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Abstract
We investigate optimal decision making under im-
perfect recall, that is, when an agent forgets in-
formation it once held before. An example is the
absentminded driver game, as well as team games
in which the members have limited communica-
tion capabilities. In the framework of extensive-
form games with imperfect recall, we analyze the
computational complexities of finding equilibria in
multiplayer settings across three different solution
concepts: Nash, multiselves based on evidential
decision theory (EDT), and multiselves based on
causal decision theory (CDT). We are interested in
both exact and approximate solution computation.
As special cases, we consider (1) single-player
games, (2) two-player zero-sum games and rela-
tionships to maximin values, and (3) games without
exogenous stochasticity (chance nodes). We relate
these problems to the complexity classes P, PPAD,
PLS, ΣP

2 , ∃R, and ∃∀R.

1 Introduction
In game theory, it is common to restrict attention to games of
perfect recall, that is, games in which no player ever forgets
anything. At first, it seems that this assumption is even better
motivated for AI agents than for human agents: humans for-
get things, but AI does not have to. However, we argue this
view is mistaken: there are often reasons to design AI agents
to forget, or to structure them so that they can be modeled as
forgetful. Moreover, such forgetting-by-design follows pre-
dictable rules and is thereby easier to model formally than
idiosyncratic human forgetting. Thus, games of imperfect re-
call are receiving renewed attention from AI researchers.

Imperfect recall is already being used for state-of-the-
art abstraction algorithms for larger games of perfect re-
call [Waugh et al., 2009; Ganzfried and Sandholm, 2014;
Brown et al., 2015]. The idea is that by forgetting unim-
portant aspects of the past, the AI can afford to conduct
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(a) Forgetful penalty shoot-out. This
game has no Nash equilibrium.
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(b) Extended ab-
sentminded driver.

Figure 1: Games with imperfect recall. P1’s (▲) utility payoffs are
labeled on each terminal node. If P2 (▼) is present, the game is zero
sum. Infosets are joined by dotted lines.

equilibrium-approximation computations with a game model
that has a more refined abstraction of the present. Indeed,
imperfect-recall abstractions were a key component in the
first superhuman AIs in no-limit Texas hold’em poker [Brown
and Sandholm, 2018; Brown and Sandholm, 2019].

Imperfect recall also naturally models settings in which
forgetting is deliberate for other reasons, such as privacy of
sensitive data [Conitzer, 2019; Zhang and Sandholm, 2022].
Conitzer provides the example of an AI driving assistant de-
signed to intervene whenever the human car driver makes a
significant error. In such instances, the AI must assess the
overall skill level of the human driver, despite not being al-
lowed to store information about the individual.

It can also model teams of agents with common goals and
limited ability to communicate. Each team, represented by
one agent with imperfect recall, is then striving for some no-
tion of optimality among team members [von Stengel and
Koller, 1997; Celli and Gatti, 2018; Emmons et al., 2022;
Zhang et al., 2023]. Highly distributed agents are similarly
well-described by imperfect recall: such an agent may take
an action at one node based on information at that node,
and then need to take another action at a second node with-
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Multi-player
Nash (D) EDT (D) CDT (S)

exact ∃R-hard and in ∃∀R —
(Thms. 1 & 3)

1/exp

1/poly

ΣP
2 -complete

(Thms. 2 and 4)
PPAD-complete

(Thm. 6)

Single-player
Optimal (D) EDT (S) CDT (S)

exact ∃R-complete — —[Gimbert et al., 2020]

1/exp NP-complete PLS-complete CLS-complete
[Koller and Megiddo, 1992; (Thm. 5∗) [Tewolde et al., 2023]

1/poly Tewolde et al., 2023] P (Cor. 22∗) P (Cor. 17)

Table 1: Summary of complexity results. New results from this paper are shown with a light green background. (S) stands for search problem,
which is when we ask for a solution strategy profile. In multi-player, (D) stands for deciding whether such an equilibrium even exists. In
single-player, Optimal (D) decides whether some target utility can be achieved. Citations are given for results found in the literature. All
of our hardness results even hold for highly restricted game instances. ∗: The number of actions per infoset is constant for these results.
‘—’: No results exist for these settings to our knowledge. Also note the technical complication that arises here from the fact that there exist
single-player games in which every exact EDT or CDT equilibrium involves irrational values [Tewolde et al., 2023].

out yet having learned yet what happened at the first node.
Thus, effectively, the distributed agent has forgotten what it
knew before. Finally, a single agent can be instantiated mul-
tiple times in the same environment, where one copy does
not know what another copy just knew [Conitzer and Oester-
held, 2023]. For example, we might want to test goal-oriented
AI agents in simulation to ensure that they will later act in a
trustworthy fashion in the real world [Kovarı́k et al., 2023;
Kovarı́k et al., 2024]. Then, the AI agent will have to act in
the real world without knowing how it acted in simulation.

Perfect recall is a common technical assumption in game
theory because it implies many simplifying properties, such
as polynomial-time solvability of single-player and two-
player zero-sum settings [Koller and Megiddo, 1992]. In
multi-player settings with imperfect recall, Nash equilib-
ria may not exist anymore [Wichardt, 2008]; in fact, we
show that deciding existence is computationally hard. To
give an illustrative running example, consider a variation of
Wichardt’s game in Figure 1a, which we call the forgetful
(soccer) penalty shoot-out. The shooter (P1) decides whether
to shoot left or right, once before the whistle, and once again
right before kicking the ball. At the second decision point,
P1 has forgotten which direction they chose previously. P1
only succeeds in shooting in any direction if she chooses that
direction at both decision points. Upon succeeding, it be-
comes a matching pennies game with the goalkeeper (P2)
who chooses to jump left or right to block the ball. A sim-
ilar analysis to the one of matching pennies implies that in a
potential Nash equilibrium, none of the two players can play
one side more often than the other. However, both players
randomizing 50/50 at each infoset is not a Nash equilibrium
either: P1 is not best responding to P2 because she could in-
stead deterministically shoot towards one side to avoid mis-
coordination with herself altogether which would achieve a
payoff of 1 instead of 0.

