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Abstract
A linearly ordered (LO) k-colouring of a hypergraph assigns to each vertex a colour from the
set {0, 1, . . . , k − 1} in such a way that each hyperedge has a unique maximum element. Barto,
Batistelli, and Berg conjectured that it is NP-hard to find an LO k-colouring of an LO 2-colourable
3-uniform hypergraph for any constant k ≥ 2 [STACS’21] but even the case k = 3 is still open.
Nakajima and Živný gave polynomial-time algorithms for finding, given an LO 2-colourable 3-uniform
hypergraph, an LO colouring with O∗(

√
n) colours [ICALP’22] and an LO colouring with O∗( 3√n)

colours [ACM ToCT’23]. Very recently, Louis, Newman, and Ray gave an SDP-based algorithm
with O∗( 5√n) colours. We present two simple polynomial-time algorithms that find an LO colouring
with O(log2(n)) colours, which is an exponential improvement.
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1 Introduction

Given a graph G, the graph k-colouring problem asks to find a colouring of the vertices of
G by colours from the set {0, 1, . . . , k − 1} in such a way that no edge is monochromatic.
The approximate graph colouring problem asks, given a k-colourable graph G, to find an
ℓ-colouring of G, where ℓ ≥ k. For k = 3, the state-of-the-art results are NP-hardness of the
case ℓ = 5 [2] and a polynomial-time algorithm for finding a colouring with ℓ = O(n0.19747)
colours, where n is the number of vertices of the input graph G [9]. For non-monochromatic
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7:2 A logarithmic approximation of linearly-ordered colourings

colourings of hypergraphs, it is known that finding an ℓ-colouring of a k-colourable r-uniform
hypergraph is NP-hard for any constant ℓ ≥ k ≥ 2 and r ≥ 3 [7], and also some positive
results are known for colourings with super-constantly many colours, e.g. [11, 10, 6].

A new variant of hypergraph colourings was identified in [1]. Given a 3-uniform hypergraph
H, a colouring of the vertices of H with colours from the set {0, 1, . . . , k − 1} is called a
linearly ordered (LO) k-colouring if every edge e of H satisfies the following: if two vertices
of e have the same colour then the third colour is larger. More generally, a colouring of a
hypergraph H is an LO colouring if every edge of H has a unique maximum colour. (Note
that the two definitions coincide for 3-uniform hypergraphs.) Barto et al. conjectured
that finding an LO ℓ-colouring of a 3-uniform hypergraph that admits an LO k-colouring is
NP-hard for every constant ℓ ≥ k ≥ 2 [1] but even the case k = 2 and ℓ = 3 is open. Nakajima
and Živný established NP-hardness for some regimes of the parameters k, ℓ, r [13, 14] and,
very recently, Filakovký et al. [8] showed NP-hardness of the case k = 3, ℓ = 4, r = 3. More
importantly for this paper, Nakajima and Živný also considered finding an LO f(n)-colouring
of an LO 2-colourable 3-uniform hypergraph with n vertices and presented polynomial-time
algorithms with f(n) = O(

√
n log log n/ log n) [13] and f(n) = O( 3

√
n log log n/ log n) [14].

Very recently, Louis, Newman, and Ray [12] have given a polynomial-time SDP-based
algorithm with f(n) = O∗( 5

√
n) colours.

As our main result, we improve their results by an exponential factor.

▶ Theorem 1. There is an algorithm which, if given a 3-uniform hypergraph H with n ≥ 4
vertices and m edges that admits an LO 2-colouring, finds an LO log2(n)-colouring of H in
time O(n3 + nm).

In fact we present two different algorithms that return colourings using O(log n) colours.
Both are based on solving the natural system of linear equations implied by the existence of
an LO 2-colouring. In one case, the system is solved modulo 2, and in the other case, the
system is solved over the rationals.

