
Categorical Semantics and Modal
Types for Hardware Description

Kai Pischke 
MCompSci (Part C) 
Trinity Term 2023 

9972 words (using texcount)



Abstract

We present a new lambda calculus-like language for reasoning about hardware description with higher-
order function abstractions. We show that separating the types of wires and higher-order constructs
lets us avoid the name-sharing problem commonly encountered by functional hardware description lan-
guages. Using nominal sets and equivariant functions, we give new categorical semantics to the typed
language, which keeps wire and circuit terms separate while allowing each to contain free variables of
either variety. Furthermore, we prove normalisation and soundness results, showing that all well-typed
terms can be reduced to a simpler fragment of the language in a finite number of steps while preserv-
ing the semantics. We also consider the application of guarded types for describing synchronous circuits
and give a behavioural semantic model of a synchronous term language using the topos of trees. Finally,
we implement a proof-of-concept compiler featuring unification-based typed inference, which is able to
extract synthesisable Verilog output from a range of examples.

Acknowledgements

I am extremely grateful to my supervisor, Sam Staton, whose passion for programming languages has been
a constant source of inspiration. I also thank Sean Moss for his valuable feedback and for sharing some of
his extensive knowledge of category theory. Nobuko Yoshida provided many interesting discussions, and
I very much appreciate her patience in listening to some of my early ideas. Finally, I would like to thank
Jon Fowler for initially introducing me to hardware description. I, of course, also would like to express
my appreciation for all my wonderful friends, without whom my time at Oxford would not have been the
same.



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Combinational Circuits 7
2.1 Hardware Description Describes Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hardware as an Effect of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Background on Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Categorical Models of Combinational Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Combinational Circuit Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Types for λcomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Normalisation and Equational Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Aside on Nominal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Categorical Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Synchronous Circuits 29
3.1 Synchronous and Streaming Programming Languages . . . . . . . . . . . . . . . . . . . . . 29
3.2 What is the Later Modality? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Synthetic Guarded Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Background on the Topos of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Category Theoretic Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Later in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Guarded Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Implementation 39
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Parsing, Desugaring and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Verilog Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Evaluation of the Compiler 46
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Blink Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Ripple-Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.4 4-bit Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.5 Fibonacci Counter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2



CONTENTS 3

6 Conclusion 51
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Appendix 53
7.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Generated Verilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Blink Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2 Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.3 Ripple-Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2.4 4-bit Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.5 Fibonacci Counter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Chapter 1

Introduction

1.1 Motivation

Modern computer technology is becoming more complex, and intensive tasks are increasingly being of-

floaded to specialised hardware. While programming languages used to design software have developed

over time to provide more abstractions, hardware description languages such as Verilog and VHDL remain

very low-level, tedious to use, and offer few safety guarantees. The purpose of this thesis is to address

some of these challenges by exploring the semantics of a minimal functional hardware description calcu-

lus with a robust type system, with the goal of demonstrating possible improvements to the usability and

safety of hardware description languages.

1.2 Existing Work

The use of functional programming languages for hardware description has a long history. Functional

approaches to hardware design were initially pioneered in the 1980s through the work of Mary Sheeran

and others who introduced the early hardware description languages Ruby [30] and µFP [31]. These

languages made the critical insight that recursive definitions in functional languages served as a natural

specification for feedback loops in hardware. This work led to the development of the Lava language

[8], which emphasised using Haskell for multiple interpretation of hardware definitions. The idea was

to facilitate both simulation and synthesis. Christiaan Baaij built on the foundations of Lava to develop

the modern functional hardware description language Cλash [4] in Haskell, leading to some industrial

adoption. Other languages, such as Bluespec [3], have also focused on industrial use, drawing on both

Verilog and Haskell.

4



CHAPTER 1. INTRODUCTION 5

More recently, the success of string diagrams and categorical semantics for quantum [1] and probabilistic

[34, 33] programming models has led to a line of work by Dan Ghica formalising circuits in a categorical

manner [15, 16, 17]. This has opened up the possibility of purely equational reasoning about circuits,

which is beneficial from the standpoint of hardware verification and the development of higher-level

abstractions for hardware design.

Much of the existing work on functional hardware description has focused on embedded languages in

Haskell, and much of the current work on circuit semantics has yet to be applied to functional languages.

Hence, there is significant scope for work bridging the gap between existing formal and foundational ap-

proaches to hardware semantics and the more practical functional approaches to hardware design. While

the infrastructure of Haskell is beneficial from an industrial standpoint, it is also helpful to study the

semantics from the perspective of a minimal calculus. The success of categorical approaches to domain-

specific programming language applications such as probabilistic programming [10] suggests that this is

a promising direction for further exploration.

1.3 Contributions

This thesis introduces a new term language for reasoning about hardware, both combinational (Chapter 2)

and synchronous (Chapter 3). In order to allow beta-reduction of higher-order functions without allowing

the reduction of circuits themselves, we split our language into separate classes of wire and circuit terms.

This poses an interesting challenge in defining rigorous semantics, as each class of terms can contain free

variables from the other class. We solve this problem by proposing novel semantics using Markov cate-

gories [33] and nominal sets [14]. Nominal sets are a recent development in formally defining structures

modulo α-equivalence by studying permutation actions on names. To the best of our knowledge, neither

Markov categories nor nominal sets have been previously applied to hardware description.

We then give a modal type system for preventing purely combinational cycles, with a semantics based

on the topos of trees [7]. The topos of trees provides a framework to reason about guarded recursion by

looking at the set of possible values at each clock cycle and the ways in which these sets are related. This

model has previously only been applied to software-based synchronous programs. To summarise, our

significant contributions are:

• A new term language for combinational and synchronous circuits (Section 2.5)

• A new categorical semantic model using nominal sets and equivariant functions for the combina-

tional fragment (Section 2.9)



CHAPTER 1. INTRODUCTION 6

• A new categorical behavioural model using the topos of trees for the synchronous fragment (Section

3.2.2)

• A new type system using the later modality for guarded feedback and recursion (Section 3.3)

• A type inference algorithm (Subsection 4.4 in Chapter 4)

• A translation algorithm and full implementation of a compiler producing Verilog output from the

term language (Chapter 4)

We additionally prove twomain theorems which motivate the correctness of the implementation in Chap-

ter 4. In particular, the soundness result (Theorem 2.9.2) shows that the simplification steps made during

compilation preserve the semantics. The normalisation result (Theorem 2.7.1) suggests that every well-

typed program is compiled in a finite number of steps. Together, these theorems show that the implemen-

tation always terminates and produces a semantically correct output circuit.

1.4 Structure

• Chapter 2 introduces a term language and semantics for combinational circuits.

• Chapter 3 introduces the later modality and extends the term language to synchronous circuits.

• Chapter 4 describes the structure of the compiler implementation.

• Chapter 5 gives examples and empirical results for the compiler.

• Chapter 6 concludes the discussion with an overview and directions for future work.

• Chapter 7 contains the technical details of longer proofs and generated output code.



Chapter 2

Combinational Circuits

This Chapter introduces a simple, functional calculus for describing combinational circuits. We start by de-

scribing some of the interesting semantic features of hardware description (Section 2.2). We then present

a categorical view of the structure of circuits (Sections 2.3 and 2.4). This leads to the definition of the term

language λcomb (Section 2.5). Next, we discuss a type system for the term calculus (Section 2.6) and finish

by giving our language an equational theory and categorical semantics (Sections 2.7 and 2.9). We also

prove two key results: a normalisation theorem for well-typed terms and a soundness result for our equa-

tional theory. These theorems will become relevant in Chapter 4 when we consider the implementation

of a compiler for this term language.

2.1 Hardware Description Describes Structure

Hardware description is a very low-level endeavour. While we are often happy for compilers to make

significant changes to the structure of our software so long as they preserve the functionality, this type of

extensional abstraction is much more challenging to achieve at the hardware level. Furthermore, unlike

software, where copying references is cheap, hardware circuits do not support cheap copying of circuitry,

and so resource utilisation and related concerns, such as tradeoffs between circuit depth and size, are of

fundamental importance. We are, therefore, primarily interested in languages for describing the structure

of circuits rather than just modelling their behaviour, and we will start by looking at intensional semantic

models for circuits.

7



CHAPTER 2. COMBINATIONAL CIRCUITS 8

2.2 Hardware as an Effect of Synthesis

There are many types of effects in normal software programming. Input/output, nondeterminism, and

randomness are all effects. While most imperative languages do not offer careful control of effects via the

type system, more principled approaches to effectful computation have been developed. The two main ap-

proaches are effect type systems [20] and monads [25]. More recent work has focussed on algebraic effects

[5, 32], which tries to look at the algebraic properties satisfied by different computational effects.

It seems counterintuitive to think of hardware description as an effect. After all, there is not anything un-

usual going on as a side effect of the synthesis step. However, the structure of the hardware we synthesise

reflects the structure of the source expression. Applying a circuit causes that circuit to be synthesised, so

hardware description is not pure. This can be seen by considering the following two expressions, which

we will interpret as circuits with the free name a as an input wire.

let b = f a in (b, b) and (f a, f a)

If we represent them diagrammatically, we see that they represent different circuits.

f and

f

f

Figure 2.1: Copying and sharing circuitry.

In particular, one of the circuits uses twice as many gates as the other, so although they implement the

same behaviour, they do not describe equivalent hardware. This problem has been referred to as the

node-sharing problem in the literature. Various solutions have been proposed, such as using immutable

references [11], manually tagging nodes with names [4], and using monads [4, 8].

However, ambiguity in determining what is shared and what is copied is only a problem if we constrain

the semantics to validate the substitution:

let x = e in e′ ≡ e′[e/x]

If we instead incorporate this effect implicitly as a byproduct of let binding, we do not have to resort

to explicit treatment of effects. A similar scenario arises in any call-by-value language with effects. For

example, the following two probabilistic programs are also not equivalent.



CHAPTER 2. COMBINATIONAL CIRCUITS 9

let x = random() in (x, x) and (random(), random())

Both hardware and probabilistic programming are commutative effects. Although binding a name to a

circuit causes sharing at the hardware level, the order in which we bind two different names is irrelevant.

We can see that swapping the order of two nested let expressions describes the same synthesised hardware,

as is shown in Figure 2.2.

let a = ... in let b = ... in h(a, b) ≡ let b = ... in let a = ... in h(a, b)

h
a

b

Figure 2.2: Commutativity example.

Commutativity suggests that it is undesirable to use ametalanguage of effects, such as amonadic language,

which makes the control flow explicit. This would impose an unnecessarily arbitrary ordering on the

evaluation.

There is also another similarity between hardware circuits and probabilistic programs: any names not

used in an expression can safely be ignored. This is known as discardability.

let a = ... in () ≡ ()

As is observed in [33], many effects with this structure are modelled by Markov Categories. We will see

more formally in Section 2.4 that circuit description can be modelled in precisely this way.

2.3 Background on Category Theory

We will use category theory to provide a synthetic setting for modelling circuits. Familiar readers may

safely skip this brief overview; those looking to learn more can find a detailed introduction in [19].

We start by defining a category, which is simply a collection of objects and arrows between objects satis-

fying some simple axioms.



CHAPTER 2. COMBINATIONAL CIRCUITS 10

Definition 2.3.1: Category

A category C consists of:

1. a class of objects, Ob(C)

2. a class of morphisms, Hom(C).

3. a composition operator ◦

Each morphism in Hom(C) is associated with a source and target object in Ob(C) and we write

m : X → Y to show that a morphismm has source objectX and target object Y . Morphisms can

be composed with an associative operator ◦which takes two compatible morphismsm1 : X → Y

and m2 : Y → Z and produces a composite morphism m2 ◦m1 : X → Z . We require ◦ to be

associative and for each object X to have a unique identity morphism idX : X → X which acts

as a left and right unit for ◦.

If the class of morphisms between any two objects are a set, we say the category is locally small, and

most examples of categories we will use will have this property. Therefore, we will sometimes refer to the

Hom-sets rather than the Hom-classes of a category.

Mappings between categories which preserve structure are known as functors.

Definition 2.3.2: Functor

A functor F between categories A and B is a mapping of objects in Ob(A) to Ob(B) and mor-

phisms in Hom(A) to Hom(B) such that F (idX) = idF (X) and F (f ◦ g) = F (f) ◦ F (g).

The topos of trees discussed in section 3.2.2 will, in fact, be a category whose objects are themselves

the functors between other categories, and the later modality will correspond with a functor from this

category to itself (an endofunctor).

Similarly to how functors are structure-preservingmappings between objects, we can define natural trans-

formations which are structure-preserving mappings between functors.

Definition 2.3.3: Natural Transformations

A natural transformation η is a mapping between functors F : A→ B and G : A→ B, defining

for each object in X a morphism ηX : F (X)→ G(X). We refer to this morphism as the compo-

nent of η at X . It must satisfy the condition for any morphism f : X → Y in the category A that

ηY ◦ F (f) = G(f) ◦ ηX .

We will primarily work with categories equipped with some notion of parallel composition. These cate-



CHAPTER 2. COMBINATIONAL CIRCUITS 11

gories are known as monoidal categories.

Definition 2.3.4: Monoidal Category

A monoidal category (C,⊗, I) is a category C equipped with a tensor product ⊗. This tensor

product is a bifunctor ⊗ : C×C→ C which is associative with identity I (up to natural isomor-

phisms satisfying coherence conditions). If the natural isomorphism can be replaced by equality,

we call the category strict monoidal, and if there is a swap isomorphism swapAB : A⊗B → B⊗A

satisfying swapAB ◦ swapBA = idA⊗B , we say the category is symmetric monoidal.

When we have the product × as ⊗, we say the category is cartesian. And if we can additionally associate

an object to each class of morphisms Hom(X,Y ) (which we call the internal Hom) we say the category

is cartesian-closed. This allows us to talk about categories which, in some sense, contain function spaces,

and we will use a cartesian closed category to represent the higher-order constructs of our term language

in section 2.9.