Indeed, many of our intuitions fail for imperfect-recall
games – to the point that a significant body of work in philos-
ophy and game theory addresses conceptual questions about
probabilistic reasoning and decision making in imperfect-
recall games, such as in the Sleeping Beauty problem [Elga,
2000] or the absentminded driver game of Figure 1b [Pic-
cione and Rubinstein, 1997]. From this literature, several dis-
tinct and coherent ways to approach games of imperfect recall
have emerged. We will discuss these in detail in Section 4.

In this paper, we study the computational complexity of
solving imperfect-recall extensive-form games. We focus
on three solution concepts: (1) Nash equilibria where play-
ers play mutual best response strategies (or simply optimal
strategies in single-player domains), (2) multiselves equilib-
ria based on evidential decision theory, in which each infoset
plays a best-response action to all other infosets and players,
and (3) multiselves equilibria based on causal decision the-
ory, in which each infoset plays a Karush-Kuhn-Tucker (KKT)
point action for the current strategy profile. The latter two are
relaxations of the first. Sections 2 and 4 cover preliminaries
on imperfect-recall games and on multiselves equilibria, re-
spectively. Sections 3 and 5 analyze the computation of Nash
equilibria and of multiselves equilibria, respectively, in vari-
ous setting. Our complexity results for these are summarized
in Table 1. Last but not least, Section 6 shows that games
with imperfect recall stay computationally equally hard even
in the absence of exogenous stochasticity (i.e., chance nodes).

2 Imperfect-Recall Games
We first define extensive-form games, allowing for imperfect
recall. The concepts we use in doing so are standard; for
more detail and background, see, e.g., Fudenberg and Tirole
[1991] and Piccione and Rubinstein [1997]. In this section,
we follow the exposition of Tewolde et al. [2023], with the
addition of introducing multi-player notation.

Definition 1. An extensive-form game with imperfect recall,
denoted by Γ, consists of:
1. A rooted tree, with nodes H and where the edges are la-

beled with actions. The game starts at the root node h0

and finishes at a leaf node, also called terminal node. We
denote the terminal nodes in H as Z and the set of actions
available at a nonterminal node h ∈ H \ Z as Ah.

2. A set of N+1 players N ∪{c}, for N ∈ N, and an assign-
ment of nonterminal nodes to a player that shall choose an
action at that node. Player c stands for chance and repre-
sents exogenous stochasticity that chooses an action. With
H(i) we denote all nodes associated to player i ∈ N .

3. A fixed distribution P(c)(· | h) over Ah for each chance
node h ∈ H(c), with which an action is determined at h.

4. For each i ∈ N , a utility function u(i) : Z → R that
specifies the payoff that player i receives from finishing
the game at a terminal node.
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5. For each i ∈ N , a partition H(i) = ⊔I∈I(i)I of player
i’s decision nodes into information sets (infosets). We re-
quire Ah = Ah′ for all nodes h, h′ of the same infoset.
Therefore, infoset I has a well-defined action set AI .

Imperfect Recall. Nodes of the same infoset are assumed
to be indistinguishable to the player during the game even
though the player is always aware of the full game structure.
This may happen even in perfect-recall games due to imper-
fect information, that is, when it is unobservable to the player
what another player (or chance) has played. This effect is
present in Figure 1a for P2. In contrast, infoset I2 of P1 ex-
hibits imperfect recall because once arriving there, the player
has forgotten information about the history of play that she
once held when leaving I1, namely whether she chose left
or right back then. In Figure 1b, the player is unable to re-
call whether she has been in the same situation before or not.
This phenomenon is a special kind of imperfect recall called
absentmindedness. The degree of absentmindedness of an in-
foset shall be defined as the maximum number of nodes of the
same game trajectory that belong to that infoset. In Figure 1b,
it is 3. The branching factor of a game is the maximum num-
ber of actions at any infoset.

In contrast to that, games with perfect recall have every
infoset reflect that the player remembers the sequence of in-
fosets she visited and the actions she took. We note that any
node h ∈ H uniquely corresponds to a history path hist(h)
in the game tree, consisting of alternating nodes and actions
from root h0 to h. Let exp(i)(h) be the experienced sequence
of infosets visited and actions taken by player i on the path
hist(h). Then, formally, a game has perfect recall if for all
players i ∈ N , all infosets I ∈ I(i), and all nodes h, h′ ∈ I ,
we have exp(i)(h) = exp(i)(h′).

Strategies. Let ∆(AI) denote the set of probability distri-
butions over the actions in AI . These will also be referred to
as randomized actions. A (behavioral) strategy µ(i) : I(i) →
⊔I∈I(i)∆(AI) of a strategic player i assigns to each of her in-
fosets I a probability distribution µ(i)(· | I) ∈ ∆(AI). Upon
reaching I , the player draws an action randomly from µ(i)(· |
I). A pure strategy maps deterministically1 to ⊔I∈I(i)AI . A
strategy profile, or profile, µ = (µ(i))i∈N specifies a behav-
ioral strategy for each player. We may write

(
µ(i), µ(−i)

)
to

emphasize the influence of i ∈ N on µ. Denote the strategy
set of player i ∈ N with S(i), and the set of profiles with S .

