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Abstract. We consider the problem of sharing a set of indivisible goods
among agents in a fair manner, namely such that the allocation is envy-
free up to any good (EFX). We focus on the problem of computing
an EFX allocation in the two-agent case and characterize the computa-
tional complexity of the problem for most well-known valuation classes.
We present a simple greedy algorithm that solves the problem when the
agent valuations are weakly well-layered, a class which contains gross
substitutes and budget-additive valuations. For the next largest valua-
tion class we prove a negative result: the problem is PLS-complete for
submodular valuations. All of our results also hold for the setting where
there are many agents with identical valuations.

1 Introduction

The field of fair division studies the following fundamental question: given a
set of resources, how should we divide them among a set of agents (who have
subjective preferences over those resources) in a fair way? This question arises
naturally in many settings, such as divorce settlement, division of inheritance,
or dissolution of a business partnership, to name just a few. Although the moti-
vation for studying this question is perhaps almost as old as humanity itself,
the first mathematical investigation of the question dates back to the work of
Banach, Knaster and Steinhaus [29,30].

Of course, in order to study fair division problems, one has to define what
exactly is meant by a fair division. Different fairness notions have been proposed
to formalize this. Banach, Knaster and Steinhaus considered a notion which is
known today as proportionality : every agent believes that it obtained at least
a fraction 1/n of the total value available, where n is the number of agents. A
generally1 stronger notion, and one which seems more adapted to the motivating
examples we mentioned above, is that of envy-freeness [16,18,33]. A division of
1 As long as agents’ valuations are subadditive, every envy-free division also satisfies

proportionality.
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the resources is said to be envy-free, if no agent is envious, i.e., no agent values
the bundle of resources obtained by some other agent strictly more than what
it obtained itself.

As our motivating examples already suggest, the case with few agents – in
fact, even just with two agents – is very relevant in practice. When the resources
are divisible, such as for example money, water, oil, or time, the fair division
problem with two agents admits a very simple and elegant solution: the cut-
and-choose algorithm, which already appears in the Book of Genesis. As its
name suggests, in the cut-and-choose algorithm one agent cuts the resources in
half (according to its own valuation), and the other agent chooses its preferred
piece, leaving the other piece to the first agent. It is easy to check that this
guarantees envy-freeness, among other things. The case of divisible resources,
which is usually called cake cutting, has been extensively studied for more than
two agents. One of the main objectives in that line of research can be summarized
as follows: come up with approaches that achieve similar guarantees to cut-and-
choose, but for more than two agents. This has been partially successful, and
notable results include the proof of the existence of an envy-free allocation for any
number of agents [31,32,34], as well as a finite, albeit very inefficient, protocol
for computing one [5].

In many cases, however, assuming that the resources are divisible might be
too strong an assumption. Indeed, some resources are inherently indivisible, such
as a house, a car, or a company. Sometimes these resources can be made divisible
by sharing them over time, for example, one agent can use the car over the
weekend and the other agent on weekdays. But, in general, and in particular
when agents are not on friendly terms with each other, as one would expect to
often be the case for divorce settlements, this is not really an option.

Indivisible resources make the problem of finding a fair division more chal-
lenging. First of all, in contrast to the divisible setting, envy-free allocations are
no longer guaranteed to exist. Indeed, this is easy to see even with just two agents
and a single (indivisible) good that both agents would like to have. No matter
who is given the good, the other agent will envy them. In order to address this
issue of non-existence of a solution, various relaxations of envy-freeness have been
proposed and studied in the literature. The strongest such relaxation, namely
the one which seems closest to perfect envy-freeness, is called envy-freeness up
to any good and is denoted by EFX [11,19]. An allocation is EFX if for all agents
i and j, agent i does not envy agent j, after removal of any single good from
agent j’s bundle. In other words, an allocation is not EFX, if and only if there
exist agents i and j, and a good in j’s bundle, so that i envies j’s bundle even
after removal of that good.

For this relaxed notion of envy-freeness, it is possible to recover existence, at
least in some cases. An EFX allocation is guaranteed to exist for two agents with
any monotone valuations [27], and for three agents if we restrict the valuations
to be additive [12]. It is currently unknown whether it always exists for four or
more agents, even just for additive valuations.

Surprisingly, proving the existence of EFX allocations for two agents is non-
trivial. In order to use the cut-and-choose approach, we need to be able to “cut
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in half”. In the divisible setting, this is straightforward. But, in the indivisible
setting, we need to “cut in half in the EFX sense,” i.e., divide the goods into
two bundles such that the first agent is EFX with either bundle. In other words,
we first need to show the existence of EFX allocations for two identical agents,
namely two agents who share the same valuation function, which is not a trivial
task.