2.4 Categorical Models of Combinational Circuits

We will formalise a new structural model of circuits, in a similar vein to Ghica’s behavioural model [16],

and will frame this using Markov categories, originally developed to study probability theory [13]. This

will help motivate an initial term language for describing circuits based on a modification of the CD

calculus [33].

A natural place to start our discussion of digital circuits is with combinational circuits. Such circuits consist

only of basic gates interconnected acyclically with wires. We do not allow any form of feedback, and there

are no sequential components such as clocks or buffers. For example, we can consider an elementary

combinational circuit with only two gates, as in Figure 2.3, which adds together two bits.

Figure 2.3: Half adder circuit.

This might be represented programmatically as a Verilog module.

module HalfAdder(a,b,s,c);
input a,b; output s,c;
xor(s,a,b); and(c,a,b);

endmodule



CHAPTER 2. COMBINATIONAL CIRCUITS 12

As we can see, the semantics of the description really just depends on how components are connected

together. We will take a categorical approach, modelling circuits as morphisms in a category where the

objects are the types of input and output wires. Informally, we have the corresponding relationships in

our model:

• circuits⇝ morphism

• wire types⇝ objects

• connecting circuits⇝ composing morphisms

Composing morphisms will then correspond to connecting circuits together. In the simplest case, we will

treat all wires in the same way, so the objects of our category will be natural numbers corresponding to

some number of wires in parallel. A circuit withm inputs and n outputs would be a morphism c : m→ n.

An example with 2 inputs and 3 outputs is shown in Figure 2.4.

f f2→3
Figure 2.4: Circuits correspond to morphisms.

The parallel composition of circuits and wires then corresponds to a tensor product ⊗ in our category, as

shown in Figure 2.5. Since we are assuming all wires are of the same type, the category has objects N and

tensor product + and is known as a PROP (Definition 2.4.1).

f

g
f⊗g2⊗3→3⊗2

Figure 2.5: Parallel composition is tensor product.

Definition 2.4.1: PROP

A Product of Permutations (PROP) Catgeory is a strict symmetric monoidal category (C,⊗, I)

with a distinguished object X such that every other object Y can be expressed as Y = X⊗n for

some n ∈ N.

Any circuit can thus be further broken down into a sequential and parallel composition of atomic elements,

gates and operations on wires. Going back to the half adder circuit in Figure 2.3, we can decompose it as a

copying of the input wires followed by a swap of two of the wires, and a composition with the two gates

at the end (shown graphically in Figure 2.6). We can also write it in a slightly more verbose form as the

composition of the constituent morphisms.



CHAPTER 2. COMBINATIONAL CIRCUITS 13

(xor⊗ and) ◦ (id1 ⊗ swap⊗ id1) ◦ (copy⊗ copy)

Alternatively, it is slightlymore readable to use a flipped version of composition, the sequencing operator ;,

which composes morphisms from left to right, instead of ◦, which composes them from right to left.

(copy⊗ copy) ; (id1 ⊗ swap⊗ id1); (xor⊗ and)

id₂
id₁⊗swap₁,₁⊗id₁

copy₁⊗copy₁
xor⊗and

id₂

Figure 2.6: Half adder circuit expanded.

The existence of swap highlights the fact that our category should be symmetric monoidal, meaning there

are isomorphisms swap : A⊗B → B ⊗A which swaps two wires. The other operations on wires, copy

and delete (Figure 2.7), are also special morphisms. These morphisms should satisfy some standard laws

(Figure 2.8), which means they form a comonoid. In the PROP category, they are given by copy : 1 → 2

and delete : 1→ 0.

copy:

delete:

Figure 2.7: Copy and delete.

=(1)

= =(2)

=(3)

Figure 2.8: Comonoid laws.

While we can describe the connectivity of the wiring within a circuit using only copy and delete oper-

ations, working directly with individual wires becomes cumbersome for larger circuits. Therefore, it is

often helpful to group togethermultiple physical wires, representing them by a single virtual wire carrying

multiple bits. In a PROP these wires are simply labelled by some number of bits, but we may also want

to distinguish wires carrying different types of data, so modelling circuits by a more general monoidal

category can be helpful.



CHAPTER 2. COMBINATIONAL CIRCUITS 14

Extending copy delete operations to arbitrary types of wires, we end up with a copy-delete (CD) cate-

gory [10]. A CD category (Definition 2.4.2) is a symmetric monoidal category for which every object has

copy and delete operations satisfying the commutative comonoid structure, with an additional technical

requirement that copying and deleting behave well with the tensor product ⊗.

Definition 2.4.2: CD Category

A symmetric monoidal category (C,⊗, I), with morphisms copyX and deleteX for each object

X in C satisfying the laws in Figures 2.8 and 2.9.

x ⊗ y
x ⊗ y

x ⊗ y
=

x
x

xy y

y

Figure 2.9: Compatibility conditions.

We are particularly interested in circuits constructed by assembling gates from some predetermined prim-

itive set. We can thus extend our categorical framework by considering some set of basic gates G. Each

gate is associated with a type of input and output wires, and our category C should have a distinguished

morphism for each gate in G. For example, we might consider G = {and, or,not}. In the PROP model,

these would be represented by morphisms and : 2→ 1, or : 2→ 1, not : 1→ 1.

As was discussed in Section 2.2, all disconnected circuits behave the same way, so we require that each

gate is discardable: deleting its outputs is the same as deleting its inputs (Figure 2.10). Putting this all

together, we see that circuits are described by morphisms in a Markov category (Definition 2.4.3).

Definition 2.4.3: Markov Category

A Markov category is a CD category (C,⊗, I) where every morphism additionally satisfies the

discardability condition in Figure 2.10.

=g

Figure 2.10: Discardablity condition.

2.5 Combinational Circuit Language

The first iteration of our programming language is a higher-order extension of the CD calculus introduced

by Dario Stein [33] as an internal language of CD categories. The language consists of pairs, projections

and abstractions. Unlike the original CD calculus, we will make a distinction between two classes of

terms: wire terms and circuit terms, and each of these sets of terms has its own types. We also extend the



CHAPTER 2. COMBINATIONAL CIRCUITS 15

language with lambda abstractions on circuits and replace primitive let binding with circuit abstraction.

Circuits will take wires as inputs and produce wires as outputs. Each circuit is constructed by combining

elementary circuits (gates) from a predefined set of primitives G. The terms of the language are given in

Definition 2.5.

Definition 2.5.1: Terms of λcomb

W := a | () | (W,W ) | fst W | snd W | C W

C := x | νa.W | λx.C | C C | g (g ∈ G)

We will let a range over names (representing wires) and we will let x range over variables (representing

circuits), and we will assume the set of names and variables are disjoint. There are two types of binders

in our calculus which achieve different things:

• νa.W is a circuit abstraction, representing a circuit.

• λx.C is a function abstraction, representing a transformation on circuits.

The abstraction νx.w represents a circuit taking wire x as input and giving wire w as output. Note that

names in our language are slightly different from names in the π-calculus or ν-calculus; in particular,

there is no explicit mechanism for comparing or communicating names. However, names will allow us

to refer to wires at specific points in our circuit. Their only property is their identity, and they can not be

instantiated with a value in the same way as variables. So, for example, we might write a NAND circuit

using an AND gate and a NOT gate.

nand = νa.not(and a)

Note that the name a represents the whole pair of input wires. Assuming the signature contained the

appropriate gates, we could write the example circuit from Figure 2.3 as

half-adder = νa.(xor a, and a)

The function abstraction λx.C corresponds to a function taking a circuit c as input and returning a circuit

t[c/x] as output. Suppose we wanted to express a circuit such as νa.(c a, c a) where c was some compli-

cated expression. It would be nicer to write let f = c in (f x, f x), and so we introduce let expressions



CHAPTER 2. COMBINATIONAL CIRCUITS 16

as syntactic sugar for function application.

let x = C1 in C2 := (λx.C2) C1

We will also introduce let expressions as syntactic sugar for circuit application. Note that using names

rather than variables can resolve any ambiguity in the overloading of let.

let a = W1 in W2 := (νa.W1)W2

We will take the approach that products associate to the right, so (a, b, c) : A⊗B ⊗ C will be treated as

shorthand for (a, (b, c)) : A ⊗ (B ⊗ C). And pattern matching in circuit abstractions can be treated as

syntactic sugar for nesting lets with projections.

ν(a1, ..., an).w := νz.(let a1 = fst z in

let a2 = fst(snd z) in
...

let an = (sndn z) in w (z fresh))

This is extended to let expressions in the obvious way.

let (a1, ..., an) = w in z := (ν(a1, ..., an).z)w

This simplifies the expression of many useful circuits. For example, we can now concisely express a full

adder (Figure 2.11) and a 1-bit comparator (Figure 2.12) using this syntax.

full-adder = let half-adder = νa.(xor a, and a)

in ν(a, b, c).let(s1, c1) = half-adder(a, b)

in let(s2, c2) = half-adder(s1, c)

in (s2, or(c1, c2))



CHAPTER 2. COMBINATIONAL CIRCUITS 17

a
s

cout

b
c

Figure 2.11: Full adder.

comparator = ν(a, b). let (lt, gt) = (and(not a, b), and(a,not b))

in (lt,not(xor(lt, gt)), gt)

lt

eq

gt

a

b

Figure 2.12: 1-bit comparator.

2.6 Types for λcomb

Having introduced the syntax of λcomb, we move on to discuss the types. The language’s type system

is broken into two parts: types for wires and types for circuits. We will assume a set T of atomic wire

types.

TypesW

σ := unit | α | σ1 × σ2 (α ∈ T )

TypesC

τ := Circ(σ1, σ2) | τ1 → τ2

Each class of circuits is then parameterised by a signature giving the primitive gates and atomic wire

types.

Definition 2.6.1: Circuit Signature

A circuit signature 〈T ,G, #〉 is a tuple consisting of a set T of atomic types, a set G of atomic gates,

and a function # : G → TypesC × TypesC associating each gate with an input and an output

type.



CHAPTER 2. COMBINATIONAL CIRCUITS 18

We split the typing context into two disjoint parts. Γ is a context assigning wire types to names and∆ is a

context assigning circuit types to variables. There are also two different typing judgements: `w assigning

wire terms to wire types and `c assigning circuit terms to circuit types.

Γ, a : σ,Γ′;∆ `w a : σ
(typ-name)

Γ;∆ `w () : unit (typ-unit)

Γ;∆ `w u : σ1 Γ;∆ `w v : σ2

Γ;∆ `w (u, v) : σ1 × σ2
(typ-pRod) Γ;∆ `w s : σ1 Γ;∆ `c c : Circ(σ1, σ2)

Γ;∆ `w c s : σ2
(typ-ciRc-app)

Γ;∆ `w s : σ1 × σ2

Γ;∆ `w fst s : σ1
(typ-pRoj-1) Γ;∆ `w s : σ1 × σ2

Γ;∆ `w snd s : σ2
(typ-pRoj-2)

Figure 2.13: Wire typing rules.

Γ;∆, x : τ,∆′ `c x : τ
(typ-vaR) g ∈ G #g = 〈σ1, σ2〉

Γ;∆ `c g : Circ(σ1, σ2)
(typ-gate)

Γ, a : σ1;∆ `w u : σ2

Γ;∆ `c νa.u : Circ(σ1, σ2)
(typ-ciRc-abs) Γ;∆, x : τ1 `c c : τ2

Γ;∆ `c λx.c : τ1 → τ2
(typ-func-abs)

Γ;∆ `c c1 : τ1 → τ2 Γ;∆ `c c2 : τ1
Γ;∆ `c c1 c2 : τ2

(typ-func-app)

Figure 2.14: Circuit typing rules.

The typing rules satisfy various standard properties. These generally come in the form of 2 or 4 im-

plications, as there are 2 choices of typing judgement (`w and `c) and 2 choices of context (Γ and ∆).

Because the typing rules typ-ciRc-app and typ-ciRc-abs introduce circuit typing judgements into wire

typing derivations and vice versa, we will mostly prove each of these groups of results simultaneously by

induction.

Theorem 2.6.1: Exchange

Γ, a : σ1, b : σ2,Γ
′;∆ `w u : σ3 =⇒ Γ, b : σ2, a : σ1,Γ

′;∆ `w u : σ3 (2.1)

Γ, a : σ1, b : σ2,Γ
′;∆ `c c : τ =⇒ Γ, b : σ2, a : σ1,Γ

′;∆ `c c : τ (2.2)

Γ;∆, x : τ1, y : τ2,∆
′ `w u : σ =⇒ Γ;∆, y : τ2, x : τ1,∆

′ `w u : σ (2.3)

Γ;∆, x : τ1, y : τ2,∆
′ `c c : τ3 =⇒ Γ;∆, y : τ2, x : τ1,∆

′ `c c : τ3 (2.4)

Proof: By induction on the typing derivations. The base cases typ-name and typ-vaR both vali-

date the theorem and typ-unit and typ-gate do not use the context at all. The rest of the cases

are straightforward from the induction hypothesis.



CHAPTER 2. COMBINATIONAL CIRCUITS 19

Theorem 2.6.2: Weakening

a /∈ dom(Γ) and Γ;∆ `w u : σ =⇒ Γ, a : σ′;∆ `w u : σ (2.5)

a /∈ dom(Γ) and Γ;∆ `c c : τ =⇒ Γ, a : σ;∆ `c c : τ (2.6)

x /∈ dom(∆) and Γ;∆ `w u : σ =⇒ Γ;∆, x : τ `w u : σ (2.7)

x /∈ dom(∆) and Γ;∆ `c c : τ =⇒ Γ;∆, x : τ ′ `c c : τ (2.8)

Proof: By induction on the typing derivations using Theorem 2.6.1 to put the contexts in the

appropriate forms for the typ-ciRc-abs and typ-func-abs cases.