For a computational analysis, we identify a randomized ac-
tion set ∆(AI) with the simplex ∆|AI |−1, where ∆n−1 :=
{x ∈ Rn : xk ≥ 0 ∀k ,

∑n
k=1 xk = 1}. Therefore, the

1Other work has also considered mixed strategies, that is, prob-
ability distributions over all pure strategies. In the presence of im-
perfect recall, mixed strategies are not realization-equivalent to be-
havioral strategies [Kuhn, 1953]. Mixed strategies require the agent
to coordinate her actions across infosets (e.g., access to a correlation
device): For example, in contrast to our introductory discussion on
the forgetful penalty shoot-out (Figure 1a), this game does admit a
Nash equilibrium in mixed strategies since P1 can now choose to
kick left twice in a row 50% of the time and to kick right twice in
a row the other 50% of the time. As this would imply a form of
memory, it does not fit the motivation of this paper.

strategy sets are Cartesian products of simplices:

S ≡×i∈N×I∈I(i) ∆|AI |−1 and S(i) ≡×I∈I(i) ∆|AI |−1.

Reach Probabilities and Utilities. Let P(h̄ | µ, h) be the
probability of reaching node h̄ ∈ H given that the current
game state is at h ∈ H and that the players are playing profile
µ. It evaluates as 0 if h /∈ hist(h̄), and as the product of
probabilities of the actions on the path from h to h̄ otherwise.
The expected utility payoff of player i ∈ N at node h ∈
H \ Z if profile µ is being followed henceforth is U (i)(µ |
h) :=

∑
z∈Z P(z | µ, h) · u(i)(z). We overload notation by

defining P(h | µ) := P(h | µ, h0) for root h0 of Γ, and
by defining the function U (i) as U (i)(µ) := U (i)(µ | h0),
mapping a profile µ to its expected utility from game start. In
Figure 1b, this is U (1)(µ) = 6c2e – or, to follow our notation
more precisely, U (1)(µ) = 6µ(1)(c | I)2µ(1)(e | I).
Polynomials. Each summand P(z | µ, h) · u(i)(z) in
U (i)(µ | h) is a monomial in µ times a scalar, and the ex-
pected utility function U (i) is a polynomial function in the
profile µ. All these polynomials U (i) can be constructed in
polynomial time (polytime) in the encoding size of Γ.

One might also ask how general those polynomial util-
ity functions may be. Indeed, imperfect-recall games can
be very expressive. We give a polytime construction in the
full version of this paper that, given a collection of N multi-
variate polynomials p(i) :×N

i=1×ℓ(i)

j=1 R
m

(i)
j → R, yields an

associated N -player game Γ with imperfect recall such that
its expected utility functions satisfy U (i)(µ) = p(i)(µ) on

×N
i=1×ℓ(i)

j=1 R
m

(i)
j .

Approximate Solutions. The solution concepts we inves-
tigate will have a definition of the abstract form “Strategy µ
is a solution if for all y ∈ Y we have f(µ) ≥ fµ(y)” for
some set Y of alternatives and some utility/objective func-
tions f and fµ. Then, we call a strategy µ an ϵ-solution if
∀ y ∈ Y : f(µ) ≥ fµ(y)− ϵ.

Computational Considerations. In this paper, we discuss
decision problems and search problems. The former ask for a
yes/no answer; the latter ask for a solution point. The input to
these computational problems may be a game Γ, a precision
parameter ϵ > 0, and/or a target value t. Values in Γ, as
well as ϵ and t are assumed to be rational. We assume that a
game Γ is represented by its game tree structure, which has
size Θ(|H|), and by a binary encoding of its chance node
probabilities and its utility payoffs. If there is a target t, then
it shall be given in binary as well.

If there is no precision parameter ϵ, then we are deal-
ing with problems involving exact solutions. In our set-
tings, such problems are usually beyond NP because equi-
libria may require irrational probabilities and may therefore
not be representable in finite bit length. In fact, Tewolde et
al. [2023][Figure 6] give a simple single-player example in
which the unique equilibrium takes on irrational values. That
is, in part, why we will also be interested in approximations
up to a small precision error ϵ > 0. Here, we mean ‘small’
relative to the range of utility payoffs, which – by shifting and
rescaling utilies – we can w.l.o.g. assume to be [0, 1].
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Remark. By default, ϵ > 0 will be given in binary, in which
case we require inverse-exponential (1/exp) precision.

Here, the term ‘inverse-exponential’ indicates that 1/ϵ can
be exponentially larger than the tree size |H|. Occasionally,
we may instead require inverse-polynomial (1/poly) preci-
sion, which is when ϵ is given in unary, or require constant
precision, which is when ϵ is fixed to a constant > 0. Natu-
rally, 1/exp precision is hardest to achieve.
Complexity Classes. We give a brief overview of the com-
plexity classes appearing in this paper, and refer to the full
version of this paper for references and more details. The
subset relationships of the complexities classes we present
here are believed to be strict. P describes the decision prob-
lems that can be solved in polytime. NP describes the deci-
sion problems that can be solved in non-deterministic poly-
time. ΣP

2 describes the decision problems that can be solved
in non-deterministic polytime if given oracle access to an NP
solver, such as a SAT oracle. We have P ⊆ NP ⊆ ΣP

2 ⊆
PSPACE. NP and ΣP

2 are classes for decision problems that
can be formulated as one over discrete variables (w.l.o.g.
Boolean variables). Their counterparts for real-valued de-
cision problems are the first-order-of-the-reals classes ∃R
and ∃∀R: A ∃R problem asks whether a sentence of the
form ∃x1 . . . ∃xnF (x1, . . . , xn) is true, where the xi repre-
sent real-valued variables and F represents a quantifier-free
formula of (in-)equalities of real polynomials in rational coef-
ficients. ∃∀R is defined analogously, except for sentences of
the form ∃x ∈ Rn1∀y ∈ Rn2F (x, y). We have NP ⊆ ∃R ⊆
PSPACE ∩∃∀R.

The complexity classes FP and FNP are the search prob-
lem analogues of P and NP. The landscape between FP and
FNP is rich, and total NP search problems are those problems
in FNP for which one knows that each problem instance ad-
mits a solution. The complexity classes in it can be character-
ized by the natural, but exponential-time method with which
one can show that each problem instance admits a solution.
For the class PPAD the method is that of a fixed point argu-
ment, as is the case, e.g., for the existence of a Nash equilib-
rium. For the class PLS the method is that of a local optimiza-
tion argument on a directed acyclic graph. For the class PLS
the method is that of a CLS a local optimization argument on
a bounded polyhedral (continuous) domain. We have P “⊆”
CLS = PPAD ∩ PLS and PPAD, PLS “⊆” NP.