Plaut and Roughgarden [27] provided a solution to this problem by introduc-
ing the leximin++ solution. Given a monotone valuation function, they defined
a total ordering over all allocations called the leximin++ ordering. They proved
that for two identical agents, the leximin++ solution, namely the global maxi-
mum with respect to the leximin++ ordering, must be an EFX allocation. As
mentioned above, using the cut-and-choose algorithm, this shows the existence
of EFX allocations for two, possibly different, agents. Unfortunately, comput-
ing the leximin++ solution is computationally intractable2 and so, while this
argument proves the existence of EFX allocations, it does not yield an efficient
algorithm.

Nevertheless, for two agents with additive valuations, Plaut and Roughgar-
den [27] provided a polynomial-time algorithm based on a modification of the
Envy-Cycle elimination algorithm of Lipton et al. [23]. They also provided a
lower bound for the problem in the more general class of submodular valuations,
but not in terms of computational complexity (i.e., not in the standard Turing
machine model). Namely, they proved that for two identical agents with submod-
ular valuations computing an EFX allocation requires an exponential number of
queries in the query complexity model.

Their work naturally raises the following two questions about the problem of
computing an EFX allocation for two agents:

1. What is the computational complexity of the problem for submodular valua-
tions?

2. What is the computational complexity of the problem for well-known valu-
ation classes lying between additive and submodular,3 such as gross substi-
tutes, OXS, and budget-additive?

Note that it does not make sense to study the query complexity for addi-
tive valuations, since a polynomial number of queries is sufficient to reconstruct
the whole valuation functions (and the amount of computation then needed to
determine a solution is not measured in the query complexity). However, it does
make sense to study the computational complexity of the problem for submod-
ular valuations, as well as other classes beyond additive. The query lower bound
2 Computing the leximin++ solution is NP-hard, even for two identical agents with

additive valuations. This can be shown by a reduction from the Partition problem
(see [27, Footnote 7] and note that their argument, which they use for leximin, also
applies to leximin++).

3 In particular, Plaut and Roughgarden [27, Section 7] propose studying the complex-
ity of fair division problems with respect to the hierarchy of complement-free valu-
ations (additive ⊆ OXS ⊆ gross substitutes ⊆ submodular ⊆ XOS ⊆ subadditive)
introduced by Lehmann et al. [22].
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by Plaut and Roughgarden essentially says that many queries are needed in
order to gather enough information about the submodular valuation function
to be able to construct an EFX allocation. But it does not say anything about
the computational hardness of finding an EFX allocation. Their lower bound
does not exclude the possibility of a polynomial-time algorithm for submodular
valuations in the standard Turing machine model. Studying the problem in the
computational complexity model allows us to investigate how hard it is to solve
when the valuation functions are given in some succinct representation, e.g., as
a few lines of code, or any other form that allows for efficient evaluation.

Our Contribution. We answer both of the aforementioned questions:

1. For submodular valuations, we prove that the problem is PLS-complete in the
standard Turing machine model, even with two identical agents.

2. We present a simple greedy algorithm that finds an EFX allocation in poly-
nomial time for two agents with weakly well-layered valuations, a class of
valuation functions that we define in this paper and which contains all well-
known strict subclasses of submodular, such as gross substitutes (and thus
also OXS) and budget-additive.4

Together, these two results resolve the computational complexity of the problem
for all valuation classes in the standard complement-free hierarchy (additive ⊆
OXS ⊆ gross substitutes ⊆ submodular ⊆ XOS ⊆ subadditive) introduced by
Lehmann et al. [22]. Furthermore, just like in the work of Plaut and Roughgar-
den [27], our negative and positive results also hold for any number of identical
agents.

Regarding thePLS-completeness result, the membership in PLS is easy to show
using the leximin++ ordering of Plaut and Roughgarden [27]. The PLS-hardness
is more challenging. The first step of our hardness reduction is essentially identical
to the first step in the corresponding query lower bound of Plaut and Roughgar-
den [27]: a reduction from a local optimization problem on the Kneser graph to
the problem of finding an EFX allocation. The second step of the reduction is our
main technical contribution: we prove that finding a local optimum on a Kneser
graph is PLS-hard5, which might be of independent interest.

Further Related Work. The existence and computation of EFX allocations
has been studied in various different settings, such as for restricted versions of
valuation classes [3,6], when some items can be discarded [8,10,13,14], or when
valuations are drawn randomly from a distribution [24].

4 The class of weakly well-layered valuations also contains the class of cancelable val-
uations which have been recently studied in fair division [1,4,8].

5 We note that proving a tight computational complexity lower bound is more challeng-
ing than proving a query lower bound, because we have to reduce from problems with
more structure. Indeed, the exponential query lower bound for the Kneser problem
(and thus also for the EFX problem) can easily be obtained as a byproduct of our
reduction.
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A weaker relaxation of envy-freeness is envy-freeness up to one good (EF1)
[9,23]. It can be computed efficiently for any number of agents with monotone
valuations using the Envy-Cycle elimination algorithm [23]. If one is also inter-
ested in economic efficiency, then it is possible to obtain an allocation that is
both EF1 and Pareto-optimal in pseudopolynomial time for additive valuations
[7]. For more details about fair division of indivisible items, we refer to the recent
survey by Amanatidis et al. [2].