Theorem 2.6.3: Substitution

Γ, a : σ1;∆ `w u : σ2 and Γ;∆ `w s : σ1 =⇒ Γ;∆ `w u[s/a] : σ2 (2.9)

Γ, a : σ1;∆ `c c : τ and Γ;∆ `w s : σ1 =⇒ Γ;∆ `c c[s/a] : τ (2.10)

Γ;∆, x : τ1 `w u : σ and Γ;∆ `c d : τ1 =⇒ Γ;∆ `w u[d/x] : σ (2.11)

Γ;∆, x : τ1 `c c : τ2 and Γ;∆ `c d : τ1 =⇒ Γ;∆ `c c[d/x] : τ2 (2.12)

Proof Sketch: By induction on the typing derivation.

Proof on page 53

2.7 Normalisation and Equational Theory

Next, we move on to looking at the ways in which terms relate to each other. A good first step will be to

define single-holed contexts. In fact, we must define four different varieties of context, as there is one for

each combination of term and hole. The notation we propose uses the calligraphic letter to indicate the

kind (wire or circuit) of term, and the subscript indicates the kind of the hole.

Ww = [·] | (Ww,W ) | (W,Ww) | fstWw | sndWw | C Ww | Cw W (2.13)

Wc = [·] | (Wc,W ) | (W,Wc) | fstWc | sndWc | C Wc | Cc W (2.14)

Cw = [·] | νa.Ww | λx.Cw | Cw C | C Cw (2.15)

Cc = [·] | νa.Wc | λx.Cc | Cc C | C Cc (2.16)



CHAPTER 2. COMBINATIONAL CIRCUITS 20

Using this definition, we can continue to define a reduction as a relation ↪→ on pairs of wire terms and on

pairs of circuit terms by the rules

(λx.c)d ↪→ c[d/x]
(β)

c1 ↪→ c2
Wc[c1] ↪→Wc[c2]

(γw)
c1 ↪→ c2

Cc[c1] ↪→ Cc[c2]
(γc)

A value is a wire or circuit for which no further ↪→ reductions are possible. We will write u ⇓ u′ to

indicate that there is a sequence of reductions for a wire term which result in a value u′ and we will write

u ⇓ if all reduction sequences end in a value. A key result is that ↪→ is strongly normalising for λcomb.

That is to say that every reduction sequence of a typeable term terminates.

Theorem 2.7.1: Strong Normalisation

Γ; · `w u : σ =⇒ u ⇓ (2.17)

Γ; · `c c : τ =⇒ c ⇓ (2.18)

Comment: The proof is done using logical relations and differs from a standard normal-

isation proof in two key ways. Firstly, we have two different typing judgements and two

different contexts. Therefore every induction takes place jointly over circuit judgements and

wire judgements. Secondly, we do not require both contexts to be empty. Instead, we only re-

quire the circuit context to be empty, as this is the only context which can introduce function types.

Proof Sketch: We define a predicate SN which holds for terms which reduce to a value

and functions which preserve membership of SN upon application. Then it remains to show that

every typeable term satisfies this predicate. We strengthen the induction hypothesis to include

nonempty ∆ contexts and require that every substitution of values for circuit variables results in

SN being satisfied.

Proof on page 54

We will now define a symmetric, reflexive, transitive relation ≡ on pairs of wire terms or pairs of circuit

terms which satisfies the structural properties. We define≡ as the least relation satisfying these properties

and the axioms in definition 2.7.1.



CHAPTER 2. COMBINATIONAL CIRCUITS 21

w1 ≡ w2

Ww[w1] ≡ Ww[w2]
(1) w1 ≡ w2

Cw[w1] ≡ Cw[w2]
(2) c1 ≡ c2

Wc[c1] ≡ Wc[c2]
(3) c1 ≡ c2

Cc[c1] ≡ Cc[c2]
(4)

These axioms define an equational theory of our language.

Definition 2.7.1: Equational Theory of λcomb

fst (s, t) ≡ s (2.25)

snd (s, t) ≡ t (2.26)

(fst s, snd s) ≡ s (2.27)

(νa.t)V ≡ t[V /a] (2.28)

(νa.t)s ≡ t[s!a] (2.29)

(νa.c a) ≡ c (a /∈ fn(c)) (2.30)

(λx.t)c ≡ t[c/x] (2.31)

(λx.f x) ≡ f (x /∈ fv(f)) (2.32)

The set V is defined by V := () | a | V1 × V2. The notation t[s!a] in equation 2.29 is affine substitution.

We require that s is free at most once in t and not within a function application.

We will refer to a special first-order fragment of λcomb called λcomb∗ which does not contain lambda

terms. This fragment corresponds closely with the original CD calculus. We define the fragment as the

set of terms with no circuit variables or lambda abstractions.

Definition 2.7.2: Terms of λcomb∗

W := a | () | (W,W ) | fst W | snd W | C W

C := νa.W | g (g ∈ G)

A key property to note about λcomb and λcomb∗ is that adding function types does not add any expressivity

for basic circuit types. In particular, any (non function) term we write using functions in λcomb could have

equivalently been written without function types in λcomb∗.



CHAPTER 2. COMBINATIONAL CIRCUITS 22

Theorem 2.7.2: Normal Forms

For every closed circuit term with typing derivation Γ; · `c c : Circ(σ1, σ2), there exists an

equivalent term c′ ≡ c such that c′ is in λcomb∗.

Proof Sketch: We know that every term which is closed with respect to circuit variables

can be normalised to a value with no redexes. Thus it can be expressed as a term with no function

types.

Proof on page 56

Therefore, λcomb really acts like a hardware description language with an expressive macro system which

aids in the conciseness with which we can describe hardware. This models a common feature in real-life

hardware description languages, namely the separation between synthesis-time computations and run-

time behaviour within the hardware itself.

2.8 Aside on Nominal Sets

We are almost ready to give a semantic model of our language, but before moving on, we will take a brief

detour to look at nominal sets which will be used in our categorical model. Nominal sets offer a clean way

of sidestepping issues that commonly occur when defining alpha equivalence classes for term languages

with binders. The key idea is to define everything in terms of permutations of atoms and the actions of

those permutations on terms. The presentation here follows various sources from the literature [14, 28].

We start by recalling some simple definitions, beginning with the definition of a group.

Definition 2.8.1: Group

A groupG is a quad (A, ε, ·, (−)−1) consisting of a setA together with a multiplication operation

(·) : A×A→ A, an inverse operation (−)−1 and an identity element ε satisfying for a, b, c ∈ A.

• (associativity) a · (b · c) = (a · b) · c

• (identity) ε · a = a · ε = a

• (inverse) a · a−1 = a−1 · a = ε

Now we will give a few further useful definitions. An action of a groupG on a setX describes how group

elements act on the set elements.



CHAPTER 2. COMBINATIONAL CIRCUITS 23

Definition 2.8.2: Action of a Group on a Set

The action of a group G = (A, ε, ·, (−)−1) on a set X is a function ∗ : A×X → X satisfying

• a ∗ (b ∗ x) = (a · b) ∗ x

• ε ∗ x = x

From this, we can define a notion of a G-set, which is a set equipped with a group action.

Definition 2.8.3: G-sets

For a given group G, we define a G-set as a pair (X, ∗) of a set X and an action of G on X .

We are particularly interested in permutation groups consisting of bijective functions between a set and

itself. Composition is defined in the obvious way π1 · π2(a) = π1(π2(a)), and the identity element is

the identity permutation πid(a) = a, which leaves each element unchanged. Each permutation π has an

inverse π−1.

Definition 2.8.4: Finitary Permutation Group

For a set of identifiers A, the group Perm A of finitary permutations on A consisting of permuta-

tions π1, π2 which only affect a finite number of elements. That is the set {a ∈ A : π(a) 6= a} is

finite.

Putting this all together, we can define a Perm A-set. Such a set is really a pair (X, ∗) such that for any

finitary permutations π1 and π2, ∗ has the properties required by definition 2.8.2.

• π1 ∗ (π2 ∗ x) = (π1 · π2) ∗ x

• πid ∗ x = x

It is helpful to consider a few examples. The most straightforward action is just to interpret ∗ as function

application.

Example 2.8.1: Trivial Perm A-set

A is trivially a Perm A-set with π ∗ x = π(x).

A more interesting example is to look at compound objects containing atoms from A.

Example 2.8.2: Strings of A are a Perm A-set

Consider the set of finite strings A∗. We can define π ∗ a0a1...an = π(a0)π(a1)...π(an).

We move on to introduce the idea of a support. Given a Perm A-set (X, ∗), a subset S ⊆ X is said to be



CHAPTER 2. COMBINATIONAL CIRCUITS 24

a support of x if the action of every permutation which leaves all elements of a unchanged also leaves x

unchanged.

Definition 2.8.5: Support of a Set

The set A is a support of x if for each π ∈ perm A

(∀a ∈ A . π(a) = a) =⇒ π ∗ x = x

We will use the notation: supp x to refer to the least support if it exists.

Now using the idea of support sets, we define a nominal set.

Definition 2.8.6: Nominal Set

A nominal set A is a Perm A-set where each x ∈ A has a finite support.

We model wires and circuits with free variables as structure-preserving functions between nominal sets.

These functions are known as equivariant functions (and are morphisms in the category of nominal

sets).

Definition 2.8.7: Equivariant Function

A function f : X → Y is equivariant if f(π ∗X x) = π ∗Y f(x)

If we have two nominal sets A and B, we construct a nominal set A ⇒ B of functions between A and

B.

Definition 2.8.8: Nominal Set of Functions A⇒ B

A set of functions {f : A → B} can be endowed with the structure a nominal set by taking the

action ∗ to be given by (π ∗ f)(x) := π ∗B f(π−1 ∗A x).

It is straightforward to define cartesian product on nominal sets.

Definition 2.8.9: Cartesian Product

Given nominal sets 〈A, ∗A〉 and 〈B, ∗B〉, their product A × B forms a nominal set with action

∗A×B given in the obvious way as π ∗A×B 〈a, b〉 = 〈π ∗A a, π ∗B b〉. The support of the set is

given by the union of the supports of the two sets supp A ∪ supp B.



CHAPTER 2. COMBINATIONAL CIRCUITS 25

2.9 Categorical Semantics

We are now ready for the semantics of λcomb. Instead of working abstractly with Markov categories, we

will give a concrete semantic model using a PROPs (as an instance of Markov categories) and nominal sets.

Therefore, we will assume we are working over a signature with a single atomic wire type T = {∗}. We

choose this model as it reflects circuits over wires of binary values, and gates do not, in general, commute

through copying (as in Figure 2.1). We start with a categoryWIRE = (N,+, 0)which is a PROP (Definition

2.4.1). Wire types will correspond to objects in this category. We will assume a set A of wire names. Each

object X ∈ WIRE has distinguished morphisms copyX : X → X +X and deleteX : X → 0. And for

each gate g ∈ G with #g = 〈A,B〉, there is a distinguished morphism JgK : A→ B. This is a locally small

category, so it has Hom sets. Wire types will correspond to objects in WIRE:

• JunitK = 0

• J∗K = 1

• Jσ1 × σ2K = Jσ1K + Jσ2K
Next, we interpret circuit types as nominal sets. So each wire type is a Perm A-set with every element

having finite support. The notation A#n indicates the set of tuples of n distinct atoms. In each case, we

assume that we are quotienting by the addition of discarded atoms1.

• JCirc(σ1, σ2)K = 〈∪n∈N (WIRE(Jσ1K + n, Jσ2K)× A#n) , ∗〉

where we define the action as π ∗ 〈W,a1...an〉 := 〈W,π(a1)...π(an)〉. We will assume the action is

implicit from now on when giving elements of the nominal set.

• Jτ1 → τ2K = Jτ1K⇒ Jτ2K
where the function space is given the structure of a nominal set by definition 2.8.8.

Now we define the semantic interpretation of the typing contexts by simply taking the product. Note that

the monoidal product is a sum in the PROP category WIRE and the cartesian product for nominal sets,

representing circuit types, is as given in definition 2.8.9.

• Ja1 : σ1, ..., an : σnK = ∑n
i=1JσiK

• Jx1 : τ1, ..., xn : τnK = Jτ1K× ...× JτnK
Finally, we interpret typing judgements as equivariant functions (definition 2.8.7) between nominal sets.

• JΓ;∆ `w u : σK : J∆K→ JCirc(Γ, σ)K
1Formally we define an equivalence relation∼ between ⟨m : (a+n) → b,An⟩ and ⟨m⊗ deletek : (a+n+ k) → b,An+k⟩

and we take the codomain of the functions JCirc(σ1, σ2)K to be the set of equivalence classes modulo ∼.



