �′ �= �
it holds that bi,�′ = 0. Additionally, we assume that each contest i has a fixed
total prize, which it distributes equally among all winners.

Theorem 8. In the linear single-activity model, both cost and budget, it is
(PPAD∩PLS)-complete to find a mixed-strategy Nash equilibrium.
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A recent paper by Fearnley et al. [18] proved the interesting result that finding
a fixed-point of a 2-dimensional smooth function (f : [0, 1]2 → R) given by
a circuit of addition and multiplication operators using gradient descent, 2D-
GD-FixedPoint, is complete for the class PPAD∩PLS. Based on this result,
Babichenko and Rubinstein [4] proved that the problem of computing an MNE
of an explicit congestion game, ExpCong, is also complete for PPAD∩PLS.
Babichenko and Rubinstein [4] do this by first reducing 2D-GD-FixedPoint to
identical interest 5-polytensor games, 5-Polytensor, and then 5-Polytensor
to ExpCong. In our proof for Theorem 8, we reduce 5-Polytensor to the
single-activity game, proving the required result.

Before moving to the proof, let us define identical interest polytensor games,
κ-Polytensor. Polytensor games are a generalization of the better known poly-
matrix games, Polymatrix; specifically, Polymatrix = 2-Polytensor.

Definition 9 (Polymatrix: Identical Interest Polymatrix Game). There
are n players. Player i chooses from a finite set of actions Ai. The utility of
player i for action profile (ai, a−i) = a = (aj)j∈[n] ∈ ×j∈[n]Aj is given by ui(a) =∑

j∈[n],j �=i ui,j(ai, aj), where ui,j : Ai × Aj → R≥0. The players have identical
interest, i.e., ui,j = uj,i.

The definition of κ-Polytensor games is similar to that of Polymatrix games:
instead of ui,j we have uS , where S ⊆ [n], |S| = κ.

Definition 10 (κ-Polytensor: Identical Interest κ-Polytensor Game).
There are n players. Player i chooses from a finite set of actions Ai. The
utility of player i for action profile a = (aj)j∈[n] ∈ ×j∈[n]Aj is given by
ui(a) =

∑
S⊆[n],i∈S,|S|=κ uS(aS), where aS = (aj)j∈S is the action profile of

the players in S and uS : ×j∈SAj → R≥0.

When the number of actions for each player, |Ai|, is bounded by m, note that
the representation size of a κ-Polytensor game is O(nκmκ). In particular, if
κ is a constant and m = poly(n), then κ-Polytensor games admit a succinct
representation.

Proof Sketch for Theorem 8. Below, we provide a reduction from 3-Polytensor
to the budget game for a cleaner presentation of the main steps (unlike 5-
Polytensor, 3-Polytensor is not known to be (PPAD∩PLS)-complete). Sim-
ilar steps with more calculations apply to 5-Polytensor, for both cost and
budget models (we provide this argument in the full version of the paper).

Take an arbitrary instance of 3-Polytensor with n players; we shall use the
same notation as in Definition 10. We construct a single-activity game with n
players,

∑
i∈[n] |Ai| activities, and a polynomial number of contests to be defined

later.
The

∑
i∈[n] |Ai| activities have a one-to-one association with the actions of

the players. The activities are partitioned into n subsets, so that the i-th subset
has size |Ai| and is associated with player i; we identify these activities with the
set Ai. Player i has a budget of 1 that they can use to produce output along
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any activity from Ai, but they have 0 budget for the activities in Aj for j �= i.
Effectively, as we are in a single-activity model, player i selects an activity from
the activities in Ai and produces an output of 1 along it. Note that the players
have disjoint sets of activities for which they can produce outputs.

All the contests we construct are associated with exactly three players and
at most three activities. We shall denote a contest by Ci,j,k(A), where (i) S =
{i, j, k} are the three distinct players whose utility function in the polytensor
game, uS , will be used to specify the prize of contest CS(A); (ii) the contest
CS(A) awards its prize to any player who produces an output of at least 1 along
the activities in A; (iii) the activities in A are from Ai ∪ Aj ∪ Ak with |A| ≤ 3
and |A ∩ A�| ≤ 1 for � ∈ S. We shall call a contest CS(A) a Type-� contest if
|A| = �.

Let us focus on a fixed set of three players S = {i, j, k}. We create contests
to exactly replicate the utility that these players get from uS . If we can do
this, then, by repeating the same process for every triple of players, we will
replicate the entire 3-Polytensor game. The utility that player i gets from uS

is uS(ai, aj , ak), where ai, aj , and ak are the actions of the three players. We
have the following contests:

Type-3 Contests. Let us add a contest CS(ai, aj , ak) with prize vS(ai, aj , ak)
for every (ai, aj , ak) ∈ Ai × Aj × Ak. Later, we shall specify the vS(ai, aj , ak)
values based on uS(ai, aj , ak) values. Contest CS(ai, aj , ak) distributes a prize of
vS(ai, aj , ak) to players who produce output along the activities ai, aj , or ak.

