Algorithm Design with the Selection Monad
Johannes Hartmann and Jeremy Gibbons
Abstract
The selection monad has proven useful for modelling exhaustive search algorithms. It is well studied in the area of game theory as an elegant way of expressing algorithms that calculate optimal plays for sequential games with perfect information; composition of moves is modeled as a ‘product’ of selection functions. This paper aims to expand the application of the selection monad to other classes of algorithms. The structure used to describe exhaustive search problems can easily be applied to greedy algorithms; with some changes to the product function, the behaviour of the selection monad can be changed from an exhaustive search behaviour to a greedy one. This enables an algorithm design framework in which the behaviour of the algorithm can be exchanged modularly by using different product functions.