Outline. We begin with Sect. 2 where we formally define the problem and solu-
tion concept, as well as some standard valuation classes of interest. In Sect. 3 we
introduce weakly well-layered valuation functions, and present our simple greedy
algorithm for computing EFX allocations. Finally, in Sect. 4 we prove our main
technical result, the PLS-completeness for submodular valuations.

2 Preliminaries

We consider the problem of discrete fair division where an instance consists of a
set of agents N , a set of goods M , and for every agent i ∈ N a valuation function
vi : 2M → R≥0 assigning values to bundles of goods. All valuation functions will
be assumed to be monotone, meaning that for any subsets S ⊆ T ⊆ M it holds
that v(S) ≤ v(T ), and normalized, i.e., v(∅) = 0.

We now introduce the different types of valuation functions that are of inter-
est to us. A valuation v : 2M → R≥0 is additive if v(S) =

∑
g∈S v({g}) for

every S ⊆ M . The hardness result we present in Sect. 4 holds for submodular
valuations. These are valuations that satisfy the following diminishing returns
condition that whenever S ⊆ T and x /∈ T it holds that v(S ∪ {x}) − v(S) ≥
v(T ∪ {x}) − v(T ).

Next, for our results in the positive direction, we introduce the classes of
gross substitutes and budget-additive valuations, both contained in the class of
submodular valuations. Before defining gross substitutes valuations, we have to
introduce some notation. For a price vector p ∈ R

m on the set of goods, where
m = |M |, the function vp is defined by vp(S) = v(S) − ∑

g∈S pg for any sub-
set S ⊆ M , and the demand set is D(v, p) = arg maxS⊆M vp(S). A valuation
v is gross substitutes if for any price vectors p, p′ ∈ R

m with p ≤ p′ (meaning
that pg ≤ p′

g for all g ∈ M), it holds that if S ∈ D(v, p), then there exists
a demanded set S′ ∈ D(v, p′) such that {g ∈ S : pg = p′

g} ⊆ S′. That is to
say, if some good g is demanded at prices p and the prices of some other goods
increase, then g will still be demanded. These valuations have various nice prop-
erties, for instance guaranteeing existence of Walrasian equilibria [20]. Lastly, a
valuation v is budget-additive if it is of the form v(S) = min{B,

∑
g∈S wg} for

reals B,w1, . . . , wm ≥ 0. [22] show that a budget-additive valuation need not
satisfy the gross substitutes condition. See Fig. 1 for the relationship between
the valuation classes.

Envy-Freeness Up to Any Good (EFX). The goal of fair division is to find
an allocation of the goods to the agents (i.e., a partitioning M = X1 	 · · · 	 Xn)
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Fig. 1. Inclusions of valuation classes

satisfying some notion of fairness. One might hope for an envy-free division in
which every agent prefers his own bundle over the bundle of any other agent,
that is, vi(Xi) ≥ vi(Xj) for all i, j ∈ N . Such a division need not exist, however,
as can be seen in the case where one has to divide one good among two agents,
as already mentioned in the introduction. Therefore various weaker notions of
fairness have been studied. In this paper we consider the notion of envy-freeness
up to any good (EFX) introduced by Caragiannis et al. [11], and before that by
Gourvès et al. [19] under a different name. An allocation (X1, . . . , Xn) is said to
be EFX if for any i, j ∈ N and any g ∈ Xj it holds that vi(Xi) ≥ vi(Xj \ {g}).

3 Polynomial-Time Algorithm for Weakly Well-Layered
Valuations

In this section we present our positive result, namely the polynomial-time algo-
rithm for computing an EFX allocation for two agents with weakly well-layered
valuations. To be more precise, our algorithm works for any number of agents
that all share the same weakly well-layered valuation function. As a result, using
cut-and-choose it can then be used to solve the problem with two possibly dif-
ferent agents. We begin with the definition of this new class of valuations, and
then present the algorithm and prove its correctness.
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3.1 Weakly Well-Layered Valuations

We introduce a property of valuation functions and then situate this with respect
to well-known classes of valuation functions in the next section.

Definition 1. A valuation function v : 2M → R≥0 is said to be weakly well-
layered if for any M ′ ⊆ M the sets S0, S1, S2, . . . obtained by the greedy algo-
rithm (that is, S0 = ∅ and Si = Si−1∪{xi} where xi ∈ arg maxx∈M ′\Si−1 v(Si−1∪
{x}) for 1 ≤ i ≤ |M ′|) are optimal in the sense that v(Si) = maxS⊆M ′ : |S|=i v(S)
for all i.

We can reformulate this definition as follows: a valuation function v is weakly
well-layered if and only if, for all M ′ ⊆ M and all i, the optimization problem

max v(S)
s.t. S ⊆ M ′

|S| ≤ i

(1)

can be solved by using the natural greedy algorithm. Note that since we only
consider monotone valuations, we can also use the condition |S| = i instead of
|S| ≤ i.