CHAPTER 2. COMBINATIONAL CIRCUITS 26

• JΓ;∆ `c c : τK : A#JΓK × J∆K→ JτK
Concretely, we give the semantics inductively on the structure of the typing derivation, starting with the

wire typing judgements. We also define a function which breaks a typing context containing (possibly

compound) wire types into a sequence of fresh individual wire atoms.

atoms(a1 : σ1, ..., an : σn) := a1,1, a1,2, ..., a1,Jσ1K, ..., an,1, an,2, ..., an,JσnK

• JΓ, a : σ,Γ′;∆ `w a : σK(d) = 〈deleteJΓK ⊗ idJσK ⊗ deleteJΓ′K, 〈〉〉
• JΓ;∆ `w cCirc(σ1,σ2) tσ1 : σ2K(d) = 〈m2 ◦ (m1 ⊗ idJΓK ⊗ id|s2|)

◦ (idJΓK ⊗ swapJΓK,|s1| ⊗ id|s2|)

◦ (copyJΓK ⊗ id|s1| ⊗ id|s2|), s1 ++ s2〉

where 〈m1, s1〉 = JΓ;∆ `w t : σK(d)
and 〈m2, atoms(Γ), s2〉 = JΓ;∆ `c cK(atoms(Γ), d)

• JΓ;∆ `w () : unitK(d) = 〈deleteJΓK, 〈〉〉
• JΓ;∆ `w fst sσ1×σ2 : σ1K(d) = 〈(idJσ1K ⊗ deleteJσ2K) ◦m, s〉

where 〈m, s〉 = JΓ;∆ `w s : σ1 × σ2K(d)
• JΓ;∆ `w snd sσ1×σ2 : σ2K(d) = 〈(deleteJσ1K ⊗ idJσ2K) ◦m, s〉

where 〈m, s〉 = JΓ;∆ `w (u, v) : σ1 × σ2K(d)
• JΓ;∆ `w s : σ1 × σ2K(d) =
〈(m1 ⊗m2) ◦ (idJσ1K ⊗ swapJΓK,|s1| ⊗ id|s2|) ◦ (copyJΓK ⊗ id|s1| ⊗ id|s2|), s1 ++ s2〉

where 〈m1, s1〉 = JΓ;∆ `w t : σK(d) and 〈m2, s2〉 = JΓ;∆ `c cK(d)
Circuit typing judgements are given by

1. JΓ;x1 : τ1, ..., xi : τi, ..., xn : τn `c xi : τiK(s, d) = πi d

2. JΓ;∆ `c g : Circ(σ1, σ2)K(s, d) = 〈JgK, 〈〉〉
3. JΓ;∆ `c νaσ1 .uσ2 : Circ(σ1, σ2)K(s, d) = 〈m ◦ (swapJσ1K,JΓK ⊗ id|s′|), s++ s′〉

where 〈m, s′〉 = JΓ, a : σ1;∆ `w u : σ2K(d)
4. JΓ;∆ `c λxτ1 .cτ2 : τ1 → τ2K(s, d) = x′ 7→ JΓ;∆, x : τ1 `c c : τ2K(s, d, x′)

5. JΓ;∆ `c fτ1→τ2 cτ1 : τ2K(s, d) = h(z)

where h = JΓ;∆ `c f : τ1 → τ2K(s, d) and z = JΓ;∆ `c c : τ1K(s, d)



CHAPTER 2. COMBINATIONAL CIRCUITS 27

(a) typ-unit (b) typ-pRod (c) typ-name

(d) typ-pRoj1 (e) typ-pRoj2 (f) typ-
ciRc-app

Figure 2.15: String diagram semantics for wires.

The categorical notation involves a lot of plumbing of morphisms which somewhat obscures the key ideas.

It can also be helpful to think of the semantics diagrammatically as in Figures 2.15 and 2.16.

Theorem 2.9.1: Correctness of Nominal Sets and Equivariant Functions

For each wire judgement Γ;∆ `w u, JΓ;∆ `w uK is an equivariant function and for each judge-

ment Γ;∆ `c c, JΓ;∆ `c cK is an equivarient function. And for each each type τ , the interpreta-

tion JτK is a nominal set.

Proof on page 56

Figure 2.16: String diagram semantics for circuit abstraction.



CHAPTER 2. COMBINATIONAL CIRCUITS 28

We finish by giving a soundness result for the equational theory. In particular, we show that if any two

terms are equal using the equaltional rules in definition 2.7.1, then it must be the case that they have the

same semantic interpretation. This opens the door for equational reasoning about circuits described in

our term language and gives us guarantees about our implementation.

Theorem 2.9.2: Soundness

The semantic interpretation respects the equational theory.

Γ;∆ `w u1 ≡ u2 =⇒ JΓ;∆ `w u1 : σK = JΓ;∆ `w u2 : σK
Γ;∆ `c c1 ≡ c2 =⇒ JΓ;∆ `c c1 : τK = JΓ;∆ `c c2 : τK

Proof on page 56



Chapter 3

Synchronous Circuits

We are now ready to move from combinational to synchronous circuits. These circuits consist of a global

clock and components which make synchronised changes to their state based on the clock signal. We will

start by discussing the later modality (Section 3.2) and will take a look at streaming computations more

broadly. Then (in Section 3.3) we introduce a modification of λcomb with a new constructor to enable

synchronous behaviour.

3.1 Synchronous and Streaming Programming Languages

The use of functional programming techniques to describe sequential streams has been explored at length.

The idea is known as Functional Reactive Programming (FRP) and synchronous versions have been im-

plemented in languages such as Estrel [6], Lustre [9], and Lucid Synchrone [29]. Although there are very

strong links between synchronous circuits and streaming reactive programs, the emphasis has mainly

been on embedded software rather than hardware applications.

One of the significant contributions of this direction of research has been the use of modal types to guard

feedback and ensure productive definitions. We will consider a type system with a type constructor •

known as the later modality. The later modality was originally introduced by Nakano [26] to enforce

productive function definitions but will correspond to delay-guarded feedback at the circuit level.

3.2 What is the Later Modality?

The later modality is all about guardedness. A term has a guarded type if it occurs in a place that ensures

some progress has been made before the term is used. If all recursive occurrences of a term are guarded,

29



CHAPTER 3. SYNCHRONOUS CIRCUITS 30

our recursive definitions are guaranteed to be productive. We will use the notation •σ to express types

guarded by the later modality.

Terms of type •σ are more general than those of type σ. If we think of •σ as a term available later and σ

as a term available now, it makes sense that we could use the value available now at a later point in time,

but not vice versa. We formalise this intuition by defining a subtyping relation specifying which types are

more general than others. We define this relation (�⊆ Typ×Typ) to be the least set satisfying the rules

in Figure 3.1. Now each term is actually associated with a whole family of different valid types.

σ � σ
(�-Refl) σ � τ τ � γ

σ � γ
(�-TRans)

σ � •σ
(�-LateR)

σ1 � σ2 τ1 � τ2
(σ2 → τ1) � (σ1 → τ2)

(�-Func) σ � τ

•σ � •τ
(�-Delay) σ1 � σ′

1 σ2 � σ′
2

σ1 × σ2 � σ′
1 × σ′

2

(�-PRod)

(•σ → •τ) � •(σ → τ)
(�-Dist1)

•(σ → τ) � (•σ → •τ)
(�-Dist2)

•(σ1 × σ2) � •σ1 × •σ2
(�-PRodDist1)

•σ1 × •σ2 � •(σ1 × σ2)
(�-PRodDist2)

Figure 3.1: Subtyping rules.

3.2.1 Streams

We will take a short pause from circuits and will think about synchronous programming more generally.

Synchronous programming revolves around a global clock which induces each term to correspond to a

co-inductive stream of values. We will give some informal examples to build intuition for the more formal

presentation of the later modality in the next section. For simplicity, we will work with the set Nω of

infinite streams of natural numbers for now.

We start with functions which operate pointwise on streams. For example, given two streams a, b ∈ Nω ,

we lift addition to the level of streams by considering (a +ω b)i := ai + bi. Next, we introduce a special

construct ▷ (pronounced followed-by). This will append a value to the front of a stream, shifting the

whole stream down by one step.

Definition 3.2.1: Followed By Operation

We define the binary operation ▷ : N× Nω → Nω by (n▷ a)i =


n, i = 0

ai−1, i > 0

Consider a very simple example with two constant streams.



CHAPTER 3. SYNCHRONOUS CIRCUITS 31

Example 3.2.1: Combination of Constant Streams

0▷ 1ω = 0, 1, 1, 1, ...

Now we might use this notation to give a simple recursive definition.

Example 3.2.2: Counting Stream Definition

x = 0▷ (x+ω 1)

This definition is well-founded because it has a unique solution x = 0, 1, 2, 3, .... Similarly we can even

define the Fibonacci sequence.

Example 3.2.3: Fibonacci Sequence

fib = 0▷ (fib+ω (1▷ fib))

Which, if we expand using the definition of the▷ operation, gives us the expected result fib = 0, 1, 1, 2, 3, 5, ....

In both these cases, the recursive call was guarded by appearing on the right of the ▷ construct. If we

instead considered a stream defined by an unguarded recursive call, we end up with an invalid defini-

tion.

Example 3.2.4: Bad Stream

x = x+ω (0▷ 1ω)

To make things easier to reason about, we will replace recursion with a fixed point operator. For instance

our Fibonacci sequence from before would be written as follows.

Example 3.2.5: Fibonacci Sequence Using Fixedpoint

fib = fix λx.(0▷ (x+ω (1▷ x)))

The key to only allowing well-founded recursion is to replace the fixed point function

fix : (Nω → Nω)→ Nω

with a guarded fixed point function

fix• : (•Nω → Nω)→ Nω

This fixed point operator requires that the input function is able to “remove” the later modality from its



CHAPTER 3. SYNCHRONOUS CIRCUITS 32

input type. In order to allow such definitions, we must change the type of the ▷ operation, which is how

we make progress in a recursive definition, to allow the removal of the later modality from its second

argument

▷ : N× •Nω → Nω

3.2.2 Synthetic Guarded Domain Theory

The later modality offers insight into well-founded recursion for streams. In the circuit case, instead of

avoiding ill-founded recursion, we would like to avoid purely combinational cycles. As such, we want to

ensure that all feedback loops are guarded by a delay element such as a buffer or register. Unfortunately,

the informal presentation in terms of sequences is not sufficient for the general case. Instead, previous

work has primarily focused on giving analytic semantics to guarded reactive programming by interpreting

streams as ultrametric spaces [18]. This is rather indirect and difficult to work with. We will use the topos

of trees [7], which offers a somewhat more direct interpretation.

Unlike the previous categorical model, the topos of trees is behavioural. Multiple circuits implement the

same behaviour on streams, so this model validates equalities that do not generally hold when taking a

structural approach to modelling hardware. However, the topos of trees does form a Markov category,

and so the ideas from Section 2.4 still apply.

3.2.3 Background on the Topos of Trees

Each type α will be associated with a family of sets Ai indexed by i ∈ N+ and a family of restriction

functions ri : Ai+1 → Ai. We will think of Ai as being the set of execution traces after i clock cycles and

the restriction functions r as extracting the immediate prefixes of the traces.

A1 A2 A3 ...
r1 r2 r3

To take a concrete example, the type of streams of integers Z can be represented by taking the set An to

be the n-tuple approximations of an infinite stream of integers.

Z Z2 Z3 ...
z1 z2 z3

Where we define the restriction functions in the obvious way.



CHAPTER 3. SYNCHRONOUS CIRCUITS 33

zi(〈x1, ..., xi−1, xi〉) = 〈x1, ..., xi−1〉

The later modality transforms a type σ to a type •σ of streams delayed by one timestep. The initial set is

replaced with the singleton set, so the first restriction function is uniquely determined.

α : A1 A2 A3 ...

•α : {?} A1 A2 ...

r1 r2 r3

r⋆ r1 r2

There is also a special void type 0 given by the empty sets and trivial restrictions.

0 : {} {} {} ...t t t

•0 : {?} {} {} ...t t t

We now consider the space of functions between streams. Importantly, we only allow causal functions for

which the output at a given timestep never depends on the input at future timesteps. Therefore, functions

between streams will be given as a sequence of functions between the partial results, and we will require

that taking functions on the partial results commutes with taking restrictions according to the following

diagram.

A1 A2 A3

B1 B2 B3

f1

r1

f2

r2

f3

r3

r′1 r′2 r′3

3.2.4 Category Theoretic Perspective

It is possible to consider this from a categorical perspective. We will use the ordinal ω to signify the order

category of the positive natural numbers.

1 2 3 ...
≤ ≤ ≤

The central idea of synthetic guarded domain theory is to consider the topos S of presheaves on ω. Con-



CHAPTER 3. SYNCHRONOUS CIRCUITS 34

cretely, the objects ofS are functorsX : ωop → Set (whereωop denotes the categoryωwith all morphisms

reversed). The morphisms of S are exactly the families of restriction functions between sets. Then the

later modality •(−) is really an endofunctor in the category S .

The category S is a Markov category with the cartesian product × as the monoidal product. We have

operations copyX : X → X ⊗X given by copyXi(X(i)) = X(i) ×X(i) and deleteX : X → 1 given

deleteXi(X(i)) = {∗}.

The topos of trees category is cartesian closed, meaningwe can create exponential objectsBA representing

morphisms from A → B. If we return to the picture from above, we see that the morphism is described

by a sequence of components.

A1 A2 A3

B1 B2 B3

f1

r1

f2

r2

f3

r3

r′1 r′2 r′3

The exponential object is then given by a sequence of partial streams of functions.

BA(k) = HomS(•k(0)×A,B)

Here we use the iterated application of the endofunctor •(−) to create a partial chain

1← 1← ...← 1← 0← 0← ...

such that taking the product with it results in a partial stream of functions of length k. We then define a

special family of morphisms evalA,B : BA × A → B which apply the exponential object. This is given

by evalA,Bi(f,A(i)) = f(A(i)). There is also a natural isomorphism curry between Hom(A × B,C)

and Hom(A,CB).

A key result is that there are a family of fixed point morphisms fixA : A•A → Awhich compute the fixed

points of guarded functions [7].

3.3 Later in Time

We use the later modality to introduce synchronous circuits. We first introduce the followed-by construct

to λcomb (Definition 2.5.1) together with a guarded fixed point operator to give a new term language



CHAPTER 3. SYNCHRONOUS CIRCUITS 35

λsync.

Definition 3.3.1: Terms of λsync

W := a | () | (W,W ) | fst W | snd W | C W |W ▷W

C := x | νa.W | λx.C | C C | g C | fixσ C (g ∈ G)

At the hardware level, we think of▷ as a buffer which is initialised to a particular value. We will represent

this diagrammatically using a box with the initial value entering as a wire from the top as shown in Figure

3.2.

a

b

fby

Figure 3.2: The term a▷ b represented diagrammatically.

We also need to introduce suitable typing rules to extend the type system appropriately.