3 Nash Equilibria and Optimal Play
In this section, we present our computational results for the
classic and most important solution concept in game theory –
the Nash equilibrium [Nash, 1950].
Definition 2. A profile µ is said to be a Nash equilibrium (in
behavioral strategies) for game Γ if for all player i ∈ N , and
all alternative strategies π(i) ∈ S(i), we have

U (i)(µ(i), µ(−i)) ≥ U (i)(π(i), µ(−i)).
In a Nash equilibrium, no player has any utility incentives

to deviate unilaterally to another strategy. Nash showed that
any finite perfect-recall game admits at least one Nash equi-
librium. In contrast, some finite imperfect-recall games have
no Nash equilibrium, as discussed in the introduction. If there

is only a single player, however, finding a Nash equilibrium
– i.e., finding an optimal strategy – reduces to maximizing
a polynomial utility function over a compact strategy space.
Such a solution is guaranteed to exist, and its value is unique.
Therefore, one may ask instead whether some target value t
can be achieved in a given game. In Figure 1b, this would
result in the ∃R-sentence ∃e, c : 6c2e ≥ t ∧ c ≥ 0 ∧ e ≥
0 ∧ c + e = 1. This is an easier task than finding an optimal
strategy. Nonetheless, we have:
Proposition 3 (Gimbert et al., 2020). Deciding whether a
single-player game with imperfect recall admits a strategy
with value ≥ t is ∃R-complete.

For approximation, consider problem OPT-D that asks to
distinguish between whether ∃µ ∈ S : U (1)(µ) ≥ t and
whether ∀µ ∈ S : U (1)(µ) ≤ t− ϵ.
Proposition 4 (Koller and Megiddo, 1992; Tewolde et al.,
2023). OPT-D is NP-complete.

Technically, Koller and Megiddo establish hardness for the
exact decision problem. We shall merely add the observation
that their proof also implies NP-hardness of the approximate
problem; and via the PCP theorem [Håstad, 2001], even for a
constant precision ϵ < 1/8.

3.1 Two-Player Zero-Sum Games
A two-player zero-sum (2p0s) game is a two-player game
where U (2) = −U (1). In that case utilities can be given in
terms of P1, and P2 simply minimizes that utility.

Koller and Megiddo [1992] prove ΣP
2 -completeness of de-

ciding in 2p0s games with imperfect recall whether the max-
min value in pure-strategy play exceeds some utility target
≥ t. We will consider behavioral strategies instead.
Definition 5. In a 2p0s game Γ, the (behavioral) max-min
value and min-max value are defined as

¯
U := maxµ(1)∈S(1) minµ(2)∈S(2) U (1)(µ(1), µ(2)),
Ū := minµ(2)∈S(2) maxµ(1)∈S(1) U (1)(µ(1), µ(2)).

Gimbert et al. [2020] prove that deciding
¯
U ≥ t is in ∃∀R

and is ∃R-hard. For approximation, we know the following.
Lemma 6 (Zhang et al., 2023). It is ΣP

2 -complete to distin-
guish

¯
U ≥ 0 from

¯
U ≤ −ϵ in 2p0s games with imperfect

recall. Hardness holds even with no absentmindedness and
1/poly precision.

To leverage this result in the subsequent sections, we will
first show a tight connection between the existence of Nash
equilibria in a 2p0s game Γ, and Γ’s min-max and max-min
values. Define the duality gap of Γ as the difference

∆ := Ū −
¯
U ≥ 0.

In Figure 1a the duality gap is 1− 0 = 1.
Proposition 7. Let Γ be a 2p0s game with imperfect recall.
If ∆ ≤ ϵ then Γ admits an ϵ-Nash equilibrium. Conversely, if
Γ admits an ϵ-Nash equilibrium, then ∆ ≤ 2ϵ.

In particular, there is an equivalence between Nash equilib-
rium existence and vanishing duality gap. This result is not
specific to behavioral strategies in imperfect-recall games; it
holds for any family of strategies in any 2p0s game.
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0

Γ G

exit cont

Figure 2: Game construction used to prove hardness of deciding
equilibrium existence. We use boxes for chance nodes, at which
chance plays uniformly at random. Γ is a placeholder game. G is a
game with no equilibrium; Section 3.2 for example uses Figure 1a.

3.2 Deciding Nash Equilibrium Existence
We observe that the existence of a Nash equilibrium can be
formulated as “there exists a profile µ such that for all other
profiles π the condition of Definition 2 are satisfied for all
i ∈ N ”. This puts the exact and approximate decision prob-
lems in ∃∀R and ΣP

2 respectively. For an intuitive idea of
our upcoming hardness results, consider the game in Figure 2
where subgame G shall be that of Figure 1a and where sub-
game Γ is a game in which it is hard to decide what utility
P1 can guarantee himself. Then a profile cannot be a Nash
equilibrium if P2 is supposed to continue at the root node,
because in that case G is reached with positive probability
and the players cannot be in equilibrium in that subgame as
we have discussed in the introduction. Note that exiting at the
root node yields P2 a utility of 0, and best-responding to P1
in subgame G also yields P2 a utility of ≤ 0 (recall that P2 is
the minimizer). Thus, for a profile to be a Nash equilibrium
in the overall game, P2 must exit at the root node as a best re-
sponse, which is the case exactly if P1 cannot achieve a utility
of at least 0 in the subgame Γ. Using the problem instances
of Proposition 3 for the subgame Γ, we obtain

Theorem 1. Deciding if a game with imperfect recall admits
a Nash equilibrium is ∃R-hard and in ∃∀R. Hardness holds
even for 2p0s games where one player has a degree of absent-
mindedness of 4 and the other player has perfect recall.

