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1 Introduction

The effectiveness of Reinforcement learning for Markovian tasks has been widely demon-

strated over the last decade [18]. Despite this, standard approaches to Reinforcement

Learning perform poorly at learning an optimal policy for tasks with sparse, non-Markovian

reward signals [14]. A policy is a probability distribution over the possible set of actions

for a given agent, with an optimal policy maximising the reward an agent receives. A

Markovian task is where the reward function only depends on the most recent action,

for example, if an agent has just moved from the stairs to the door in one step. There

are many real-world tasks that are both sparse and non-Markovian, specifically those

that require some sequence of sub-tasks to be completed before a reward is given. For

example, say the task is to exit the room but the key must be found first before going to

the door. In this case, the reward is non-Markovian as the agent must perform an action

to get the key before then performing an action to go to the door, at which point it is

rewarded.

Recently there has been a focus on creating new techniques to adapt existing Reinforce-

ment Learning methods to tasks with sparse, non-Markovian rewards. I will focus on

methods which use Linear Dynamic Logic on finite traces to express the task the agent

needs to complete to gain a reward. Within this, there are two main areas of focus.

First, methods that focus on using the Linear Dynamic Logic representation of the task

in order to learn an optimal policy. Second, taking an agent with no prior knowledge of

its task and learning the linear dynamic logic representation of the task by exploring its

environment. Both these techniques have had recent success and have been applied to

a range of single-agent settings, however, only the learning of an optimal policy given a

task has been applied to multi-agent settings.

In this report, I describe in Section 2 the type of agents we are going to consider, and

how they and their tasks are represented in both the single and multi-agent cases. Then,

in Section 3, I present an existing pipeline that learns tasks in the single-agent case. This

existing pipeline is used as the basis for my multi-agent approach.
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In Section 4, I propose, for the first time, how Linear Dynamic Logic representations of

tasks can be learnt in a multi-agent setting and show how they can be used to synthesise

optimal policies. I provide a list of assumptions on the multi-agent system that are

sufficient for the representations to be learnt, as well as providing extensions to my

technique that can allow my method to be applied to a wider range of tasks. Finally,

in Section 5, I demonstrate experimentally the success of my approach and compare its

performance on a range of different tasks.

1.1 Related Research

There are various approaches to efficiently learning optimal policies in settings with

sparse, non-Markovian reward signals. One such approach utilises Linear Dynamic Logic(LDL)

to assist in learning an optimal policy [3, 6, 9, 11–13, 15, 19]. The agent explores a Markov

Decision Process (MDP) guided by fulfilling an LDL property, often represented using a

Task Automaton (also known as a Reward Machine), which is a type of Deterministic

Finite Automata (DFA). This representation allows a non-Markovian task to be broken

down into a series of Markovian sub-tasks that are represented as transitions in the Task

Automaton (TA).

Recent work has extended this approach to multi-agent settings [16, 21], which greatly

increases the scope of problems that can be tackled using TAs. If we restrict our attention

to non-competitive multi-agent settings, Neary et al.[16] demonstrated that it is more

efficient to define a local TA for each agent, where the composition of these local TAs

is equivalent to the TA for the whole system, than to use the overall TA. A local TA

encodes only the part of the task that a specific agent contributes towards, allowing the

methods for learning optimal policies for single agents with non-Markovian rewards to be

efficiently applied to multi-agent settings.

In single-agent settings, a set of similar extensions have been developed where the agent

initially has no knowledge of the tasks and learns the TA through environment exploration

[1, 7, 20, 22]. This makes a wider range of problems tractable, specifically where the full
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task specification is not known by the human in advance.

Towards the end of writing this report, a paper which attempts to learn TAs for multi-

agent systems appeared online [4] . It uses inductive logic programming to learn sets

of local TAs from local observation sets, and this is demonstrated for two hand-picked

examples. They also combine their learnt local TAs with the method outlined in [16] to

learn an optimal policy. However, there is no attempt to justify or provide conditions for

the success of the algorithm on any example outside the two they considered. Secondly,

as they only focus on two simple examples it is unclear how their approach would work

when faced with the problems discussed in this report. Therefore it is not possible to

compare the theoretical advantages of one approach against the other. Also, the inductive

logic programming algorithm they use is demonstrated to have severe scalability issues

when learning complex TAs. Finally, their code is not yet available, and no run times

are given within the paper, thus it is impossible to experimentally compare my approach

against theirs. As a result of the inability to compare theoretically or practically, I will

not discuss this approach any further.

1.2 Contributions

The contributions of this master’s project are as follows:

• In Section 4, I adapt a pipeline outlined in [1] for learning TAs for single-agent

systems so that it can be used to learn local TAs for each agent in a multi-agent

system in parallel. The interleaving of these local TAs is equivalent to the global

TA for the entire system.

• I show that these learnt TAs can be used as part of the method first described in

[16] to synthesise an optimal policy for the multi-agent system.