Γ;∆ `w u : σ Γ;∆ `w v : •σ
Γ;∆ `w u▷ v : σ

(typ-fby) Γ;∆ `c c : Circ(•σ, σ)
Γ;∆ `w fixσ c : σ

(typ-fix)

Γ;∆ `w u : σ1 σ2 � σ1

Γ;∆ `w u : σ2
(typ-subtyp)

Figure 3.3: New typing rules.

As an example using the new constructs, we can construct a circuit which produces the alternating stream

0, 1, 0, 1, .... Assuming there is a way to generate the constant 01, we take the fixed point of a circuit which

delays and inverts its input: fix∗ νa.(0 ▷ not a). The corresponding circuit diagram is given in Figure

3.4.

0

fby

Figure 3.4: A simple toggle circuit.

We can consider some more interesting examples of combinational circuits such as a Fibonacci sequence

generator based on the example 3.2.3 which is given by fix∗4 (νa.0 ▷ add(a, 1 ▷ a)). A full example of
1which we will implement by introducting a function type false : Circ(unit, ∗) and then writing false () for 0.



CHAPTER 3. SYNCHRONOUS CIRCUITS 36

this circuit is given as a case study (Section 5.2.5). The corresponding diagram for this circuit is shown in

Figure 3.5.

0
1

fby fby
+

Figure 3.5: Fibbonaci sequence circuit.



CHAPTER 3. SYNCHRONOUS CIRCUITS 37

3.4 Guarded Semantics

Wewill associate the base type ∗with a bitstreamwhereB = {0, 1}. Each type corresponds to an object in

S . Note that morphism in a functor category like S are just natural transformations, so have a component

(which is a function, as it is a morphism in Set) at each timestep n ∈ N+.

• J∗K = B B2 B3 ...
b1 b2 b3

• JunitK = •∞(0) = {∗} {∗} {∗} ...! ! !

• Jσ1 × σ2K = Jσ1K× Jσ2K
• JCirc(σ1, σ2)K = Jσ1K⇒ Jσ2K
• Jτ1 → τ2K = Jτ1K⇒ Jτ2K
• J•σK = •(JσK)

We extend the semantic interpretation to typing contexts.

• Ja1 : σ1, ..., an : σnK = Jσ1K× ...× JσnK
• Jx1 : τ1, ..., xn : τnK = Jτ1K× ...× JτnK

Typing judgements then correspond tomorphisms inS taking the typing contexts to the assigned type.

• JΓ, a : σ,Γ′;∆ `w a : σK = deleteJΓK ⊗ idJσK ⊗ deleteJΓ′K ⊗ deleteJ∆K
• JΓ;∆ `w () : unitK : deleteJΓK×J∆K
• JΓ;∆ `w (u, v) : σ1 × σ2K = copyJΓK×J∆K; (JΓ;∆ `w u : σ1K× JΓ;∆ `w v : σ2K)
• JΓ;∆ `w fst uσ1×σ2 : σ1K = JΓ;∆ `w u : σK;π1

• JΓ;∆ `w snd uσ1×σ2 : σ2K = JΓ;∆ `w u : σK;π2

• JΓ;∆ `w u▷ v : σK(i) = JΓ;∆ `w u : σK(1)× JΓ;∆ `w •v : σK(i)2
• JΓ;∆ `w fix c : σK = fixJσK ◦ JΓ;∆ `c c : Circ(•σ, σ) : σK
• JΓ;∆ `w c u : σ2K = copyJΓK×J∆K; JΓ;∆ `c c : Circ(σ1, σ2)K)× JΓ;∆ `w u : σ1K; evalJσ1K,Jσ2K
• JΓ;∆ `c g : Circ(σ1, σ2)K = JgK
• JΓ;∆ `c f c : τ2K = copyJΓK×J∆K; JΓ;∆ `c f : τ1 → τ2K× JΓ;∆ `w u : τ1K; evalJτ1K,Jτ2K
• JΓ;∆, x : τ,∆′ `c x : τK = deleteJΓK ⊗ deleteJ∆K ⊗ idJτK ⊗ deleteJ∆′K

2This only works because the followed by construct is restricted to wire types. The objects in S are not always partial streams
although this is the case for the interpretations of wire terms.



CHAPTER 3. SYNCHRONOUS CIRCUITS 38

• JΓ, a : σ1;∆ `c νa.t : Circ(σ1, σ2)K = curry(idJΓK ⊗ swapJσK,J∆K; JΓ, a : σ1;∆ `w t : σ2)K)
• JΓ;∆ `c λx.c : τ1 → τ2K = curry(JΓ;∆, x : τ1 `c λx.c : τ2K)



Chapter 4

Implementation

In this Chapter, we discuss details of the implementation of a compiler for the term language. The imple-

mentation draws heavily from the equational theory and semantics introduced in Section 2.5. In particular,

there are strong similarities between the treatment of atoms in Section 2.9 and the extraction of individual

wire names during code generation stage of the compiler. We make use of Theorems 2.7.1 and 2.9.1 to

justify the correctness of the normalisation step of our compilation procedure.

The compiler was written in Haskell and is able to generate synthesisable Verilog code from source files

in the term language. We will give a range of examples including the source and generated output to

demonstrate the utility of this approach to circuit design. We discuss unification-based type inference

and give an algorithm for performing type inference on our term language (Algorithm 1 in Section 4.4).

We also discuss how Verilog code is generated and give an algorithm for the code generation step (in

Section 4.6).

4.1 Overview

The compiler is constructed in a modular way and performs a sequence of transformations on the source

code. A high-level breakdown of the different stages of compilation is given in Figure 4.1. The module

structure is given in Figure 4.2. We represent the abstract syntax using recursion schemes [22] which

allows generic traversals to be defined over a range of annotated tree types. We successively annotate

variables in the syntax tree with type information and then trees of Verilog wires which represent that

variable in the output file.

39



CHAPTER 4. IMPLEMENTATION 40

Parsing and Desugaring

Validation

Dependency Analysis

Type Inference

Normalisation

Circuit Extraction

Figure 4.1: High-level structure of the compiler.

Syntax.hs

Parser.hs

Simplify.hs

Compile.hs

Compiler.hs

Types.hs

Environment.hs

Unify.hs Preprocess.hs

Infer.hs

Keywords.hs

Monadic.hs

Figure 4.2: Module structure of the compiler.

4.2 Parsing, Desugaring and Validation

The source program is first parsed into the internal representation. At this stage, syntactic sugar is elim-

inated and fresh variables are generated where required by the desugaring. An example of the concrete

and abstract syntax is given in Figure 4.3.

'halfadder =
    ν x . (xor x, and x)

CAbs "a"
(WPair
(WApp (CPrim GateAnd) (WVar "x"))
(WApp (CPrim GateAnd) (WVar "x"))

)

Figure 4.3: Parsing.

In order to allow for the generation of new variables during desugaring, monadic parsing takes place

on top of a global state monad containing the necessary information for fresh name generation. Before

moving on, the program is then validated to ensure that all free variables are defined and no variables are

multiply defined. The main function is identified and various other correctness checks are performed to



CHAPTER 4. IMPLEMENTATION 41

ensure the program has the correct structure.

4.3 Dependency Analysis

As the language has commutative semantics, similarly to Haskell, it is not necessarily the case that def-

initions are given in the order they are used. Therefore, we have to do some preprocessing work before

type inference is done. This involves calculating the program’s dependency graph, which is defined as

follows.

Definition 4.3.1: Dependency Graph of a Program

The dependency graph is a directed graph G where each vertex is a top-level definition in the

program, and there is an edge e from vertex u to vertex v precisely when the variable bound by

the definition u occurs freely inside the body of the definition v.

In particular, recursive definitions correspond to vertices in G with a self-loop, and sets of mutually re-

cursive definitions correspond to strongly connected components in G.

Now, given the original dependency graph G, we construct a new graph G′ of the strongly connected

components ofG. The vertices in this graph are sets of vertices inG and there is an edge between vertices

S1, S2 inG′ precisely when there exist v ∈ S1 and u ∈ S2 such that the edge (v, u) is inG (for S1 6= S2).

More concretely, the edges in G′ correspond to the dependencies between sets of mutually recursive

definitions in the program.

It is easy to see that the graph G′ forms a DAG, as the union of vertices in any cycle would form an even

larger SCC in G. Hence we can perform a topological sort on the graph G′. Recursive definitions are

replaced with explicit fixed points, and we perform type inference on the groups of definitions, solving

constraints after each group and updating the global environment. This trick was originally described by

Simon Peyton Jones [27].



CHAPTER 4. IMPLEMENTATION 42

A B

C

D

EF

Figure 4.4: An example of a dependency graph with SCCs outlined in red.

4.4 Type Inference

A significant impediment to the adoption of more powerful type systems in hardware design is the addi-

tional burden they impose on the designer. Type inference reduces the need for type annotations and has

been a major contributor to the success of strongly-typed languages such as ML [24] and Haskell [21]. We

implement a unification-based type inference algorithm modelled on Hindley Milner’s famous Algorithm

W [23].

We start by defining new type inference rules using a constrained judgment. We write

Γ;∆ `w u : σ | C

to indicate that wire term u has type σ in contexts Γ and ∆ subject to the constraints C . Here C is a set

of constraints of the form 〈σ1, σ2〉 which require that the type equality σ1 ' σ2 holds. The new rules

are given in Figures 4.5 and 4.6. In some cases, we require that a type variable be fresh, meaning that it

does not appear in the types or constraints of the premises. We use the same notation for circuit terms as

well.



CHAPTER 4. IMPLEMENTATION 43

Γ, a : σ,Γ′;∆ `w a : σ | ∅
(inf-name)

Γ;∆ `w () : unit | ∅ (inf-unit)

Γ;∆ `w u : σ1 | C1 Γ;∆ `w v : σ2 | C2

Γ;∆ `w (u, v) : σ1 × σ2 | C1 ∪ C2
(inf-pRod)

Γ;∆ `w s : σ1 Γ;∆ `c c : τ
Γ;∆ `w c s : σ2 | {〈τ,Circ(σ1, σ2)〉} ∪ C1 ∪ C2

(inf-ciRc-app)

Γ;∆ `w s : σ1 | C
Γ;∆ `w fst s : σ2 | {〈σ1, σ2 × α〉} ∪ C (α fresh) (inf-pRoj-1)

Γ;∆ `w s : σ1 | C
Γ;∆ `w snd s : σ2 | {〈σ1, α× σ2〉} ∪ C (α fresh) (inf-pRoj-2)

Figure 4.5: Wire type inference rules.

Γ;∆, x : τ,∆′ `c x : τ | ∅
(inf-vaR) g ∈ G #g = 〈σ1, σ2〉

Γ;∆ `c g : Circ(σ1, σ2) | ∅
(inf-gate)

Γ, a : σ1;∆ `w u : σ2 | C
Γ;∆ `c νa.u : Circ(σ1, σ2) | C

(inf-ciRc-abs) Γ;∆, x : τ1 `c c : τ2 | C
Γ;∆ `c λx.c : τ1 → τ2 | C

(inf-func-abs)

Γ;∆ `c c1 : τ1 | C1 Γ;∆ `c c2 : τ2 | C2

Γ;∆ `c c1 c2 : τ3 | {〈τ1, τ2 → τ3〉} ∪ C1 ∪ C2
(inf-func-app)

Figure 4.6: Circuit type inference rules.

We continue by defining the notion of a type substitution function S from type variables to types. We

extend the function to apply to composite types as follows.

S(t) := t for a constant type t ∈ T (4.1)

S(α) := S(α) (4.2)

S(σ1 × σ2) := S(σ1)× S(σ2) (4.3)

S(Circ(σ1, σ2)) := Circ(S(σ1), S(σ2)) (4.4)

S(σ1 → σ2) := S(σ1)→ S(σ2) (4.5)

We say that a given type substitutionS unifies a constraint 〈σ1, σ2〉 if the function satisfiesS(σ1) = S(σ2).

And we say that a substitution S unifies a set of constraints C if the function unifies each constraint in

C . The following two theorems establish the correctness of the unification-based approach.



CHAPTER 4. IMPLEMENTATION 44

Theorem 4.4.1: Substitution Preserves Typing Judgement

(1) If Γ;∆ `w u : σ and S is a substitution, then we must have S(Γ);S(∆) `w u : S(σ).

(2) If Γ;∆ `c c : τ and S is a substitution, then we must have S(Γ);S(∆) `c c : S(τ).

Proof: By induction on the typing derivation.

Theorem 4.4.2: Unification of Constraints

(1) If Γ;∆ `w u : σ | C and S is a unifier for C , then we must have S(Γ);S(∆) `w u : S(σ).

(2) If Γ;∆ `c c : τ | C and S is a unifier for C , then we must have S(Γ);S(∆) `c c : S(τ).

Proof: Using the previous theorem and by induction on the typing derivation.

Using this idea, we can reconstruct the type of a term by traversing the structure of the term and gener-

ating constraints as required by the new typing rules. Our algorithm for type inference consists of two

parts.

1. Find type subject to a set of constraints C .

2. Find a unifier S for C .

The first part can be achieved recursively based on the rules given in 4.6. The second part is also achieved

recursively and builds the substitution up gradually by solving one constraint at a time as shown in Al-

gorithm 1.

Algorithm 1 Unification algorithm.
match C with

case ∅ return identity
case {〈T, T 〉} ∪ C ′ return unify(C ′)
case {〈τ1 → τ2, τ

′
1 → τ ′2〉} ∪ C ′ return unify({〈τ1, τ ′1〉, 〈τ ′2, τ ′2〉} ∪ C ′)

case {〈σ1 × σ2, σ
′
1 × σ′

2〉} ∪ C ′ return unify({〈σ1, σ
′
1〉, 〈σ2, σ

′
2〉} ∪ C ′)

case {〈Circ(σ1, σ2),Circ(σ′
1, σ

′
2)〉} ∪ C ′ return unify({〈σ1, σ

′
1〉, 〈σ2, σ

′
2〉} ∪ C ′)

case {〈α, T 〉} and α /∈ free-vars(T ) return unify(C ′[T/α]) ◦[T/α]
case {〈T, α〉} and α /∈ free-vars(T ) return unify(C ′[T/α]) ◦[T/α]
case _ return fail(“Not Unifiable”)

The unification algorithmworks by breaking each constraint into strictly smaller constraints or by directly

solving constraints where possible. As the total complexity of the set of constraints is strictly decreasing



CHAPTER 4. IMPLEMENTATION 45

with every iteration, the algorithm always terminates. Each solved nontrivial constraint results in another

substitution being added to the unifier. We can see by induction that the resulting function is a unifier for

the whole set of constraints.