Next, for the approximate case, we use the problem in-
stances of Lemma 6 for the subgame Γ. Define NASH-D to
ask to distinguish between whether an exact Nash equilibrium
exists or whether no ϵ-Nash equilibrium exists.

Theorem 2. NASH-D is ΣP
2 -complete. Hardness holds for

2p0s games with no absentmindedness and 1/poly precision.

With Proposition 7, this immediately implies

Corollary 8. It is ΣP
2 -complete to distinguish ∆ = 0 from

∆ ≥ ϵ in 2p0s games. Hardness holds for 2p0s games with
no absentmindedness and 1/poly precision.

Later in this paper, Theorem 4 will imply another ΣP
2 -

hardness for NASH-D but with different restrictions.

3.3 A Naı̈ve Algorithm for Nash Equilibria
For game Γ, let |Γ| denote its representation size and m :=∑

i∈N
∑

I∈I(i) |AI | its the total number of pure actions.

1 0 0 2

l1

l2 r2

r1

l2 r2

I1

I2

Figure 3: A single-player game with imperfect recall where misco-
ordinating actions with yourself is punished most.

Proposition 9. NASH-D is solvable in time
poly

(
|Γ|, log 1

ϵ , (m · |H|)m2
)

.

In fact, our algorithm finds an ϵ-Nash equilibrium when-
ever an exact Nash equilibrium exists. The idea is similar
to that one of Lipton and Markakis [2004][Theorem 2] for
multi-player normal-form games: Namely, we iteratively sub-
divide the strategy space, and repeatedly decide with first-
order-of-the-reals solvers whether a Nash equilibrium exists
in this smaller region. Those solvers also give rise to the ex-
ponential time dependence on m. In particular, the algorithm
becomes polytime if m is bounded by a constant. This obser-
vation will aid us towards a PLS-membership proof in Theo-
rem 5. Also note that such a bound on m will not restrict the
size of the game tree since the degree of absentmindedness
can still grow arbitrarily (cf. Figure 1b).

4 Introducing Multiselves Equilibria
Section 3 shows strong obstacles to finding Nash equilibria
in games with imperfect recall. In light of these limitations,
we relax the space of solutions and turn to the multiselves ap-
proach (cf. the agent-form [Kuhn, 1953]), which we review
in this section. This approach argues that, whenever a player
finds herself in an infoset, she has no influence over which ac-
tions she chooses at other infosets. Therefore, at a multiselves
equilibrium µ, each player will play the best randomized ac-
tion at each of their infosets, assuming that they themselves
play according to µ at other infosets and assuming all other
players also play according to µ.

Consider Figure 3. The optimal strategy is to play (r1, r2).
This is also a multiselves equilibrium. However, (l1, l2) is
also a multiselves equilibrium, because if the player is at the
top-level infoset I1 and assumes that she will follow left at the
bottom-level infoset I2, then it is best for her to go left now.
On the other hand, if the player is at I2 and assumes that she
played left at I1, then it is again best for her to play left now.

Multiselves equilibria can be arbitrarily bad in payoff in
comparison to optimal strategies and Nash equilibria, as can
be seen by replacing the payoff of 2 in Figure 3 with some
λ → ∞. This phenomenon is due to miscoordination across
infosets, and it arises in the same manner across teams in team

games: The corresponding normal-form game
(
λ, λ 0, 0
0, 0 1, 1

)
shows that Nash equilibria can be arbitrarily worse relative to
Pareto-optimal profiles.

In games with absentmindedness it becomes controversial
how to apply the multiselves idea. Specifically, how should
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a player reason about implications of a choice at the current
decision point for her action choices at past and future deci-
sion points within the same infoset, and – as a consequence
– compute incentives to deviate? That is, in considering de-
viating, will the player assume they would perform the same
deviation at other nodes in the same infoset, or that the devi-
ation is a one-time-only event? We will handle this question
using two well-motivated2 decision theories that correspond
to these two cases: evidential decision theory and causal de-
cision theory. We will see that Nash equilibria are multiselves
equilibria under both decision theories.

That this section is accompanied with an extensive section
in the full version of this paper that – beyond proving the
statements made in this section – also introduces some addi-
tional observations and lemmas needed for the development
of our main results.

4.1 Evidential Decision Theory (EDT)
Suppose a game Γ is played with profile µ, and a player i
arrives in one of her infosets I ∈ I(i). EDT postulates that if
that player deviates to a randomized action α ∈ ∆(AI) at the
current node, then she will have also deviated to α whenever
she arrived in I in the past, and that she will also deviate to α
whenever she arrives in I again in the future. This is because
EDT argues that the choice to play α now is evidence for the
player playing the same α in the past and future.

We denote the behavioral strategy that results from an EDT
deviation as µ(i)

I 7→α. It plays according to µ(i) at every infoset
except for at I ∈ I(i) where it plays according to α ∈ ∆(AI).

Definition 10. We call µ an EDT equilibrium for game Γ
if for all players i ∈ N , all her infosets I ∈ I(i), and all
randomized actions α ∈ ∆(AI), we have

U (i)(µ) ≥ U (i)(µ
(i)
I 7→α, µ

(−i)).

In an EDT equilibrium, no player has an incentive to de-
viate at an infoset in an EDT fashion to another randomized
action. This is because the right hand side of the inequality
represents the expected ex-ante utility of such an EDT devia-
tion. We give an extensive discussion on the ex-ante perspec-
tive for multiselves equilibria in the full version of this paper.
Regarding equilibrium computation, the following result is
known:

Proposition 11 (Tewolde et al., 2023). Unless NP = ZPP,
finding an ϵ-EDT equilibrium in a single-player game for
1/poly precision is not in P.