• Throughout Section 4, I discuss how both the structure of the global task and the

communication between the agents impact if we can learn local TAs. I also provide

alternative formulations that could be used to solve some problems that my pipeline

cannot solve.
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• In Section 5, I demonstrate practically how the contributions in this work allow a

far wider range of multi-agent tasks to be solved in this way compared to existing

methods.

My contributions above solve previously unsolved problems in the literature, specifically

learning local TAs for multi-agent systems, and using learnt local TAs to learn an optimal

policy in a multi-agent system.

2 Setup

In a single-agent system, the agent’s interaction with an environment can be viewed

at multiple levels of abstraction. Usually, the agent’s dynamics within an environment

are modelled using a Markov Decision Process(MDP). In order to recognise higher-level

features of an environment a labelled MDP (see Definition 1) can be used. This uses a

set of atomic propositional variables from some alphabet of labels AP which have a truth

value at every state and is encoded using some labelling function L. Task specifications

are sequential compositions of the higher level features and can be encoded as a TA (see

Definition 2) which is a DFA that graphically represents the task that an agent needs to

complete in order to gain a reward. It is possible to combine the MDP and the TA into a

Product MDP (see Definition 4), if we assume the MDP and TA to be unknown then, as

shown in [1], this structure is analogous to a partially observable MDP (POMDP) (see

Definition 5). This then allows us to learn the transitions of the MDP, as well as the

unknown TA.

A multi-agent system can be modelled using a Markov Game, or when recognising higher-

level features of the environment a labelled Markov Game (See Definition 3), which is

an extension of the idea of a labelled MDP. A labelled Markov game can also have an

associated task specification that is encoded as a TA.
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2.1 Labelled Markov Decision Process

When considering a single agent in an environment with some non-Markovian reward

function we need to provide a way to model this agent. Specifically, we need to model

the states it can be in, the actions it can take in each state, along with the probability

a given action takes you from one state to another. Also, we need to specify a function

that returns the reward an agent will receive given its history of states and actions. It is

also necessary to have a set of possible higher-level features (also known as events) and a

mapping that labels each of the agent’s states with a set of these events. We can formalise

this into a labelled Markov Decision Process according to the following definition.

Definition 1. A labelled Markov Decision Process (MDP) is a tuple

M = (S,A, s0, P, R, γ,AP , L), where S is a finite set of states, A is a finite set of actions,

s0 ∈ S is the initial state, P : S × A × S → [0, 1] is the probability distribution for

transitions, R : (S ×A)+×S → R is a (non-Markovian) reward function, γ ∈ [0, 1) is the

discount factor, AP is a finite alphabet of atomic propositions (labels), and L : S → 2AP

is a labelling function.

A trajectory is the sequence of states and actions in our system (s0, a0, s1, ..., an−1, sn),

this is accompanied by a reward sequence (r0, r1, ..., rn) and a trace of labels (ℓ0, ℓ1, ..., ℓn),

where ∀t ≤ n. L(st) = ℓt. The task of the agent is to find some policy π that maximises

the expected value of the sum of discounted rewards Eπ[
∑∞

t=0 γ
trt].

In this work, I will focus on sparse reward environments, specifically tasks with a reward

sequence of (0, 0, ...., 1) where a non-zero reward is only achieved when the overall task

is completed. This is a non-Markovian reward function because it relies on the entire

state-action trajectory up to time t, whereas a Markovian reward function depends only

on the last transition.

Example 1. An example of the above is the grid world in Figure 1a . This has an RL

agent in an MDP environment, the task is to collect coffee Ò , take it to the couch é ,

turn on the TV � and then ascend the stairs . The carpet b and book [ do not

affect the agent achieving its goal. The arrow indicates the initial state[1].
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Figure 1: (a) The labelled MDP environment and (b) 5 state TA representing a task
specification for Example 1.

The MDP environment for Example 1 is in Figure 1a. Each square represents a state

belonging to S with s0 being the bottom left square. In this and all future grid world

examples, the set of actions A for an agent is to move into the adjacent up, down,

right and left squares. Thus the probability, defined by P , of moving from a square

to an adjacent square given the correct action is 1. If an agent attempts to do an

impossible action they will just remain where they are, this is equivalent to saying that

if an agent attempts to move to a different square via an incorrect action or move to

a non-adjacent square, then the probability of this transition is 0. The set of atomic

propositional variables AP = {Ò ,é ,b ,[ ,� , }, are the high-level features of

the environment, the states in the figure that are not explicitly labelled are labelled with

L(s) = ∅. An example trace is (∅, ∅, ∅, ∅,Ò ) which is the trace for the trajectory which

moves right to the coffee from the initial state. R is defined such that it is equal to 1

when the state action trajectory of the agent at that point has completed its task.

We consider tasks where the only reward is upon completion. Clearly, this example

cannot be expressed with a Markovian reward function over the original state-space, as

it is impossible to go between for example labels Ò and é in one-time step. Therefore,

when the agent is trying to learn an optimal policy in this example it would have to plan

using a memory of its previous states. This is where the labelling function comes in. To

avoid the ‘curse of dimensionality’, the agent can instead remember only the traces of the
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higher-level features, which allows the agent to keep track of the completion of sub-tasks

without having to keep a memory of the entire state-action trajectory.