4.5 Normalisation

Nowwe repeatedly β-reduce to remove all remaining functions. ByTheorems 2.7.1 and 2.7.2 from Section

2.5 we know that this normalisation step is correct and terminating. We also know by Theorem 2.9.2 that

it does not change the semantics of our circuit.

4.6 Verilog Extraction

The final part of the puzzle involves extracting Verilog from the internal representation. An important

difference between our language and the final representation is that we allow wires to have internal struc-

ture and might write either and x or and (x1, y1). So each composite wire must be decomposed into a

tree of constituent wire parts, in a similar way to how the semantic interpretation of circuit terms required

a sequence of atoms, given by atoms(Γ), as an input in Section 2.9. The rough outline of our procedure is

as follows

1. Assign a tree of names to each variable based on its type.

2. Generate new output wires for each atomic gate application.

3. Treat true and false as special cases of circuits generating binary values.

4. Create non-blocking assignments for the initial and subsequent subexpressions of each▷ construct.

5. Identify which names should be abstracted as wires and which should be abstracted as registers.

6. Calculate the input and output list.

7. Determine if the circuit is purely combinational or requires a clock.

The generated Verilog can then be simulated using any standard hardware toolchain.



Chapter 5

Evaluation of the Compiler

5.1 Results

The compiler (described in Chapter 4) has been tested on a variety of different example files, including both

synchronous and purely combinational circuits. In each case, the generated Verilog circuit was simulated

using yosys and a circuit diagram was extracted. A table of the test circuits is given in Table 5.1. In

this section, we give the source code and the output circuit for each example. The generated Verilog

and intermediate representation after different stages of compilation are given in the Appendix (section

7.2).

Circuit Gates Latches
Blink Circuit 1 1
Full Adder 5 0

Ripple-Carry Adder 16 0
Binary Counter Circuit 5 4

Fibonacci Sequence Generator 16 8

Table 5.1: Table of example circuits.

5.2 Examples

5.2.1 Blink Circuit

The first example is a simple circuit which generates an alternating sequence of bits on a single output

wire.

46



CHAPTER 5. EVALUATION OF THE COMPILER 47

Source code:

-- alternating output --
blink = false () ▷ not blink

-- main module --
'main () = blink

Figure 5.1: Yosys output circuit diagram for blink circuit.

5.2.2 Full Adder

The next example is the full adder circuit from Section 2.5.

Source code:

-- half adder --
'ha a = (xor a, and a)

-- full adder --
'fa (a,b,c) =

let (sa, ca) = 'ha (a, b)
in let (sb, cb) = 'ha (sa, c)
in (sb, or(ca,cb))

-- main module --
'main = 'fa

Figure 5.2: Yosys output circuit diagram for full adder circuit.



CHAPTER 5. EVALUATION OF THE COMPILER 48

5.2.3 Ripple-Carry Adder

We chain together 4 full adder circuits to make a 4-bit ripple-carry adder. Note that the final two xor gates

are combined into a single 3-input gate in the final circuit, saving a gate.

Source code (in addition to previous definitions):

-- 4 bit ripple-carry adder --
'ripple (x,y) =

let (xa, xb, xc, xd) = x in
let (ya, yb, yc, yd) = y in
let (sa, ca) = 'ha (xa, ya) in
let (sb, cb) = 'fa (xb, yb, ca) in
let (sc, cc) = 'fa (xc, yc, cb) in
let (sd, cd) = 'fa (xd, yd, cc) in
(sa, sb, sc, sd)

-- main module --
'main = 'ripple

Figure 5.3: Yosys output circuit diagram for 4-bit adder circuit.



CHAPTER 5. EVALUATION OF THE COMPILER 49

5.2.4 4-bit Binary Counter

Using the 4-bit adder, we can generate a counter. The full power of the adder is not required in this case

as we are only ever incrementing the previous value. The generated Verilog code includes gates whose

input is fixed, but these are optimised away when the Verilog is synthesised. The 4-bit binary constants 0

and 1 have to be defined and we use big-endian bit ordering as this is the format the adder uses.

Source code (in addition to previous definitions):

-- constants
zero = (false (), false (), false (), false ())
one = (true (), false (), false (), false ())

-- 4-bit counter --
count = zero ▷ 'ripple (one, count)

-- main module --
'main () = count

Figure 5.4: Yosys output circuit diagram for binary counter circuit.



CHAPTER 5. EVALUATION OF THE COMPILER 50

5.2.5 Fibonacci Counter Circuit

A more interesting example is an implementation of the recursively defined Fibonacci sequence from

example 3.2.3 in Section 3.2.1. This circuit makes two recursive calls and features a nested followed-by

operator.

-- fibonacci sequence --
fib = zero ▷ 'ripple (fib, one ▷ fib)

-- main module --
'main () = fib

Figure 5.5: Yosys output circuit diagram for Fibonacci counter circuit.



Chapter 6

Conclusion

6.1 Summary

To summarise, we have taken a foundational look at hardware description through the lens of a new

calculus (Section 2.5). Through this framework, we have formulated an equational theory and given a

new categorical semantics to our language using nominal sets and equivariant functions (Section 2.9).

This model has enabled a structural study of hardware described in an expressive, higher-order setting.

We have also explored the potential of modal types to guard feedback in synchronous circuits (Chapter

3), which has allowed us to establish the correctness of hardware in a way that is not currently possible

using mainstream languages like Verilog or VHDL. Additionally, we have implemented a compiler for our

new calculus to offer a practical abstraction for the design of simple circuits (Chapter 4). Our examples

(Chapter 5) have demonstrated the efficacy of this approach. Overall, we hope this work contributes

towards a fuller picture of the semantics of hardware description.

6.2 Future Work

The application of methods from programming languages to hardware description continues to be an

area in need of further research. One promising direction for future work is to extend the categorical

semantics we presented to more expressive classes of languages. It would be particularly nice to extend

the structural model of combinational circuits (Section 2.9) to the synchronous case while retaining the

notions of guardedness provided by the topos of trees model.

51



CHAPTER 6. CONCLUSION 52

A clear application for the work we have done is in the realm of hardware verification. Using the struc-

tural semantic model and equational theory (Chapter 2) it would be possible to verify the soundness of

further abstractions, while using the behavioural model (Chapter 3) has applications in checking imple-

mentations against a desired reference behaviour, something that is currently cumbersome and usually

done via model checking. Extending the semantics to more expressive type systems such as dependent

types [2] or refinement types [12] has the potential to further increase the utility of denotational semantics

and equational reasoning for hardware verification.



Chapter 7

Appendix

7.1 Proofs

Proof of Theorem 2.6.3 on page 19:

By induction on the typing derivation of the left-hand hypothesis.

• (Case typ-name)

– for equation 2.9, it is possible u = a and so σ1 = σ2 by typ-name. Then u[s/a] = s

and we already know Γ;∆ `w s : σ1 = σ2 from the other hypothesis.

– Otherwise, for equation 2.9 (or equation 2.11) it must be that u[s/a] = u (or u[d/

x] = u) and u : σ2 must occur in Γ so Γ;∆ `w u : σ2 by typ-name.

• (Case typ-ciRc-app) So u = k v for some circuit term k and wire term v. For equation 2.9,

we know Γ, a : σ1;∆ `c k[s/a] : Circ(σ3, σ2) (for some σ3) and Γ, a : σ1;∆ `w v[s/a] : σ3

by induction hypothesis. Then, by typ-ciRc-app, Γ, a : σ1;∆ `w k[s/a] v[s/a] = (k v)[s/

a] : σ2. The analogous reasoning for equation 2.11 gives Γ;∆, x : τ1 `w (k v)[s/a] : σ

• (Case typ-vaR)We can apply the same reasoning as in the typ-name case. For equation 2.12

we may have c = x so τ1 = τ2 and we are done. Alternatively we know that c[s/a] = c or

c[d/x] = c from which the result is direct.

• (Case typ-func-app) Analogous to the typ-ciRc-app case.

• (Case typ-ciRc-abs) In this case c = νb.u and τ = Circ(σ2, σ3) (or τ2 = Circ(σ2, σ3)).

Considering first the case of equation 2.10, we know that Γ, a : σ1, b : σ2;∆ `w u : σ3.

We can apply exchange (equation 2.1 from Theorem 2.6.1) to swap the order to Γ, b : σ2, a :

σ1;∆ `w u : σ3. We can not apply the induction hypothesis yet as the righthand hypothesis

53



CHAPTER 7. APPENDIX 54

is in the wrong form, but we assume b /∈ fn(s) so we can apply weakening (equation 2.5

from Theorem 2.6.2) to the righthand hypothesis to get Γ, b : σ2;∆ `w s : σ1 which we

can then use to apply the induction hypothesis, giving Γ, b : σ2;∆ `w u[s/a] : σ3. So by

typ-ciRc-abs, we have Γ;∆ `w νb.u[s/a] = (νb.u)[s/a] : Circ(σ2, σ3).

In the case of equation 2.12, we know Γ, b : σ2;∆, x : τ `w u : σ3. Then we just need apply

another of the weakening equations (equation 2.6 from Theorem 2.6.2) to the righthand

hypothesis to get Γ, a : σ1;∆ `c d : τ1 from which we apply the induction hypothesis to

get Γ;∆ `c νa.u[d/x] = (νb.u)[d/x] : Circ(σ2, σ3) as required.

• (Case typ-func-abs) Analogous to the typ-ciRc-abs case.

• The cases typ-unit and typ-gate are trivial as no substitution takes place, and the remain-

ing cases (typ-pRod, typ-pRoj-1 and typ-pRoj-2) are straightforward from the fact that sub-

stitution carries through the product structure.

Proof of Theorem 2.7.1 on page 20:

Wewill prove normalisation using logical relations. We start by defining a predicate SNΓ
τ for each

circuit type τ and SNΓ
σ for each wire type σ as follows.

SNΓ
σ (u) := Γ; · `w u : σ and u ⇓

SNΓ
Circ(σ1,σ2)

(c) := Γ; · `c c : Circ(σ1, σ2) and c ⇓

SNΓ
τ1→τ2(f) := Γ; · `c f : τ1 → τ2 and f ⇓ and ∀c.SNΓ

τ1(c) =⇒ SNΓ
τ2(f c)

The proof will be broken into two parts.

Γ; · `w u : σ
(1)=⇒ SNΓ

σ (u)
(2)=⇒ u ⇓

Γ; · `c c : τ
(1)=⇒ SNΓ

τ (u)
(2)=⇒ c ⇓

The second part labelled (2) is immediate from the definition of the SN relation, so it remains to

show the implications labelled (1). We will begin by proving a lemma.

Lemma 3. Closure of SN under forwards and backwards reduction

Γ; · `w s : σ and s ↪→ u =⇒ SNΓ
σ (s) iff SNΓ

σ (u) (7.1)

Γ; · `c c : τ and c ↪→ d =⇒ SNΓ
τ (c) iff SNΓ

τ (d) (7.2)



CHAPTER 7. APPENDIX 55

The result for equation 7.1 is evident from the fact that s ⇓ iff u ⇓ which is all we are required to

show. For equation 7.2, we proceed by induction on the structure of the type τ .

• Case 1: Here we again note that s ⇓ iff u ⇓ which gives us all that we require.

• Case 2: τ = τ1 → τ2 Consider any Γ; · `c c1 : τ1 satisfying SNΓ
τ1(c1). Then we have

Γ; · `c c c1 : τ2, where τ2 satisfies equation 7.2 by the induction hypothesis. Using the

reduction rule, we have c c1 ↪→ d c1. This then gives SNΓ
τ2(d c1). Likewise, assuming

SNΓ
τ2(d c1) it must be that (d c1) ⇓ so (c c1) ⇓ and SNΓ

τ2(c c1).

Lemma 4. Validity of SN for well-typed terms

let ∆ = x1 : τ1, ..., xm : τm.

let {cj}mj=1 be closed circuit values with SNτj (cj) for each j.

let γ = {x1 7→ c1, ..., xn 7→ cn} be a finite substitution.

Γ;∆ `w u : σ =⇒ SNΓ
σ (γ(u)) (7.3)

Γ;∆ `c c : τ =⇒ SNΓ
τ (γ(c)) (7.4)

The proof is again by induction on the typing judgement.

• (Case typ-name) Then u = ai = γ(ai) so if Γ;∆ `w u : σ then Γ; · `w u : σ and

Γ; · `w γ(u) : σ hence SNΓ
σ (γ(u).

• (Case typ-vaR) Then c = xj and γ(c) = vj so SNΓ
σ (vj) by assumption.

• (Case typ-func-app) Then c = f d with Γ;∆ `c f : τ ′ → τ and Γ;∆ `c d : τ ′, so by our

induction hypothesis we may assume SNΓ
τ ′→τ (γ(f)) and SNΓ

τ ′(γ(d)). Using the definition

of SN for function types, we have SNΓ
τ (γ(f) γ(d)) but clearly γ(f) γ(d) = γ(f d) = γ(c)

as required.

• (Case typ-ciRc-app) Then u = c w so Γ;∆ `w w : σ′ and Γ;∆ `c c : σ hence SNΓ
σ′(γ(w))

and SNΓ
σ (γ(c)) by induction hypothesis. Note that circuit application (unlike function ap-

plication) never introduces new redexes, and so (γ(c) γ(w)) ⇓ and hence (γ(c w)) ⇓.