4.2 Causal Decision Theory (CDT)
Say, again, game Γ is played with profile µ, and a player i
arrives in one of her infosets I ∈ I(i). Then CDT postulates
that the player can deviate to an action α ∈ ∆(AI) at the

2The debate around decision theories is related to the approach
for belief formation (cf. the Sleeping Beauty problem [Elga, 2000]).
Among other aspects, the literature has studied which combination
of decision theories and belief formation avoid being Dutch-booked
(money-pumped) [Piccione and Rubinstein, 1997; Briggs, 2010;
Oesterheld and Conitzer, 2022].

current node without violating that she has been playing ac-
cording to µ(i) at past arrivals in I , or that she will be playing
according to µ(i) at future arrivals in I . This is in addition
to assuming that all other players follow µ(−i) as usual. The
intuition behind CDT is that the player’s choice to deviate
from µ(i) at the current node does not cause any change in
her behavior at any other node of the same infoset I .
Example 12. Recall Figure 1b in which – as the story goes –
the absentminded driver has to exit a highway at the second
highway exit to find home. Say the player enters the game
with µ = ‘e’ (exit), and upon arriving in the infoset, consid-
ers deviating to ‘c’ (continue) at this point of time. EDT then
argues that the player will always continue on the highway
and arrive at the third “0” payoff of the game. CDT, on the
other hand, argues that the player will continue on the high-
way once – or more precisely, continue at the root node since
that is the only decision node she could possibly be at given
her strategy µ – and then exit the highway at its second exit.

For node h ∈ H(i) and pure action a ∈ Ah, let ha denote
the child node reached if player i plays a at h. Consequently,
U (i)(µ | ha) is the expected utility of player i from being
at h, playing a, and everyone following profile µ afterwards.
When at an infoset I ∈ I(i), the player does not know at
which node of I she currently is. Therefore, when comput-
ing her utility incentives for a CDT-style deviation to a, she
scales each node by the probability of reaching that node un-
der profile µ. This yields utility incentives∑

h∈I P(h | µ) · U (i)(µ | ha).
to CDT-deviate to pure action a at infoset I . This value is
known to be equal to the partial derivative ∇I,a U

(i)(µ) of
utility function U (i) w.r.t. to action a of I ∈ I(i) at point
µ [Piccione and Rubinstein, 1997; Oesterheld and Conitzer,
2022]. Hence, we can formulate the following definition.
Definition 13. Given a profile µ in game Γ, a player i ∈ N
determines her (ex-ante) utility from CDT-deviating at infoset
I ∈ I(i) to randomized action α ∈ ∆(AI) as
U

(i)
CDT(α | µ, I) :=

U (i)(µ) +
∑

a∈AI
(α(a)− µ(a | I)) · ∇I,a U

(i)(µ).
In other words, this is the first-order Taylor approximation

of U (i) at µ in the subspace ∆(AI). In the full version of
this paper, we illustrate on a simple game that the ex-ante
CDT-utility may yield unreasonable utility payoffs for val-
ues α far away from µ(· | I). Moreover, if α ̸= µ(· | I),
we observe that the resulting behavior of the deviating player
cannot be captured by a behavioral strategy anymore that the
player could have chosen from the beginning. That is because
the player is now acting differently at different nodes of the
same infoset.
Definition 14. A profile µ is said to be a CDT equilibrium
for game Γ if for all player i ∈ N , all her infosets I ∈ I(i),
and all alternative randomized actions α ∈ ∆(AI), we have

U (i)(µ) = U
(i)
CDT

(
µ(i)(· | I)

∣∣ µ, I) ≥ U
(i)
CDT(α | µ, I).

Therefore, no player has any utility incentives to deviate
at an infoset in a CDT fashion to another randomized action.
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CDT equilibria have received a more thorough treatment in
the literature than EDT equilibria have.
Lemma 15 (Lambert et al., 2019). Any game Γ with imper-
fect recall admits a CDT equilibrium.

Thus, we shall define CDT-S as the search problem that
asks for an ϵ-CDT equilibrium in the game (which always ex-
ists). Let 1P-CDT-S be its restriction to single-player games.
Proposition 16 (Tewolde et al., 2023).
1. A profile µ is a CDT equilibrium of Γ if and only if for all

player i ∈ N , strategy µ(i) is a KKT-point of
maxπ(i)∈S(i) U (i)(π(i), µ(−i)).

2. The problem 1P-CDT-S is CLS-complete.
The original formulation of Tewolde et al. was not given

for the multi-player setting and the ex-ante perspective. We
compare it to the above formulation in the full version of this
paper. Furthermore, we may also highlight a positive algo-
rithmic implication which has not been stated before. It can
be obtained analogously to [Fearnley et al., 2023, Lemma
C.4].
Corollary 17. 1P-CDT-S for 1/poly precision is in P.

4.3 Comparing the Solution Concepts
The three solution concepts form an inclusion hierarchy. This
result is known for single-player settings and extends straight-
forwardly to multi-player settings.
Proposition 18 (Oesterheld and Conitzer, 2022). A Nash
equilibrium is an EDT equilibrium. An EDT equilibrium is
a CDT equilibrium.

This also implies that any single-player game admits both
EDT and CDT equilibria since it admits an optimal strategy
(= Nash equilibrium). In general, neither statement in Propo-
sition 18 holds in reverse. Indeed, we have seen in Figure 3
that multiselves equilibria may not be the optimal strategy.
Moreover, the strategy µ described in Example 12 forms a
CDT equilibrium but not an EDT equilibrium (an EDT de-
viation to a uniformly randomized action achieves positive
utility).