While the H which we are given as input is 3-uniform, we will need the notion that follows
in greater generality; hence we define it for general hypergraphs. For each edge {x1, . . . , xr}
of H, we write an equation vx1 + · · · + vxr = 1 where we initially use equality modulo 2 but
as stated above we later use the same system over the rational numbers. Let A be this set of
equations, written as a matrix with m rows and n columns. (Note that A is the incidence
matrix of H.) Thus v is a solution if and only if Av = 1m. Clearly a valid LO 2-colouring
gives one solution but in the general case, the system has a large dimensional affine space as
its set of solutions and the desired solution is hard to find.

2 Algorithm based on equations modulo 2

In this section all linear equations are taken modulo 2. For the following, given a set S of
positive integers, an S-uniform hypergraph is a hypergraph where all edges have sizes taken
from S. We first prove the following subprocedure of the main algorithm.

▶ Lemma 2. There is an algorithm which, if given a {2, 3}-uniform hypergraph H with n

vertices and m edges that admits an LO 2-colouring and such that the implied linear system
of equations Av = 1m does not fix the value of any variable, outputs a subset T of vertices
that intersects edges of size three in zero or two vertices and edges of size two in exactly one
vertex. Moreover, we have |T | ≥ n/2. The algorithm runs in O(n3 + nm) time.

Proof. We first describe a randomised version of our algorithm, and then derandomise it.
The set of solutions to Av = 1m is an affine space and hence a generic solution can be
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written as v = v0 +
∑r

i=1 aiv
i for a basic solution v0, linearly independent solutions to the

homogeneous system vi, and field elements (in this case bits) ai. The fact that no variable is
fixed implies that for each vertex x there is some positive i such that vi

x = 1.
For the randomised algorithm choose a1, . . . , ar to be independent identically distributed

uniformly random bits, and set T to be the set of variables x, such that vx = 0. Clearly T

satisfies the conclusion of the lemma as in each edge we have an odd number of ones. Since
for every vertex x there exists positive i such that vi

x, due to the influence of aiv
i
x we see

that x is included in T with probability 1/2. Thus, on average T contains half the vertices.
Now, we derandomise this algorithm using the method of conditional expectations. Go

through the variables ai in increasing order and fix its value once and for all. Fixing the
value of ai determines the value of some vx while other values remain undetermined. For
each value being determined vi

x = 1 and hence one value of ai gives the final value 0 and the
other gives final value 1. Set ai such that at least half the determined values are 0. After we
have fixed all ai this way, we have a final solution with at least n/2 zeroes.

The bottleneck of the running time of this algorithm is solving the linear system of
equations. This can be done in the advertised running time since every equation has O(1)
entries. ◀

Proof of Theorem 1. As a preliminary step, we eliminate any variable determined by the
system Av = 1m. Note that if the colour of a vertex is determined by the system Av = 1m,
then this vertex must have that same colour in all LO 2-colourings. Fix these variables once
and for all and eliminate them from the equation system. For all vertices that have been
given the colour 1, we set the colours of the two other vertices in all of its edges to be 0.
This process of identifying fixed variables and eliminating them is then repeated until the
system Av = 1m contains no variables fixed to a constant. At any fixed point of this process,
for every edge, either all vertices in that edge are fixed (and the edge has a unique maximum
as required), or exactly one vertex in it is fixed to 0.

Now, remove all coloured vertices from the hypergraph H, shrinking the edges they
belonged to. The remaining hypergraph will no longer be 3-uniform, but importantly it will
still be LO 2-colourable. Our goal is still to LO colour the remaining hypergraph, since any
edge partially coloured by the preliminary step above must have had exactly one vertex v

fixed to 0; and hence, if we LO colour the edge that resulted from removing v, this leads to
an LO colouring of the original hypergraph when v is assigned 0.