Say, the players i, j, k select the actions a∗
i , a

∗
j , a

∗
k. The total prize that player

i gets from the contests we added is:

vS(a
∗
i , a

∗
j , a

∗
k)

3
+

∑

aj �=a∗
j

vS(a
∗
i , aj , a

∗
k)

2
+

∑

ak �=a∗
k

vS(a
∗
i , a

∗
j , ak)

2
+

∑

aj �=a∗
j

ak �=a∗
k

vS(a
∗
i , aj , ak) (4)

In expression (4), the first term is for the prize that i shares with j and k, the
second term is for the prizes that i shares with k, but not with j, the third term
is for the prizes that i shares with j, but not with k, and the fourth term is for
the prizes that i does not share with j or k.

In expression (4), the first term 1
3vS(a∗

i , a
∗
j , a

∗
k) resembles the utility that

the players obtain in the polytensor game, uS(a∗
i , a

∗
j , a

∗
k). If we were to set

vS(a∗
i , a

∗
j , a

∗
k) = 3uS(a∗

i , a
∗
j , a

∗
k), then it would be exactly equal to it. However,

we also need to take care of the additional terms in expression (4). Hence, we
will add Type-1 and Type-2 contests to cancel these terms.

The expression in (4) can be rewritten as
∑

aj∈Aj
ak∈Ak

vS(a
∗
i , aj , ak)−

∑
aj �=a∗

j

vS(a
∗
i , aj , a

∗
k)

2
−

∑
ak �=a∗

k

vS(a
∗
i , a

∗
j , ak)

2
−

2vS(a
∗
i , a

∗
j , a

∗
k)

3
.

Type-1 Contests. Let us add a contest CS(a′
i) with prize

∑

ai �=a′
i,aj∈Aj ,ak∈Ak

vS(ai, aj , ak)
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for every a′
i ∈ Ai. This contest CS(a′

i) awards its prize to any player who pro-
duces output along activity a′

i (effectively, it awards the prize to player i if they
produce output along a′

i, because no other player can produce output along a′
i).

Similarly, we add the contests CS(a′
j) and CS(a′

k) for a′
j ∈ Aj and a′

k ∈ Ak,
respectively. The total prize that player i gets from Type-1 and Type-3 contests
is

∑
ai,aj ,ak

vS(ai, aj , ak) − ∑
aj �=a∗

j

1
2vS(a∗

i , aj , a
∗
k) − ∑

ak �=a∗
k

1
2vS(a∗

i , a
∗
j , ak) −

2
3vS(a∗

i , a
∗
j , a

∗
k). As

∑
ai,aj ,ak

vS(ai, aj , ak) does not depend upon the action a∗
i

selected by i, the utility of player i is effectively

−
∑

aj �=a∗
j

1
2
vS(a∗

i , aj , a
∗
k) −

∑

ak �=a∗
k

1
2
vS(a∗

i , a
∗
j , ak) − 2

3
vS(a∗

i , a
∗
j , a

∗
k).

Type-2 Contests. Let us add a contest CS(a′
i, a

′
j) with prize

∑

ak∈Ak

1
2
vS(a′

i, a
′
j , ak)

for every a′
i ∈ Ai and a′

j ∈ Aj . This contest CS(a′
i, a

′
j) awards its prize to

players who produce output along activity a′
i or a′

j . In a similar manner, we add
contests corresponding to the actions of the other 5 possible combinations of
players among the three players i, j, k, e.g., CS(a′

i, a
′
k) for a′

i ∈ Ai and a′
k ∈ Ak,

and so on. The net utility that player i gets from Type-1, Type-2 and Type-
3 contests is 1

3vS(a∗
i , a

∗
j , a

∗
k). We set vS(ai, aj , ak) = 3uS(ai, aj , ak) for every

(ai, aj , ak) ∈ Ai × Aj × Ak, and we are done. 
�
In Theorem 8, we analyzed the complexity of computing an MNE. As we

have shown earlier, single-activity cost and budget games always have a PNE,
and therefore, it is relevant to know the complexity of computing a PNE. In
the next theorem, we prove that computing a PNE is PLS-complete, and this
is true even if all the players are identical. In the proof, we reduce Max-Cut
to the problem of finding a PNE in a particular class of single-activity games
with identical players. For this class of single-activity games, finding an MNE is
easy, which highlights that the class of single-activity games where PNE is hard
(PLS-complete) to compute is strictly larger than the class of single-activity
games where MNE is hard (PPAD∩PLS-complete) to compute.

Theorem 9. In the single-activity models, both cost and budget, it is PLS-
complete to find a pure-strategy Nash equilibrium. The result holds even if all
players are identical.

A direct corollary of this PLS-completeness result is that better/best-
response dynamics takes an exponential number of steps to converge for some
instances of the problem [24].

Regarding fixed-parameter tractability (FPT), in the full version of the paper
we show that a PNE is efficiently computable for both cost and budget single-
activity models if the number of players is a constant, and for the budget model
if the number of contests is a constant. Providing FPT results for other cases
remains open.
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5 Conclusion and Future Work

In this paper, we studied a model of simultaneous contests and analyzed the exis-
tence, efficiency, and computational complexity of equilibria in these contests.
Given the real-life relevance of the three-level model, player–activity–contest, it
will be interesting to study it for prize allocation rules other than the equal-
sharing allocation, such as rank-based allocation, proportional allocation, etc.
For these contests, one may investigate the properties of the equilibria and their
computational complexity. We also believe that there is much to explore regard-
ing the computational complexity of simultaneous contests, in general.
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