The reformulation of the definition in terms of the optimization problem (1)
is reminiscent of one of the alternative definitions of a matroid. Consider the
optimization problem

max v(S)
s.t. S ∈ F (2)

where v : 2M → R≥0 is a valuation function and F is an independence system
on M . Then, it is well-known that F is a matroid, if and only if, for all additive
valuations v, the optimization problem (2) can be solved by the natural greedy
algorithm [15,17,28]. In other words, the class of set systems (namely, matroids)
is defined by fixing a class of valuations (namely, additive). The alternative
definition of weakly well-layered valuations given in (1) can be viewed as doing
the opposite: the class of valuations (namely, weakly well-layered) is defined by
fixing a class of set systems (namely, all uniform matroids on subsets M ′ ⊆ M ,
or, more formally, F = {S ⊆ M ′ : |S| ≤ i} for all M ′ ⊆ M and all i).

3.2 Relationship to Other Valuation Classes

Gross Substitutes. We begin by showing that any gross substitutes valuation
is weakly well-layered. In particular, this also implies that OXS valuations, which
are a special case of gross substitutes, are also weakly well-layered. Paes Leme [26]
proved that gross substitutes valuation functions satisfy the stronger condition
of being well-layered, that is, for any p ∈ R

m it holds that if S0, S1, S2, . . . is
constructed greedily with respect to the valuation vp, where vp(S) := v(S) −∑

g∈S pg, then Si satisfies that Si ∈ arg maxS⊆M : |S|=i vp(S).
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Lemma 1. If v : 2M → R≥0 is well-layered, then it is also weakly well-layered.
In particular, gross substitutes valuations are weakly well-layered.

Proof. Assume that v : 2M → R≥0 is well-layered and let M ′ ⊆ M . Assume
that the sequence S0, S1, S2, . . . is constructed via the greedy algorithm: that
is S0 = ∅ and Si = Si−1 ∪ {xi} where xi ∈ arg maxx∈M ′\Si−1

v(Si−1 ∪ {x}) for
1 ≤ i ≤ |M ′|. We have to show that v(Si) = maxS⊆M ′ : |S|=i v(S).

In order to exploit the assumption that v is well-layered, we introduce a price
vector p ∈ R

m given by

pg =

{
0 g ∈ M ′

v(M) + 1 g /∈ M ′

One sees that the sequence S0, S1, S2, . . . can occur via the greedy algorithm
for the valuation vp, because goods not in M ′ cannot be chosen as their prices
are too high. As v is well-layered, we have that vp(Si) = maxS⊆M : |S|=i vp(S).
As pg = 0 for all g ∈ M ′, this implies that v(Si) = maxS⊆M ′ : |S|=i v(S). We
conclude that v is weakly well-layered.

Closure Properties and Budget-Additive Valuations. We note that the
class of weakly well-layered valuations is closed under two natural operations.

Lemma 2. Let v : 2M → R≥0 be weakly well-layered and let f : R≥0 → R≥0

strictly increasing. Then the composition f ◦v : 2M → R≥0 is weakly well-layered.

Proof. Let M ′ ⊆ M and assume that S0, S1, S2, . . . are constructed greedily, that
is S0 = ∅ and Si = Si−1∪{xi} where xi ∈ arg maxx∈M ′\Si−1 f(v(Si−1∪{x})) for
1 ≤ i ≤ |M ′|. As f is strictly increasing, we see that xi ∈ arg maxx∈M ′ f(v(Si−1∪
{x})) if and only if xi ∈ arg maxx∈M ′ v(Si−1 ∪ {x}). Therefore S0, S1, S2, . . .
could also arise via the greedy construction based on the valuation v. As v is
weakly well-layered, this implies that v(Si) = maxS⊆M ′ : |S|=i v(S) for all i. As
f is increasing, this shows that f(v(Si)) = maxS⊆M ′ : |S|=i f(v(S)) for all i. We
conclude that f ◦ v is weakly well-layered.

Lemma 3. Let v : 2M → R≥0 be weakly well-layered and B ≥ 0. Then the
valuation u : 2M → R≥0 given by u(S) = min(v(S), B) is weakly well-layered.

Proof. Let S0, S1, S2, . . . be constructed greedily from the valuation u. Suppose
that S0, S1, . . . , Sk have utility < B and that Sk+1, Sk+2, . . . have utility B. As
x �→ min(x,B) is strictly increasing on [0, B), the sets S0, S1, . . . , Sk could have
been constructed greedily from v. As v is weakly well-layered, they are therefore
optimal of their given size for v and therefore also for u. The sets Sk+1, . . . all
have maximal utility B and are therefore optimal of their given sizes.

As a corollary, since additive valuations are weakly well-layered, it follows
that the class of budget-additive valuations satisfies the weakly well-layered prop-
erty.
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Corollary 1. Any budget-additive valuation is weakly well-layered.

