Tractable Reasoning with Bayesian Description Logics
Claudia d'Amato‚ Nicola Fanizzi and Thomas Lukasiewicz
Abstract
The DL-Lite family of tractable description logics lies between the semantic web languages RDFS and OWL Lite. In this paper, we present a probabilistic generalization of the DL-Lite description logics, which is based on Bayesian networks. As an important feature, the new probabilistic description logics allow for flexibly combining terminological and assertional pieces of probabilistic knowledge. We show that the new probabilistic description logics are rich enough to properly extend both the DL-Lite description logics as well as Bayesian networks. We also show that satisfiability checking and query processing in the new probabilistic description logics is reducible to satisfiability checking and query processing in the DL-Lite family. Furthermore, we show that satisfiability checking and answering unions of conjunctive queries in the new logics can be done in LogSpace in the data complexity. For this reason, the new probabilistic description logics are very promising formalisms for data-intensive applications in the Semantic Web involving probabilistic uncertainty.