We will find in this paper that CDT equilibria are easier
to compute than EDT equilibria. Indeed, Proposition 11 and
Corollary 17 already serve as the first evidence towards such a
separation. We can also find a hint towards such an insight by
considering the easier problem of verifying whether a given
profile could be an equilibrium. For CDT, this can be done in
polytime: since U

(i)
CDT is linear in α, we do not actually need

to check Definition 14 for all α ∈ ∆(AI), but it suffices to
only check it for pure actions a ∈ AI . For EDT equilibria, on
the other hand, there is no simple-to-check characterization:
U (i)(µ

(i)
I 7→·, µ

(−i)) is a polynomial function over ∆(AI), for
which no easy verification method is known. At least, this is
true in general. As for special cases, we have:
Remark 19. Without absentmindedness, deviation incentives
of EDT and of CDT coincide, and so do the equilibrium con-
cepts. Hence, complexity results such as Proposition 16 and
Theorem 6 will apply to EDT equilibria as well.
Remark 20. If each player has only one infoset in total, then
the EDT equilibria coincide with the Nash equilibria.

λ 3 -1 -1 -1 -1 3 -1

Figure 4: A variant of Figure 1a where P1 has one single infoset with
absentmindedness. It is parametrized by the payoff λ ∈ R from P1
shooting left and P2 blocking left.

5 Complexities of Multiselves Equilibria
In this section, we present our computational results for mul-
tiselves equilibria.

5.1 EDT Equilibria
Consider the (parametrized) absentminded penalty shoot-out
in Figure 4. It shows that in multi-player settings, EDT equi-
libria may not exist. Absentmindedness is crucial for such an
example due to Remark 19 and Lemma 15.

Lemma 21. Figure 4 has an EDT equilibrium if and only if
λ ≥ 3.

The next result establishes ∃R-hardness again by similar
arguments to Theorem 1. Except in this construction, we at-
tach the single-player game Γ from Proposition 3 to the bot-
tom left of Figure 4. Note here that by an appropriate payoff
shift in Γ, we can w.l.o.g. assume the target t for Γ to be 3.

Theorem 3. Deciding whether a game with imperfect recall
admits an EDT equilibrium is ∃R-hard and in ∃∀R. Hardness
holds even for 2p0s games where one player has a degree of
absentmindedness of 4 and the other player has perfect recall.

Now consider problem EDT-D that asks to distinguish be-
tween whether an exact EDT equilibrium exists or whether
no ϵ-EDT equilibrium exists.

Theorem 4. EDT-D is ΣP
2 -complete. Hardness holds for

1/poly precision and 2p0s games with one infoset per player
and a degree of absentmindedness of 4.

The technically involved proof casts the game construction
for Theorem 1 to a game where each player only has one in-
foset, in order to use Remark 20. For that, we cannot reduce
from Lemma 6 this time, but we reduce directly from the
ΣP

2 -complete problem ∃∀3-DNF-SAT [Stockmeyer, 1976].
Moreover, we make use of the flexibility that EDT-utilities
can represent arbitrary polynomial functions as long as they
are only over a single simplex.

Next, we turn to the search problem. The algorithm of
Proposition 9 can also find ϵ-EDT equilibria if we adjust for
its equilibrium conditions. In single-player settings, however,
we can do better since EDT equilibria are guaranteed to exist.
Let 1P-EDT-S be the search problem that asks for an ϵ-EDT
equilibrium. This problem was left open by Tewolde et al.
[2023].
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Theorem 5. 1P-EDT-S is PLS-complete when the branch-
ing factor is constant. Hardness holds even when the branch-
ing factor and the degree of absentmindedness are 2.

Before we touch on the proof idea, we shall highlight its
contrast to Proposition 16 on the CLS-membership of 1P-
CDT-S, since CLS is believed to be a proper subset of PLS
(evidenced by conditional separations – see the full version
of this paper). Furthermore, we also get:

Corollary 22. 1P-EDT-S for 1/poly precision is in P when
the branching factor is constant.

The proofs first establish that 1P-EDT-S is computation-
ally equivalent to the search problem that takes a polynomial
function p over a product of simplices, and asks for an ap-
proximate “Nash equilibrium point” of it. In the special case
where the branching factor is 2, the domain becomes the hy-
percube [0, 1]ℓ, and an ϵ-Nash equilibrium x is characterized
by the property

∀j ∈ [ℓ] ∀y ∈ [0, 1] : p(x) ≥ p(y, x−j)− ϵ.

We show that this problem is PLS-complete. This result may
be of independent interest for the optimization literature.

The PLS-hardness follows from a reduction from the PLS-
complete problem MAXCUT/FLIP [Schäffer and Yannakakis,
1991; Yannakakis, 2003]. For the positive algorithmic results
of PLS and P membership respectively, we show that ϵ-best-
response dynamics converges to an ϵ-EDT equilibrium. We
run a similar method to Proposition 9 in order to compute an
ϵ-best response randomized action of an infoset to the other
infosets. This takes polytime if the number of actions per
infoset (= branching factor) is bounded. Without this restric-
tion, we run into the impossibility result of Proposition 11.

5.2 CDT Equilibria
How hard is CDT-S, now that we allow for many players?
We can get PPAD-hardness straightforwardly because any
normal-form game can be cast to extensive form, and be-
cause finding a Nash equilibrium in a normal-form game is
PPAD-complete [Daskalakis et al., 2009; Chen et al., 2009].
Interestingly enough, we can also show PPAD-membership.

Theorem 6. CDT-S is PPAD-complete. Hardness holds
even for two-player perfect-recall games with one infoset per
player and for 1/poly precision.

For membership we investigate the existence proof of
Lemma 15 by Lambert et al.. They first shows a connection
to perfect-recall games with particular symmetries, and then
give a Brouwer fixed point argument which resembles that of
Nash’s for symmetric games. However, the connection relies
on a construction whose size blows up in the order of factori-
als, i.e., super-polynomially. Therefore, we modify the fixed
point argument to one that works directly on CDT utilities:
In a game of imperfect recall, given a profile µ, define the
advantage of a pure action a at infoset I of player i as

g
(i)
I,a(µ) := U

(i)
CDT(a | µ, I)− U (i)(µ) .