In contrast, it is known that budget-additive valuations are not necessarily
gross substitutes, and, as the following example shows, not even well-layered.

Example 1. Consider the budget-additive valuation on three goods a, b, c with
values va = vb = 2, vc = 4 and a budget of B = 4. Let p = (1, 1, 2) be a price
vector. Under these prices, the greedy algorithm would pick good c as its first
item. However, {a, b} is the unique optimal bundle of size 2, and so the greedy
algorithm would fail in this case. As a result, the valuation is not well-layered.

Cancelable Valuations. The class of weakly well-layered valuations also con-
tains the class of cancelable valuations recently defined by Berger et al. [8],
which contains budget-additive, unit-demand, and multiplicative valuations as
special cases. A valuation function v : 2M → R≥0 is said to be cancelable if
v(S∪{x}) > v(T ∪{x}) =⇒ v(S) > v(T ) for any S, T ⊆ M and x ∈ M \(S∪T ).

Lemma 4. Any cancelable valuation is weakly well-layered.

Proof. Let v be cancelable, M ′ ⊆ M , and let S0, S1, S2, . . . be obtained by the
greedy algorithm on v and M ′ (see Definition 1). We prove by induction that
v(Si) = maxS⊆M ′:|S|=i v(S) for all i. Clearly, this holds for i = 1.

Now assume that the induction hypothesis holds for some i ≥ 1 and consider
Si+1 = Si ∪ {xi+1}. If there existed T ⊆ M ′ with |T | = i + 1 such that v(T ) >
v(Si+1), then, letting y be any element in T \ Si, we would obtain

v((T \ {y}) ∪ {y}) = v(T ) > v(Si+1) = v(Si ∪ {xi+1}) ≥ v(Si ∪ {y})

where we used the fact that xi+1 was added greedily to Si. Since v is cancelable,
it follows that v(T \ {y}) > v(Si), which contradicts the induction hypothesis
for i. As a result, the set Si+1 must also be optimal.

The results of this subsection are summarised in Fig. 1. Note also that the
classes of submodular valuations and weakly well-layered valuations are incom-
parable. For an example of a valuation function that is submodular but not
weakly well-layered, see Example 3 in the next section. For the other direction,
see the following example of a valuation that is well-layered (and thus weakly
well-layered), but not submodular.

Example 2. Consider the valuation function v on two goods a, b given by
v({a, b}) = 1 and v(∅) = v({a}) = v({b}) = 0. This valuation function
is seen to be well-layered (and thus weakly well-layered), because subsets of
equal size have the same valuation. However, it is not submodular, because
v({a} ∪ {b}) − v({a}) = 1 > 0 = v(∅ ∪ {b}) − v(∅).
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Algorithm 1. Greedy EFX
Input: N,M, v
Output: EFX allocation

Let Ai = ∅ for i ∈ N .
Let R = M .
while R �= ∅ do

i = argminj∈N v(Aj)
g = argmaxx∈R v(Ai ∪ {x})
Ai = Ai ∪ {g}
R = R \ {g}

end while
return (A1, . . . , An)

3.3 The Greedy EFX Algorithm

We now present a simple algorithm that computes an EFX allocation for many
agents that all share the same weakly well-layered valuation function v.

Theorem 1. If the valuation function v is weakly well-layered, then the output
of Algorithm 1 is EFX. In particular, by using the cut-and-choose protocol one
may compute an EFX allocation for two agents with different valuations as long
as one of these valuations is weakly well-layered.

Proof. We show that the algorithm maintains a partial EFX allocation through-
out. Initially the partial allocation is empty and so clearly EFX. Suppose that at
the beginning of some round the current partial allocation (X1, . . . , Xn) is EFX
and that some agent i ∈ N receives a good g in this round. We have to show
that the new (partial) allocation (X ′

1, . . . , X
′
n) is EFX, where X ′

i = Xi ∪ {g}
and X ′

j = Xj for j 
= i. Clearly, the only thing we have to argue is that
v(X ′

i \ {g′}) ≤ v(X ′
j) for all j ∈ N and all g′ ∈ X ′

i. As i received a good in
the current round we have that v(Xi) ≤ v(Xj) = v(X ′

j). Therefore, it suffices to
argue that v(X ′

i \ {g′}) ≤ v(Xi) for all g′ ∈ X ′
i. This last inequality follows from

v being weakly well-layered by taking M ′ = X ′
i. With this M ′, the set Xi could

namely be produced by running the greedy algorithm. Therefore, Xi is an opti-
mal subset of M ′ = X ′

i of size |Xi| = |X ′
i|−1, meaning that v(X ′

i \{g′}) ≤ v(Xi)
for all g ∈ X ′

i.

The algorithm can fail to provide an EFX allocation for submodular valua-
tions that are not weakly well-layered, as the following example shows.