Consider the following algorithm, where i starts at 0.
1. If the hypergraph H has at most, say, 20 vertices, find an LO-colouring of H by brute

force using colours i and i + 1. (It exists since H is LO 2-colourable.)
2. Otherwise, find the subset T guaranteed by Lemma 2.
3. Colour the vertices in T by colour i. Remove the vertices in T from H. Remove all edges

that intersect T from H. Increment i by 1.
4. Repeat.
Note that |T | ≥ n/2 and thus within −4 + log2 n repetitions we reach the first case. Each
step adds one colour and we get two additional colours from the final brute-force colouring
for a total of at most log2 n colours. The output is correct as the first time some vertex in
an edge is coloured, for edges with three vertices exactly one more vertex in the same edge
is coloured at the same time, and for edges with two vertices only that vertex is coloured
at that time. The remaining vertex is given a higher colour and hence the edge is correctly
coloured. For the time complexity, we again note that it is dominated by the time needed to
solve the linear system of equations. ◀

APPROX/RANDOM 2024



7:4 A logarithmic approximation of linearly-ordered colourings

Note that the number 20 selected above can be increased to any number that is O(log n)
and the algorithm remains polynomial time (since we must compute the colouring for a
subgraph of this size by brute force). If we stop the algorithm at B vertices, then we save
log B + Θ(1) colours, since this is how many colours the algorithm would have used to colour
the last B vertices. By setting B = Θ(log n), we can thus save Θ(1) + log log n colours while
keeping run time of the algorithm polynomial in n.

A slight variant can be obtained by instead counting the number of remaining edges with
no coloured vertex. Once we have no more such vertices, we colour all remaining vertices
with the next colour. For such edge, a random solution v gives the four sets of values (0, 0, 1),
(0, 1, 0), (1, 0, 0) and (1, 1, 1) with equal probabilities. Thus the number of edges decreases,
on average, by a factor 4 for each iteration. (Note that all the edges of size 2 are solved in the
first iteration, so there is no need to count them.) It is easy to achieve this deterministically
by conditional expectations. We state the conclusion as a theorem.

▶ Theorem 3. There is an algorithm which, if given a 3-uniform hypergraph H with n vertices
and m ≥ 1 edges that admits an LO 2-colouring, finds an LO (2 + 1

2 log2(m))-colouring of H

in time O(n3 + nm).

▶ Remark 4. Our algorithm has some similarity with algorithms for temporal CSPs [3]. Note
that an LO ω-colouring (which means an LO-colouring, but with no restriction on the number
of colours) is a temporal CSP; to solve it, one finds a subset that could be the smallest colour
(by solving mod-2 equations as above), sets that colour, then continues recursively. The
difference is that for an LO ω-colouring one does not care about the number of colours, so
one can find any nonempty set of vertices to set the lowest colour to, whereas in our problem
we are trying to find a large set of this kind. We note that the algorithm of [14] also uses
this approach when setting “small colours”.

▶ Remark 5. We remark that the subprocedure of our algorithm computes the exclusive or
of two vectors of bits. Thus the algorithm runs very fast in practice — on most architectures
hundreds of operations of this kind are done at one time by (i) packing the bits within a
larger word and (ii) using SIMD instructions.

3 Algorithm using Q

In this section we present a more complicated algorithm which uses more colours. This
might seem pointless, and indeed it might be. On the other hand the ideas used are slightly
different and hence there might be situations where the ideas of this section can turn out to
be useful. It is also curious to see that we can use the same system of linear equations, now
over the rationals, in a rather different way. The algorithm here is in fact essentially saying
that we can always use the unbalanced case of [12]. As this eliminates many complications
and in particular makes it possible to completely avoid any semi-definite programming, we
state all facts needed in the current section rather than refer to the very similar statements
in [12]. As already stated, all arithmetic in this section is over the rational numbers. In this
situation, no variables can be determined as we can set v0 to have all coordinates equal to
1/3.

We study the homogeneous system Av = 0 and by the assumption of LO 2-colourability
it has a solution, w, with coordinates either − 1

3 or 2
3 . Let us first show how solutions over

the rational numbers can be used to find LO-colourings. This is the same lemma used in the
unbalanced case of [12].
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▶ Lemma 6. Suppose we have a solution, u, to the homogeneous system where M is the
maximal value of the absolute value of a coordinate and m > 0 is the minimal absolute value.
Then we can LO-colour with 2 + log2 (M/m) colours.