Intuitively, if the advantage of an action a over the current
randomized action µ(i)(· | I) is large, then the player should

increase its probability of play. Therefore, we may define the
Brouwer function to map any profile µ to profile π defined as

π(i)(a | I) :=
µ(i)(a | I) + max{0, g(i)I,a(µ)}

1 +
∑

a′∈I max{0, g(i)I,a′(µ)}
.

Then we show that this forms a valid a Brouwer function
whose fixed points are indeed CDT equilibria of the underly-
ing game, and that the Brouwer function and precision errors
satisfy the computational requirements developed by Etes-
sami and Yannakakis [2010] to imply PPAD-membership.

The PPAD-membership result is a positive algorithmic re-
sult: it shows that we can find CDT equilibria with fixed
point solvers and path-following methods, just as it is the case
with Nash equilibria in normal-form games. In particular, we
shall highlight the stark contrast to Theorem 4. Finding a
CDT equilibrium sits well within in the landscape of total
NP search problems, whereas even deciding whether an EDT
equilibrium exists is already on higher levels of the polyno-
mial hierarchy, let alone finding one.

6 The Insignificance of Exogenous
Stochasticity

As of now, the hardness results for single-player settings rely
on the presence of chance nodes; see Propositions 3 and 4 and
Theorem 5. In this section, we investigate the complexity of
games without chance nodes. Of course, one might choose
to add players to the game to simulate nature, even in games
of perfect recall. However, adding players may add signifi-
cantly to the computational complexity of the game, cf. P vs
PPAD for Nash equilibria in single-player vs two-player set-
tings under perfect recall, or Proposition 16 vs Theorem 6 for
CDT equilibria under imperfect recall. Interestingly enough,
we can show that in the presence of imperfect recall, chance
nodes do not affect the complexity.

Theorem 7. All computational hardness results in this pa-
per for the three equilibrium concepts {Nash, EDT, CDT}
still hold even when the game has no chance nodes. They
hold together with previously possible restrictions (e.g., on
the branching factor), except that the restrictions on the num-
ber of infosets and the degree of absentmindedness increase
by one and to O(log |H|) respectively.

In other words, all exogenous stochasticity can be replaced
by one infoset (of an arbitrary player, say P1) with absent-
mindedness, i.e., replaced by uncertainty that arises from for-
getting one’s past actions in an identical situation. The proof
first transforms the game Γ to an equivalent game Γ̃ that only
has a single chance node hc that is located at the root. Next,
we replace hc with an infoset Ic with absentmindedness. We
illustrate in Figure 5 how to do it with a chance node that uni-
formly randomizes over two actions. The resulting game Γ′

has the same number of players and strategy sets as Γ, ex-
cept for the additional infoset Ic for P1. In equilibrium, the
induced conditional probability distribution over the children
of hc in Γ and the nonterminal “children” of Ic in Γ′ will
be the same. Finally, there will be a polynomial relationship
between the equilibrium precision errors in Γ and Γ′.
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→
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-1

Ic

Figure 5: How to remove a chance node if it is located at the root.
Starting with the game on the left, replace it with infoset Ic. As-
suming w.l.o.g. that the subgames G and G′ always yield positive
payoffs, the player of Ic will want to randomize uniformly at Ic –
independent of the play in G and G′.

Next, recall OPT-D from Proposition 4 which asks whether
an approximate target value can be achieved in a single-player
game with imperfect recall. We improve on Theorem 7 in the
specific problem OPT-D via an independent proof.
Proposition 23. OPT-D is NP-hard, even for games with no
chance nodes, one infoset, a degree of absentmindedness of 2,
and 1/poly precision.

Due to Remark 20, this hardness result also holds for decid-
ing whether any EDT equilibrium achieves an approximate
target value. The proof reduces from the 2-MINSAT prob-
lem [Kohli et al., 1994].

7 Conclusion
Historically, games of imperfect recall have received only
limited attention, as it is not clear that they cleanly model
any strategic interactions between humans. However, as we
argued in the introduction, they are more practically signif-
icant in the context of AI agents. However, they also pose
new challenges. Optimal decision making under imperfect
recall is hard due to its close connections to polynomial op-
timization. This and previous work has shown this for the
single-player setting. Moreover, it holds even more so in
multi-player settings, where we established that even decid-
ing whether a Nash equilibrium (i.e., mutual best responses)
exists is very hard. Therefore, we turned towards suitable re-
laxations that arose from the game theory and philosophy lit-
erature. We studied them, and their relationship to each other
and to the Nash equilibrium concept, with a computational
lens.

We find that CDT equilibria stay relatively easy to find,
joining the complexity class of finding a Nash equilibrium in
perfect-recall or normal-form games. This is because CDT
defines the most local form of deviation, affecting only one
decision node at a time. EDT equilibria show a more convo-
luted picture. In single-player settings, we relate it to polyno-
mial local search via best-response dynamics. Furthermore,
without absentmindedness, EDT and CDT equilibria coincide
and hence become equally easy (Remark 19). With absent-
mindedness, on the other hand, the relevant decision prob-
lems for EDT equilibria (in single- or multi-player settings)
tend to coincide in complexity with the analogous problems
for Nash equilibria under imperfect recall.

One conclusion, however, has presented itself in all settings
considered throughout this paper: (assuming well-accepted
complexity assumptions), CDT equilibria are in general
strictly easier to find and decide than EDT and Nash equilib-
ria (Proposition 16 vs Theorem 5, Corollary 17 vs Proposi-
tion 11, and Theorem 6 vs Theorem 4). Does this imply that
CDT-based reasoning is more suitable for computationally-
bounded agents?

Finally, the computational differences between EDT equi-
libria and Nash equilibria have yet to be properly understood,
that is, the differences between global optimization of poly-
nomials over a single simplex versus a product of simplices.
We leave this open for future work, with a particular interest
in the search complexities of these two equilibrium concepts.
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