Example 3. Consider an instance with two agents and four goods denoted a, b,
c, d, where the valuation function v is given by: v({a}) = 11, v({b}) = v({c}) =
10, v({d}) = 16, v({a, b}) = 15, v({a, c}) = 15, v({b, c}) = 17, v({a, b, c}) = 18,
and v(S) = 18 for all sets S that satisfy d ∈ S and |S| ≥ 2. It can be checked
by direct computation that v is indeed submodular. The greedy EFX algorithm
yields: agent 1 gets good d, and then agent 2 gets goods a, b, c. This allocation
is not EFX, because v({d}) < v({b, c}).
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4 PLS-completeness for Submodular Valuations

Total NP search problems (TFNP). A total search problem is given by a
relation R ⊆ {0, 1}∗ × {0, 1}∗ that satisfies: for all x ∈ {0, 1}∗, there exists
y ∈ {0, 1}∗ such that (x, y) ∈ R. The relation R is interpreted as the following
computational problem: given x ∈ {0, 1}∗, find some y ∈ {0, 1}∗ such that
(x, y) ∈ R. The class TFNP [25] is defined as the set of all total search problems
R such that the relation R is polynomial-time decidable (i.e., given some x, y we
can check in polynomial time whether (x, y) ∈ R) and polynomially balanced
(i.e., there exists some polynomial p such that |y| ≤ p(|x|) whenever (x, y) ∈ R).

Let R and S be two problems in TFNP. We say that R reduces to S if there
exist polynomial-time functions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ such that for all x, y ∈ {0, 1}∗: if (f(x), y) ∈ S, then (x, g(y, x)) ∈ R. In
other words, f maps an instance of R to an instance of S, and g maps back any
solution of the S-instance to a solution of the R-instance.

Polynomial Local Search (PLS). Johnson et al. [21] introduced the class PLS,
a subclass of TFNP, to capture the complexity of computing locally optimal
solutions in settings where local improvements can be computed in polynomial
time. In order to define the class PLS, we proceed as follows: first, we define a
set of basic PLS problems, and then define the class PLS as the set of all TFNP
problems that reduce to a basic PLS problem.

A local search problem Π is defined as follows. For every instance6 I ∈ {0, 1}∗,
there is a finite set FI ⊆ {0, 1}∗ of feasible solutions, an objective function
cI : FI → N, and for every feasible solution s ∈ FI there is a neighborhood
NI(s) ⊆ FI . Given an instance I, one seeks a local optimum s∗ ∈ FI with respect
to cI and NI , meaning, in case of a maximization problem, that cI(s∗) ≥ cI(s)
for all neighbors s ∈ NI(s∗).

Definition 2. A local search problem Π is a basic PLS problem if there exists
some polynomial p such that FI ⊆ {0, 1}p(|I|) for all instances I, and if there
exist polynomial-time algorithms A,B and C such that:

1. Given an instance I, algorithm A produces an initial feasible solution s0 ∈ FI .
2. Given an instance I and a string s ∈ {0, 1}p(|I|), algorithm B determines

whether s is a feasible solution and, if so, computes the objective value cI(s).
3. Given an instance I and any feasible solution s ∈ FI , the algorithm C checks

if s is locally optimal and, if not, produces a feasible solution s′ ∈ NI(s) that
improves the objective value.

Note that any basic PLS problem lies in TFNP.

Definition 3. The class PLS is defined as the set of all TFNP problems that
reduce to a basic PLS problem.
6 A more general definition would also include a polynomial-time recognizable set
DΠ ⊆ {0, 1}∗ of valid instances. The assumption that DΠ = {0, 1}∗ is essentially
without loss of generality. Indeed, for I /∈ DΠ we can define FI = {0}, cI(0) = 1 and
NI(0) = {0}. Note that this does not change the complexity of the problem.
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A problem is PLS-complete if it lies in PLS and if every problem in PLS
reduces to it. Johnson et al. [21] showed that the so-called Flip problem is PLS-
complete. We will define this problem later when we make use of it to prove our
PLS-hardness result.

4.1 PLS-membership

Plaut and Roughgarden [27] prove the existence of an EFX allocation when
all agents share the same monotone valuation, by introducing the leximin++
solution. In this section, we show how their existence proof can be translated
into a proof of PLS-membership for the following problem.

Definition 4 (Identical-EFX). An instance I = (N,M,C) of the Identical-
EFX search problem consists of a set of agents N = [n], a set of goods M = [m],
and a boolean circuit C with m input gates. The circuit C defines a valuation
function v : 2M → N which is the common valuation of all the agents. A solution
is one of the following:

1. An allocation (X1, . . . , Xn) that is EFX.
2. A pair of bundles S ⊆ T that violate monotonicity, that is, v(S) > v(T ).

The reason for allowing the violation-of-monotonicity solutions is that the
circuit C is not guaranteed to define a monotone valuation, and in this case
an EFX allocation is not guaranteed to exist. Importantly, we note that our
PLS-hardness result (presented in the next section) does not rely on violation
solutions. In other words, even the version of the problem where we are promised
that the valuation function is monotone remains PLS-hard.