• (Case typ-ciRc-abs) Then c = νb.s and τ = Circ(σ′, σ′′). Hence Γ, b : σ′;∆ `w s : σ′′. By

the induction hypothesis, we have SNΓ,b:σ′

σ′′ (γ(s)) hence γ(s) ⇓. Then it is clear we have

(νb.s) ⇓ and so SNΓ
τ (νb.s).

• (Case typ-func-abs) Then c = λy.d and τ = τ ′ → τ ′′. The premise of the typ-func-app



CHAPTER 7. APPENDIX 56

rule gives us Γ;∆, y : τ ′ `c d : τ ′′. It is straightforward to see that as d ⇓ then (λy.d) ⇓.

Consider any circuit term Γ; · `c d′ : τ ′ satisfying SNΓ
τ ′(d′). Suppose d′ ⇓ d′′. We know

by induction that SNΓ
τ ′′(γ′(d))where γ′ is the substitution γ extended with any {y 7→ d′′}.

As we have SNΓ
τ ′′(γ′(d)) and γ′(d) = γ(d[d′′/y]) and we have (λy.d)d′ ↪→∗ (λy.d)d′′ ↪→

d[d′′/y] then SNΓ
τ ′((λy.d)d′) and hence SNΓ

τ ′(c).

• The remaining cases are all structural and follow immediately from the induction hypothesis

and definition of substitution.

As a corollary of Lemma 4 we get the required result.

Γ; · `w u : σ =⇒ SNΓ
σ (u) (7.5)

Γ; · `c c : τ =⇒ SNΓ
τ (c) (7.6)

This completes the proof

Proof of Theorem 2.7.2 on page 22:

Suppose we have Γ; · `c c : Circ(σ1, σ2). Firstly, note that by theorem 2.6.1 there exists a term c′

such that c ⇓ c′ and c′ has no redexes. From the definition, we have ↪→⊂ ≡, so c ≡ c′. Secondly,

we know that each lambda abstraction introduces an arrow type via typ-func-abs which can only

be removed (by typ-func-app) if it appears on the left of an abstraction. As there are no function

abstractions on the left of applications in v, there can be no lambda abstractions in the term v.

Finally, as the typing context ∆ is empty, there can be no free circuit variables in v. Additionally,

we know that there are no bound circuit variables (as there are no circuit abstractions), hence there

can be no circuit variables (free or bound) in c′. Then we have that c ≡ c′ and c′ is in λcomb∗.

Proof of Theorem 2.9.1 on page 27:

This proof of the first part is done individually for each semantic definition. We note that in each

case, the support of the input contains the support of the output. The second part is relatively

straightforward, as we note that string of atoms for circuit types is finite, so simply taking the

set of all atoms which occur makes it a finite support. The fact that the function spaces form a

nominal set is by construction.

Proof of Theorem 2.9.2 on page 28:

Most of the equations can be proved diagrammatically using the comonoid laws from the Markov



CHAPTER 7. APPENDIX 57

structure of the PROP category, and by the fact that we quotient by the addition of discarded free

atoms.

JΓ;∆ `w fst (m1,m2) : σ1K = = = = JΓ;∆ `w m1K

JΓ;∆ `w snd (m1,m2) : σ2K(d) = = = = JΓ;∆ `w m2K(d)

JΓ;∆ `w (fst s, snd s) : σ1 × σ2K(d) = = = = JΓ;∆ `w s : σ1 × σ2K(d)

JΓ;∆ `c νa.ca : Circ(σ1, σ2)K(d) = = = = JΓ;∆ `w s : σ1 × σ2K(d)

The V substitution proof is inductive on the structure of V . There are two base cases for names

and unit and there is one inductive case for product types. The final step holds as all V commute

through the copying map.

JΓ;∆ `w (νa.t)() : σ2K(d) = = JΓ, a : unit;∆ `w t : σ2K(d) = JΓ;∆ `w t[()/a] : σ2K(d)



CHAPTER 7. APPENDIX 58

JΓ;∆ `w (νa.t)b : σ2K(d) = = = JΓ;∆ `w t[b/a] : σ2K(d)

JΓ;∆ `w (νa.t)(v1, v2) : σ2K(d) = = = JΓ;∆ `w t[(v1, v2)/a] : σ2K(d)

The affine substitution case only applies when there are no higher-order functions, so the proof is

very similar to that in [33].

JΓ;∆ `w (νa.t)sK = JΓ;∆ `w t[s!a]K
We use the standard, rather than diagrammatic, notation for the remaining cases.

JΓ;∆ `c (λx.t) c : τ2K(s, d)
= h(z) (by circuit semantics equation 5)

where h = JΓ;∆ `c λx.t : τ1 → τ2K(s, d)
and z = JΓ;∆ `c c : τ1K(s, d)
= h(z)

where h = x′ 7→ JΓ;∆, x : τ1 `c t : τ2K(s, d, x′) (by circuit semantics equation 4)

and z = JΓ;∆ `c c : τ1K(s, d)
= JΓ;∆, x : τ1 `c t : τ2K(s, d, z)
where z = JΓ;∆ `c c : τ1K(s, d)
= JΓ;∆ `c t[c/x] : τ2K(s, d)



CHAPTER 7. APPENDIX 59

JΓ;∆ `c λx.f x : τ1 → τ2K(s, d)
= x′ 7→ JΓ;∆, x : τ1 `c f x : τ2K(s, d, x′) (by circuit semantics equation 4)

= x′ 7→ h(z) (by circuit semantics equation 5)

where h = JΓ;∆, x : τ1 `c f : τ1 → τ2K(s, d, x′)

and z = JΓ;∆, x : τ1 `c x : τ1K(s, d, x′)

= x′ 7→ h(z)

where h = JΓ;∆ `c f : τ1 → τ2K(s, d) (as x /∈ fv(f) and by discarding)

and z = x′ (by circuit semantics equation 1)

= JΓ;∆ `c f : τ1 → τ2K(s, d)



CHAPTER 7. APPENDIX 60

7.2 Generated Verilog

7.2.1 Blink Circuit

Source code:

-- alternating output --
blink = false () ▷ not blink

-- main module --
'main () = blink

After type inference and desugaring:

blink : bit
blink = (fix (νblink.((false ()) ▷ (not blink))))

'main : Circ(unit, bit)
'main = (ν_unit_pattern_.blink)

After definition unfolding:

'main : Circ(unit, bit)
'main = (ν_unit_pattern_.((νblink.blink) (fix (νblink.((false ()) ▷ (

↪→ not blink))))))

After simplification:

'main : Circ(unit, bit)
'main = (ν_unit_pattern_.(fix (νblink.((false ()) ▷ (not blink)))))

Generated Verilog:

module main(reg_2, clk, rst);
input clk, rst;
output reg reg_2;
wire not1;
not gate_not1(not1, reg_2);
always @ (posedge clk) begin

reg_2 <= not1;
if (rst == 1) begin

reg_2 <= 1'b0;
end

end
endmodule



CHAPTER 7. APPENDIX 61

7.2.2 Full Adder

Source code:

-- half adder --
'ha a = (xor a, and a)

-- full adder --
'fa (a,b,c) =

let (sa, ca) = 'ha (a, b)
in let (sb, cb) = 'ha (sa, c)
in (sb, or(ca,cb))

-- main module --
'main = 'fa

After type inference and desugaring:

'ha : Circ((bit, bit), (bit, bit))
'ha = (νa.((xor a), (and a)))

'fa : Circ((bit, (bit, bit)), (bit, bit))
'fa = (ν_t0.((νa.((νb.((νc.((ν_t1.((νsa.((νca.((ν_t2.((νsb.((νcb.(sb, (

↪→ or (ca, cb)))) (π2 _t2))) (π1 _t2))) ('ha (sa, c)))) (π2 _t1))) (
↪→ π1 _t1))) ('ha (a, b)))) (π2 (π2 _t0)))) (π1 (π2 _t0)))) (π1 _t0))
↪→ )

'main : Circ((bit, (bit, bit)), (bit, bit))
'main = (νx.('fa x))

After definition unfolding:

'main : Circ((bit, (bit, bit)), (bit, bit))
'main = (νx.((ν_t0.((νa.((νb.((νc.((ν_t1.((νsa.((νca.((ν_t2.((νsb.((νcb

↪→ .(sb, (or (ca, cb)))) (π2 _t2))) (π1 _t2))) ((νa.((xor a), (and a
↪→ ))) (sa, c)))) (π2 _t1))) (π1 _t1))) ((νa.((xor a), (and a))) (a,
↪→ b)))) (π2 (π2 _t0)))) (π1 (π2 _t0)))) (π1 _t0))) x))

After simplification:

'main : Circ((bit, (bit, bit)), (bit, bit))
'main = (νx.((ν_t0.((ν_t1.((ν_t2.((π1 _t2), (or ((π2 _t1), (π2 _t2)))))

↪→ ((νa.((xor a), (and a))) ((π1 _t1), (π2 (π2 _t0)))))) ((νa.((xor
↪→ a), (and a))) ((π1 _t0), (π1 (π2 _t0)))))) x))



CHAPTER 7. APPENDIX 62

Generated Verilog:

module main(x0, x1, x2, xor2, or4);
input x0, x1, x2;
output wire xor2, or4;
wire and3, and1, xor0;
or gate_or4(or4, and1, and3);
and gate_and3(and3, xor0, x2);
xor gate_xor2(xor2, xor0, x2);
and gate_and1(and1, x0, x1);
xor gate_xor0(xor0, x0, x1);

endmodule

7.2.3 Ripple-Carry Adder

Source code (in addition to previous definitions):

-- 4 bit ripple-carry adder --
'ripple (x,y) =

let (xa, xb, xc, xd) = x in
let (ya, yb, yc, yd) = y in
let (sa, ca) = 'ha (xa, ya) in
let (sb, cb) = 'fa (xb, yb, ca) in
let (sc, cc) = 'fa (xc, yc, cb) in
let (sd, cd) = 'fa (xd, yd, cc) in
(sa, sb, sc, sd)

-- main module --
'main = 'ripple

After type inference and desugaring:

'ripple : Circ( ((bit, (bit, (bit, bit))), (bit, (bit, (bit, bit))))
, (bit, (bit, (bit, bit))) )
'ripple = (ν_t3.((νx.((νy.((ν_t4.((νxa.((νxb.((νxc.((νxd.((ν_t5.((νya

↪→ .((νyb.((νyc.((νyd.((ν_t6.((νsa.((νca.((ν_t7.((νsb.((νcb.((ν_t8
↪→ .((νsc.((νcc.((ν_t9.((νsd.((νcd.(sa, (sb, (sc, sd)))) (π2 _t9)))
↪→ (π1 _t9))) ('fa (xd, (yd, cc))))) (π2 _t8))) (π1 _t8))) ('fa (xc,
↪→ (yc, cb))))) (π2 _t7))) (π1 _t7))) ('fa (xb, (yb, ca))))) (π2

↪→ _t6))) (π1 _t6))) ('ha (xa, ya)))) (π2 (π2 (π2 _t5))))) (π1 (π2 (π2

↪→ _t5))))) (π1 (π2 _t5)))) (π1 _t5))) y)) (π2 (π2 (π2 _t4))))) (π1 (
↪→ π2 (π2 _t4))))) (π1 (π2 _t4)))) (π1 _t4))) x)) (π2 _t3))) (π1 _t3))
↪→ )

'main : Circ( ((bit, (bit, (bit, bit))), (bit, (bit, (bit, bit)))), (
↪→ bit, (bit, (bit, bit))) )

'main = (νx.('ripple x))



CHAPTER 7. APPENDIX 63

Generated Verilog:

module main(x0, x1, x2, x3, x4, x5, x6, x7, xor0, xor4, xor9, xor14);
input x0, x1, x2, x3, x4, x5, x6, x7;
output wire xor0, xor4, xor9, xor14;
wire or16, and15, and13, xor12, or11, and10, and8, xor7, or6, and5,

↪→ and3, xor2, and1;
or gate_or16(or16, and13, and15);
and gate_and15(and15, xor12, or11);
xor gate_xor14(xor14, xor12, or11);
and gate_and13(and13, x3, x7);
xor gate_xor12(xor12, x3, x7);
or gate_or11(or11, and8, and10);
and gate_and10(and10, xor7, or6);
xor gate_xor9(xor9, xor7, or6);
and gate_and8(and8, x2, x6);
xor gate_xor7(xor7, x2, x6);
or gate_or6(or6, and3, and5);
and gate_and5(and5, xor2, and1);
xor gate_xor4(xor4, xor2, and1);
and gate_and3(and3, x1, x5);
xor gate_xor2(xor2, x1, x5);
and gate_and1(and1, x0, x4);
xor gate_xor0(xor0, x0, x4);

endmodule

7.2.4 4-bit Binary Counter

Source Code:

-- constants
zero = (false (), false (), false (), false ())
one = (true (), false (), false (), false ())

-- 4-bit counter --
count = zero ▷ 'ripple (one, count)

-- main module --
'main () = count



CHAPTER 7. APPENDIX 64

Generated Verilog:

module main(reg_25, reg_26, reg_27, reg_28, clk, rst);
input clk, rst;
output reg reg_25, reg_26, reg_27, reg_28;
wire or24, and23, xor22, and21, xor20, or19, and18, xor17, and16,