Proof. For notational convenience let us instead require that the minimal colour in each
edge should be unique. We can simply reverse the order of the colours at the end. By scaling
we can assume M = 1. We use even colours for positive coordinates and we give x the colour
2ℓ if vx is at most 2−(2ℓ−1) and strictly larger than 2−(2ℓ+1). For negative coordinates we use
2ℓ + 1 as the colour if vx is between −2−2ℓ (inclusive) and −2−(2ℓ+2) (non-inclusive). Let us
verify that this gives a correct colouring.

Take an edge (x, y, z) and suppose both x and y get the same colour 2ℓ. Then by the
linear equation of the edge vz < −2−2ℓ and thus z has a colour below 2ℓ. The case of two
vertices of odd colour is similar and as the bound on the number of colours is immediate, the
lemma follows. ◀

Let us choose the vectors (vi)r
i=1 giving the solutions to the homogeneous system to be of

unit length and orthogonal. Define u =
∑r

i=1 yiv
i where yi are independent normal variables

with mean 0 and standard deviation 1. The length of u is very close to
√

r but to be crude
we use that E[∥u∥2] = r and hence with probability 3

4 the length of u is at most 2
√

r.
Let cj = (v1

j , v2
j , . . . vr

j ) be the vector of dimension r given by the jth coordinates of each
vector vi. Using this notation we see that the jth coordinate of u is a normal variable with
standard deviation ∥cj∥. Recall that w is our assumed solution to Av = 0 with all coordinates
either − 1

3 or 2
3 . We can write w =

∑r
i=1 aiv

i for some numbers ai, and by orthonormality
∥a∥ = ∥w∥ which is at most 2

3
√

n. As

|wj | = |(cj , a)| ≤ ∥cj∥∥a∥,

using that |wj | is at least 1
3 we conclude that

∥cj∥ ≥ 1/(2
√

n).

The probability that a normal variable with standard deviation σ is of absolute value at
most δ is at most 2δ/(

√
2πσ). We conclude that for a suitable constant d the probability

that |uj | is below dn−3/2 is at most 1/(2n). Thus with probability at least 1/2 the absolute
value of any coordinate of u is at least dn−3/2. Thus with probability at least 1

4 , we can
apply Lemma 6 with M = 2n1/2 and m = dn−3/2 and we conclude.

▶ Theorem 7. Using the system of linear equations over the rational numbers we can find,
with probability at least 1

4 and in polynomial time, an LO-colouring with O(1) + 2 log2 n

colours.

This algorithm is less efficient compared to the algorithm of the previous section. The
main computational cost is still solving a linear system but this is more complicated over
the rational numbers as coefficients are likely to grow. Our bound for the number of colours
is also worse. Heuristically one could hope to have the ratio of the smallest and largest
coordinate of u to be Θ(n) but not better. Thus it is possible that we could eliminate the
multiplicative constant 2 in the theorem but to get substantially fewer than log n colours by
this method sounds unlikely.

As a final observation in this section let us note that defining a colouring by the sign of
the vector u we get a standard (non-monochromatic) 2-colouring of the hypergraph. This
gives an alternative algorithm to that of [5, 4].

APPROX/RANDOM 2024



7:6 A logarithmic approximation of linearly-ordered colourings

4 Concluding remarks

Our algorithms indicate that LO 2-colouring is quite different from many other colouring
problems. The key property that we use in our algorithm is that the constraint implies a
linear constraint. The analysis of the algorithms also heavily relies on the fact that we study
3-uniform hypergraphs.

It is tempting to think that the proposed methods would extend to other constraint
satisfaction problems where we are guaranteed that a solution must satisfy a linear constraint.
We have so far been unable to find an interesting such example.
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