Theorem 2. The Identical-EFX problem lies in PLS.

The problem of computing an EFX allocation for two non-identical agents
with valuations v1 and v2 is reducible to the problem of computing an EFX
allocation for two identical agents via the cut-and-choose protocol. As a result,
we immediately also obtain the following:

Corollary 2. Computing an EFX allocation for two not necessarily identical
agents is in PLS.

Proof. To show that the Identical-EFX problem is in PLS, we reduce it to a
basic PLS problem. An instance of this basic PLS problem is just an instance
of the Identical-EFX problem, i.e., a tuple I = (N,M,C). The set of feasible
solutions FI is the set of all possible allocations of the goods in M to the agents
in N . As an initial feasible solution, we simply take the allocation where one
agent receives all goods. It remains to specify the objective function cI and the
neighborhood structure NI , and then to argue that a local optimum corresponds
to an EFX allocation.

Plaut and Roughgarden [27, Section 4] introduce the leximin++ ordering on
the set of allocations, and show that the maximum element with respect to
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that ordering must be an EFX allocation. In fact, a closer inspection of their
proof reveals that even a local maximum with respect to the leximin++ ordering
must be an EFX allocation. As a result, we construct an objective function that
implements the leximin++ ordering and then use the same arguments as Plaut
and Roughgarden [27, Theorem 4.2]. The details can be found in the full version
of our paper.

4.2 PLS-Hardness

In this section we prove the following theorem.

Theorem 3. The problem of computing an EFX allocation for two identical
agents with a submodular valuation function is PLS-hard.

The reduction consists of two steps. First, following Plaut and Roughgar-
den [27], we reduce the problem of local optimization on an odd Kneser graph
to the problem of computing an EFX allocation for two agents sharing the same
submodular valuation function. Then, in the second step, which is also our main
technical contribution, we show that the PLS-complete problem Flip reduces to
local optimization on an odd Kneser graph.

Kneser ≤ Identical-EFX For k ∈ N, the odd Kneser graph K(2k + 1, k) is
defined as follows: the vertex set consists of all subsets of [2k + 1] of size k, and
there is an edge between two vertices if the corresponding sets are disjoint. We
identify the vertex set of K(2k + 1, k) with the set {x ∈ {0, 1}2k+1 : ||x||1 = k},
where ||x||1 =

∑2k+1
i=1 xi denotes the 1-norm. Note that there is an edge between

x and x′ if and only if 〈x, x′〉 = 0, where 〈·, ·〉 denotes the inner product.

Definition 5 (Kneser). The Kneser problem of local optimization on an odd
Kneser graph is defined as the following basic PLS problem. An instance of the
Kneser problem consists of a boolean circuit C with 2k+1 input nodes for some
k ∈ N. The set of feasible solutions is FC = {x ∈ {0, 1}2k+1 : ||x||1 = k}, and the
neighborhood of some x ∈ FC is given by NC(x) = {x′ ∈ FC : 〈x, x′〉 = 0}. The
goal is to find a solution that is a local maximum with respect to the objective
function C(x) =

∑m−1
i=0 yi ·2i, where y0, . . . , ym−1 denote the output nodes of the

circuit C.

Lemma 5. Kneser reduces to Identical-EFX with two identical submodular
agents.

Proof. Our proof of this lemma closely follows the corresponding proof of Plaut
and Roughgarden [27, Theorem 3.1], with some minor modifications due to the
different computational model. The proof is omitted due to space constraints,
but can be found in the full version of our paper.

Flip ≤ Kneser Johnson et al. [21] introduced the computational problem Flip
and proved that it is PLS-complete. We will now reduce from Flip to Kneser to
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show that Kneser, and thus Identical-EFX, are PLS-hard. In particular, this
also establishes the PLS-completeness of Kneser, which might be of independent
interest.

Definition 6 (Flip). The Flip problem is the following basic PLS problem.
The instances of Flip are boolean circuits. For an instance C with n input
nodes x0, . . . , xn−1 and m output nodes y0, . . . , ym−1, the set of feasible solutions
is all the possible inputs to the circuit: FC = {0, 1}n. For any x ∈ {0, 1}n,
the neighborhood is all the inputs that can be obtained from x by flipping one
bit: NC(x) = {x′ ∈ {0, 1}n : Δ(x, x′) = 1} where Δ(·, ·) denotes the Hamming
distance. The goal is to find a solution that is locally minimal with respect to the
objective function defined by C(x) =

∑m−1
i=0 yi · 2i.

Lemma 6. Flip reduces to Kneser.