↪→ xor15, or14, and13, xor12, and11, xor10, and9, xor8;
or gate_or24(or24, and21, and23);
and gate_and23(and23, xor20, or19);
xor gate_xor22(xor22, xor20, or19);
and gate_and21(and21, 1'b0, reg_28);
xor gate_xor20(xor20, 1'b0, reg_28);
or gate_or19(or19, and16, and18);
and gate_and18(and18, xor15, or14);
xor gate_xor17(xor17, xor15, or14);
and gate_and16(and16, 1'b0, reg_27);
xor gate_xor15(xor15, 1'b0, reg_27);
or gate_or14(or14, and11, and13);
and gate_and13(and13, xor10, and9);
xor gate_xor12(xor12, xor10, and9);
and gate_and11(and11, 1'b0, reg_26);
xor gate_xor10(xor10, 1'b0, reg_26);
and gate_and9(and9, 1'b1, reg_25);
xor gate_xor8(xor8, 1'b1, reg_25);
always @ (posedge clk) begin

reg_28 <= xor22;
reg_27 <= xor17;
reg_26 <= xor12;
reg_25 <= xor8;
if (rst == 1) begin

reg_28 <= 1'b0;
reg_27 <= 1'b0;
reg_26 <= 1'b0;
reg_25 <= 1'b0;

end
end

endmodule



CHAPTER 7. APPENDIX 65

7.2.5 Fibonacci Counter Circuit

Source Code:

-- fibonacci sequence --
fib = zero ▷ 'ripple (fib, one ▷ fib)

-- main module --
'main () = fib



CHAPTER 7. APPENDIX 66

Generated Verilog:

module main(reg_29, reg_30, reg_31, reg_32, clk, rst);
input clk, rst;
output reg reg_29, reg_30, reg_31, reg_32;
reg reg_11, reg_10, reg_9, reg_8;
wire or28, and27, xor26, and25, xor24, or23, and22, xor21, and20,

↪→ xor19, or18, and17, xor16, and15, xor14, and13, xor12;
or gate_or28(or28, and25, and27);
and gate_and27(and27, xor24, or23);
xor gate_xor26(xor26, xor24, or23);
and gate_and25(and25, reg_32, reg_11);
xor gate_xor24(xor24, reg_32, reg_11);
or gate_or23(or23, and20, and22);
and gate_and22(and22, xor19, or18);
xor gate_xor21(xor21, xor19, or18);
and gate_and20(and20, reg_31, reg_10);
xor gate_xor19(xor19, reg_31, reg_10);
or gate_or18(or18, and15, and17);
and gate_and17(and17, xor14, and13);
xor gate_xor16(xor16, xor14, and13);
and gate_and15(and15, reg_30, reg_9);
xor gate_xor14(xor14, reg_30, reg_9);
and gate_and13(and13, reg_29, reg_8);
xor gate_xor12(xor12, reg_29, reg_8);
always @ (posedge clk) begin

reg_32 <= xor26;
reg_31 <= xor21;
reg_30 <= xor16;
reg_29 <= xor12;
reg_11 <= reg_32;
reg_10 <= reg_31;
reg_9 <= reg_30;
reg_8 <= reg_29;
if (rst == 1) begin

reg_32 <= 1'b0;
reg_31 <= 1'b0;
reg_30 <= 1'b0;
reg_29 <= 1'b0;
reg_11 <= 1'b0;
reg_10 <= 1'b0;
reg_9 <= 1'b0;
reg_8 <= 1'b1;

end
end

endmodule



References

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. 2007. arXiv:
quant-ph/0402130 [quant-ph].

[2] Thorsten Altenkirch et al. “ΠΣ: Dependent Types without the Sugar”. In: Functional and Logic
Programming. Ed. by Matthias Blume, Naoki Kobayashi, and Germán Vidal. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 40–55. isbn: 978-3-642-12251-4.

[3] Arvind Arvind. “Bluespec: A language for hardware design, simulation, synthesis and verification
Invited Talk.” In: Jan. 2003, pp. 249–.

[4] C. Baaij. CλasH : from Haskell to hardware. Dec. 2009. uRl: http://essay.utwente.nl/
59482/.

[5] Andrej Bauer and Matija Pretnar. “Programming with Algebraic Effects and Handlers”. In: CoRR
abs/1203.1539 (2012). arXiv: 1203.1539. uRl: http://arxiv.org/abs/1203.1539.

[6] Gérard Berry and Laurent Cosserat. “The ESTEREL synchronous programming language and its
mathematical semantics”. In: Seminar on Concurrency. Ed. by Stephen D. Brookes, Andrew William
Roscoe, and GlynnWinskel. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 389–448. isbn:
978-3-540-39593-5.

[7] Lars Birkedal et al. “First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos
of Trees”. In: 2011 IEEE 26th Annual Symposium on Logic in Computer Science. 2011, pp. 55–64. doi:
10.1109/LICS.2011.16.

[8] Per Bjesse et al. “Lava: Hardware Design in Haskell”. In: SIGPLANNot. 34.1 (Sept. 1998), pp. 174–184.
issn: 0362-1340. doi: 10.1145/291251.289440. uRl: https://doi.org/10.1145/
291251.289440.

[9] P. Caspi et al. “LUSTRE: A Declarative Language for Real-Time Programming”. In: Proceedings of the
14th ACMSIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL ’87.Munich,
West Germany: Association for Computing Machinery, 1987, pp. 178–188. isbn: 0897912152. doi:
10.1145/41625.41641. uRl: https://doi.org/10.1145/41625.41641.

[10] Kenta Cho and Bart Jacobs. “Disintegration and Bayesian inversion via string diagrams”. In:Mathe-
matical Structures in Computer Science 29.7 (Mar. 2019), pp. 938–971. doi:10.1017/s0960129518000488.
uRl: https://doi.org/10.1017%2Fs0960129518000488.

[11] KoenClaessen andDavid Sands. “Observable Sharing for Functional Circuit Description”. In: vol. 1742.
Nov. 1999, pp. 78–78. isbn: 978-3-540-66856-5. doi: 10.1007/3-540-46674-6_7.

[12] Tim Freeman and Frank Pfenning. “Refinement Types for ML”. In: SIGPLAN Not. 26.6 (May 1991),
pp. 268–277. issn: 0362-1340. doi: 10.1145/113446.113468. uRl: https://doi.org/
10.1145/113446.113468.

[13] Tobias Fritz. “A synthetic approach to Markov kernels, conditional independence and theorems on
sufficient statistics”. In: Advances in Mathematics 370 (Aug. 2020), p. 107239. doi: 10.1016/j.
aim.2020.107239. uRl: https://doi.org/10.1016%2Fj.aim.2020.107239.

[14] Murdoch Gabbay and Andrew Pitts. “A New Approach to Abstract Syntax with Variable Binding”.
In: Formal Asp. Comput. 13 (July 2002), pp. 341–363. doi: 10.1007/s001650200016.

[15] Dan R. Ghica. “Geometry of Synthesis: A Structured Approach to VLSI Design”. In: Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’07.
Nice, France: Association for Computing Machinery, 2007, pp. 363–375. isbn: 1595935754. doi: 10.
1145/1190216.1190269. uRl: https://doi.org/10.1145/1190216.1190269.

[16] Dan R. Ghica and Achim Jung. “Categorical semantics of digital circuits”. In: 2016 Formal Methods
in Computer-Aided Design (FMCAD). 2016, pp. 41–48. doi: 10.1109/FMCAD.2016.7886659.

67

https://arxiv.org/abs/quant-ph/0402130
http://essay.utwente.nl/59482/
http://essay.utwente.nl/59482/
https://arxiv.org/abs/1203.1539
http://arxiv.org/abs/1203.1539
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1145/291251.289440
https://doi.org/10.1145/291251.289440
https://doi.org/10.1145/291251.289440
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1017/s0960129518000488
https://doi.org/10.1017%2Fs0960129518000488
https://doi.org/10.1007/3-540-46674-6_7
https://doi.org/10.1145/113446.113468
https://doi.org/10.1145/113446.113468
https://doi.org/10.1145/113446.113468
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1016%2Fj.aim.2020.107239
https://doi.org/10.1007/s001650200016
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1109/FMCAD.2016.7886659


REFERENCES 68

[17] Dan R. Ghica, George Kaye, and David Sprunger. A compositional theory of digital circuits. 2023.
arXiv: 2201.10456 [cs.LO].

[18] Neelakantan R. Krishnaswami and Nick Benton. “Ultrametric Semantics of Reactive Programs”. In:
Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in Computer Science. LICS ’11. USA:
IEEE Computer Society, 2011, pp. 257–266. isbn: 9780769544120. doi: 10.1109/LICS.2011.
38. uRl: https://doi.org/10.1109/LICS.2011.38.

[19] Tom Leinster. Basic Category Theory. 2016. arXiv: 1612.09375 [math.CT].
[20] J. M. Lucassen and D. K. Gifford. “Polymorphic Effect Systems”. In: Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’88. San Diego, Cal-
ifornia, USA: Association for Computing Machinery, 1988, pp. 47–57. isbn: 0897912527. doi: 10.
1145/73560.73564. uRl: https://doi.org/10.1145/73560.73564.

[21] SimonMarlow et al. “Haskell 2010 language report”. In:Available online http://www. haskell. org/(May
2011) (2010).

[22] Erik Meijer, Maarten Fokkinga, and Ross Paterson. “Functional programming with bananas, lenses,
envelopes and barbed wire”. In: Functional Programming Languages and Computer Architecture. Ed.
by John Hughes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 124–144. isbn: 978-3-540-
47599-6.

[23] RobinMilner. “A theory of type polymorphism in programming”. In: Journal of Computer and System
Sciences 17.3 (1978), pp. 348–375. issn: 0022-0000. doi: https://doi.org/10.1016/0022-
0000(78)90014-4. uRl: https://www.sciencedirect.com/science/article/
pii/0022000078900144.

[24] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML. Cambridge, MA,
USA: MIT Press, 1997. isbn: 0262631814.

[25] EugenioMoggi. “Notions of computation andmonads”. In: Information and Computation 93.1 (1991).
Selections from 1989 IEEE Symposium on Logic in Computer Science, pp. 55–92. issn: 0890-5401.
doi: https://doi.org/10.1016/0890-5401(91)90052-4. uRl: https://www.
sciencedirect.com/science/article/pii/0890540191900524.

[26] H. Nakano. “A modality for recursion”. In: Proceedings Fifteenth Annual IEEE Symposium on Logic in
Computer Science (Cat. No.99CB36332). 2000, pp. 255–266. doi: 10.1109/LICS.2000.855774.

[27] Simon L. Peyton Jones. The Implementation of Functional Programming Languages (Prentice-Hall
International Series in Computer Science). USA: Prentice-Hall, Inc., 1987. isbn: 013453333X.

[28] AndrewPitts.Nominal Sets and their Applications.https://www.cl.cam.ac.uk/teaching/
1314/L23/lectures/lecture-1.pdf. Accessed: 2023–05-09. 2013.

[29] Marc Pouzet. Lucid Synchrone, version 3. Research Report. Université Paris Sud Orsay ; Laboratoire
de Recherche en Informatique [LRI], UMR 8623, Bâtiments 650-660, Université Paris-Sud, 91405
Orsay Cedex, Apr. 2006. uRl: https://hal.science/hal-03090137.

[30] M Sheeran. RUBY-a Language of Relations and Higher Order Functions. Tech. rep. Technical report,
Glasgow University, 1986.

[31] Mary Sheeran. “Hardware Design and Functional Programming: a PerfectMatch”. In: JUCS - Journal
of Universal Computer Science 11.7 (2005), pp. 1135–1158. issn: 0948-695X. doi: 10.3217/jucs-
011-07-1135. eprint: https://doi.org/10.3217/jucs-011-07-1135. uRl:
https://doi.org/10.3217/jucs-011-07-1135.

[32] Sam Staton. “Instances of Computational Effects: An Algebraic Perspective”. In: 2013 28th Annual
ACM/IEEE Symposium on Logic in Computer Science. 2013, pp. 519–519. doi: 10.1109/LICS.
2013.58.

[33] Dario Stein. “Structural Foundations for Probabilistic Programming Languages”. PhD thesis. Uni-
versity of Oxford, 2021.

[34] Dario Stein and Sam Staton. Compositional Semantics for Probabilistic Programs with Exact Condi-
tioning. 2021. arXiv: 2101.11351 [cs.PL].

https://arxiv.org/abs/2201.10456
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/LICS.2011.38
https://arxiv.org/abs/1612.09375
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://doi.org/10.1109/LICS.2000.855774
https://www.cl.cam.ac.uk/teaching/1314/L23/lectures/lecture-1.pdf
https://www.cl.cam.ac.uk/teaching/1314/L23/lectures/lecture-1.pdf
https://hal.science/hal-03090137
https://doi.org/10.3217/jucs-011-07-1135
https://doi.org/10.3217/jucs-011-07-1135
https://doi.org/10.3217/jucs-011-07-1135
https://doi.org/10.3217/jucs-011-07-1135
https://doi.org/10.1109/LICS.2013.58
https://doi.org/10.1109/LICS.2013.58
https://arxiv.org/abs/2101.11351

	Introduction
	Motivation
	Existing Work
	Contributions
	Structure

	Combinational Circuits
	Hardware Description Describes Structure
	Hardware as an Effect of Synthesis
	Background on Category Theory
	Categorical Models of Combinational Circuits
	Combinational Circuit Language
	Types for comb
	Normalisation and Equational Theory
	Aside on Nominal Sets
	Categorical Semantics

	Synchronous Circuits
	Synchronous and Streaming Programming Languages
	What is the Later Modality?
	Streams
	Synthetic Guarded Domain Theory
	Background on the Topos of Trees
	Category Theoretic Perspective

	Later in Time
	Guarded Semantics

	Implementation
	Overview
	Parsing, Desugaring and Validation
	Dependency Analysis
	Type Inference
	Normalisation
	Verilog Extraction

	Evaluation of the Compiler
	Results
	Examples
	Blink Circuit
	Full Adder
	Ripple-Carry Adder
	4-bit Binary Counter
	Fibonacci Counter Circuit


	Conclusion
	Summary
	Future Work

	Appendix
	Proofs
	Generated Verilog
	Blink Circuit
	Full Adder
	Ripple-Carry Adder
	4-bit Binary Counter
	Fibonacci Counter Circuit