Proof. We construct a reduction from Flip to the minimization version of
Kneser. The minimization version of Kneser is seen to be equivalent to its
maximization version by negating the output nodes of the original circuit. Let
CF be an instance of Flip. Denote by p = poly(|CF |) the length of the feasible
solutions of CF . The map of instances f now takes CF to an instance CK of the
Kneser-problem whose feasible solutions are FK = {x ∈ {0, 1}2p+1 : ||x||1 = p}.
A typical feasible solution will be written as s = uvb where u, v ∈ {0, 1}p
and b ∈ {0, 1}. We will use the notation u to denote the bitwise negation of
u ∈ {0, 1}p. The circuit CK is defined as follows:

1. CK(uu0) = 2 · CF (u),
2. CK(uv1) = 2 · min(CF (u), CF (v)) + 1 if Δ(u, v) = 1,
3. CK(uvb) = M + Δ(u, v) otherwise.

Here M denotes a number chosen to be sufficiently large so that it dominates
any cost 2 · CF (w). Note that the circuit CK is well-defined and that it can
be constructed in polynomial time given the circuit CF . At a high level, the
definition of the cost of a vertex of the third type is meant to ensure that for any
such vertex uvb, there is a sequence of neighbors with decreasing costs that ends
in a vertex of the form uu0. The costs of the first and second vertex types are
then meant to ensure that for a vertex uu0, there is a sequence of neighbors with
decreasing costs that ends in a vertex ww0 where w is an improving neighbor of
u in the original Flip-instance.

Below we show that the only local minima of CK are of the form uu0 where
u is a local minimum for CF . Therefore, upon defining the solution-mapping by
g(uvb) = u we have that (f, g) is a reduction from Flip to Kneser.

No Optimal Solutions of Type (3). If a feasible solution s = uvb is of type
(3), then we claim that it must have a neighbor of lower cost. First of all, note that
since s is not of type (1) or (2), and since ||s||1 = p, it follows that Δ(u, v) ≥ 2.
Now, because Δ(u, v) ≥ 2 > 0 and ||uv||1 ≤ p, there must exist an i such that
ui = vi = 0. Otherwise one would find that ||uv||1 > p, which contradicts s being
a feasible solution. Now, let s′ = u′v′b′, where u′ = u, b′ = b, and v′

j = vj for
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all j 
= i, but v′
i = vi = 0. We note that ||s′||1 = ||s||1 − 1 = (p + 1) − 1 = p, so

s′ is a valid vertex in the Kneser graph. Further, we see that s′ is a neighbor of
s, because s′

jsj = 0 for all j. If s′ is not of type (3), then it has lower cost than
s by construction of CK and choice of M . Finally, if s′ is of type (3), then the
observation that Δ(u′, v′) < Δ(u, v) again yields that s′ has lower cost than s.

No Optimal Solutions of Type (2). Suppose s = uv1 is of type (2). As
||s||1 = p and Δ(u, v) = 1, there is some i with vi = 0 and ui = 1, and vj = uj

for j 
= i. This implies that
∑

i uivi = 0, and so both s′ = uu0 and s′′ = vv0
are neighbors of s. Furthermore, by construction of CK , the cost of s′ or of s′′

is strictly less than the cost of s.

Optimal Solutions. Consider a feasible solution of the form uu0. If u is not a
local minimum for CF , then let w be an improving neighbor of u. As Δ(u,w) = 1,
there are now two cases to consider. If ui = 0 and wi = 1 for some i, then
s′ = wu1 is a type (2) neighbor of lower cost. If ui = 1 and wi = 0 for some i,
then s′ = uw1 is a type (2) neighbor of lower cost. Therefore, if uu0 is a local
minimum for CK , then u is a local minimum for CF .

Corollary 3. Let n ≥ 2 be an integer. Computing an EFX allocation for n
identical agents with a submodular valuation function is PLS-hard.

Proof. By Theorem 3 it suffices to produce a reduction from the problem of
computing an EFX allocation for two identical agents to the problem of com-
puting an EFX allocation for n identical agents. We sketch this reduction. Let
u : 2M → R denote the common submodular valuation function of the two agents.
Construct an EFX-instance with n agents by adding n−2 agents and n−2 goods,
M ′ = M ∪ {g1, . . . , gn−2}. Define the valuation function of the n agents to be
u′ = u+v where u : 2M

′ → R is the extension of u given by u(S) = u(S∩M) and
where v : 2M

′ → R is additive given by v({gi}) = u(M) + 1 for i = 1, . . . , n − 2
and v({g}) = 0 for g ∈ M . One may verify that u is submodular, and so that u′

is the sum of two submodular valuations and therefore itself submodular.
Let (X1, . . . , Xn) denote an EFX allocation of this instance. We claim that

after permuting the bundles, we may assume that Xi+2 = {gi} for i = 1, . . . , n−2
and X1 ∪ X2 = M . At least one bundle, say X1, receives no good from
{g1, . . . , gn−2}, and so u′(X1) = u(X1) ≤ u(M). Now suppose some other bundle
Xi contains some good gj . If Xi contained another good g, then

u′(Xi \ {g}) ≥ u′({gj}) = u(M) + 1 > u′(X1),

contradicting (X1, . . . , Xn) being EFX. Hence, Xi = {gj}, and the claim follows.
Now, one sees that (X1,X2) is an EFX allocation of the original two-agent
instance.
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