2.2 Task Automaton

Linear Dynamic Logic, when restricted to finite trajectories(LDLf ) can be used to express

a specification for a task or a constraint on a plan. This is used to solve the problem of

sample inefficiency in non-Markovian RL environments. LDLf can be expressed as a DFA

[8] thus we will define a Task Automaton as a DFA that encodes the task specification

for our MDP.

Definition 2. A Task Automaton (TA) is a tuple A = (Q, q0,Σ, δ,F), where Q is

a finite set of states, q0 ∈ Q is the initial state, Σ = 2AP is a finite alphabet inherited

from the labelled MDP, δ : Q× Σ→ Q is a transition function and F ⊆ Q is the set of

accepting states.

A TA defines a task specification on labels for an agent. Each move in the MDP matches

a transition in the TA according to the label of the new state of the MDP. Therefore,

the state of a TA describes the progression of the agent through the task so far and thus

serves as the required ‘memory’ of state trajectories mentioned earlier. All labels not on

an outgoing edge are implicitly on a self-loop. The accepting states of the TA mark the

satisfaction of the specification which is when the agent will receive its reward. The TA

for the task specification in Example 1 is represented in Figure 1b.

2.3 Labelled Markov Game

In a multi-agent setting, we need a way to model all the agents in a given environment, we

can do this by defining a similar structure to an MDP that takes into account the fact that

we now have multiple agents. Unlike in an MDP, we need to describe how the transitions

of the agents are impacted by the transitions and states of the other agents. Also, we

must consider how the labelling function is defined as there is no longer a simple mapping

between individual states and labels, instead, we must define a labelling function on the
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combination of all the agents’ states. We will capture a set of agents in a multi-agent

environment using a labelled Markov Game as described below.

Definition 3. A labelled Markov Game is a tuple G = (I,S,A, P, R, γ,AP , L) ,

where I = {1, . . . , n} is a finite set of agents, S = S1 × ... × Sn is the finite set of joint

states where Si is the finite set of states for each agent i. A = A1 × ... × An is a finite

set of actions where Ai is the finite set of actions for agent i. P : S × A × S → [0, 1] is

the transition probability distribution. R : (S × A)+ × S → R is the reward function.

γ ∈ [0, 1) is the discount factor. L : S → 2AP is a labelling function.

A local policy πi : Si × Ai → [0, 1] is a probability distribution over state-action pairs,

that is at a time step t agent i is in state sti ∈ Si and the agent chooses action ati ∈ Ai

with probability πi(a
t
i|sti). The agent then transitions to a new state st+1

i ∈ Si with some

probability dependent on the states and actions of all other agents, and all agents receive a

reward rt = R(s0, a0, ..., st, at, st+1). The joint policy of all the agents is π = (π1, . . . , πn).

A trajectory is the sequence of states and actions in our system (s0, a0, s1, ..., an−1, sn),

this is accompanied by a reward sequence (r0, r1, ..., rn) and a trace of labels (ℓ0, ℓ1, ..., ℓn),

where ∀t ≤ n. L(st) = ℓt. Generally, the task of the agents is to find some joint policy

π that maximises the expected value of the sum of discounted rewards Eπ[
∑∞

t=0 γ
trt]. In

this work, I will focus on tasks with a reward sequence of (0, 0, ...., 1) where a non-zero

reward is only achieved when the overall task is completed.

Note that we are working within a cooperative setting, which is because all agents receive

the same reward. Also, note that they receive a reward at the completion of the global

task, so no agent is being rewarded for a subtask.

Example 2. Figure 2a is an example of the above. This has 2 agents in a labelled Markov

Game environment. There are two agents Red and Blue, the task is for Red to collect

coffee Ò , and take it to the red couch é . Then Blue needs to collect toast k and take

it to the blue sofa é , then one of the agents needs to turn on the black TV � , and

then finally they must meet at the green stairs . The arrows indicate the start states,

blue labels only appear when Blue is at that state, red labels only appear when Red is at
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Figure 2: (a) The labelled Markov Game environment and (b) 11 state TA representing
a task specification for Example 2.

that state, black labels can be accessed by either agent, green labels require both agents to

be at the state.

In example 2, the local states and actions for each agent are the same as the set of states

in example 1. In this particular example, the transition probabilities for each agent

are independent of each other and can be defined on their local states analogously to

in example 2. The overall transition probability function P is the product of the local

transition probability functions. R is defined as 1 only when the task has been satisfied

and AP = {Ò,é,k,é, ,�}.

2.4 Product MDP

We have defined both MDPs and TAs which are used to define an agent’s environment

and its progress through a given task. For the purposes of learning TAs, it is useful to

consider the product of an MDP without rewards and a TA. Intuitively you can see this

as an MDP but with each state labelled with the current TA state, then the transitions

between product states are only possible if there is a transition between MDP states for

that action and a transition between TA states for the label of the new MDP state.

Definition 4. Given an MDP without rewards M = (S,A, s0, P,AP , L) and a TA

A = (Q, q0,Σ, δ,F), the product MDP is the structureM⊗A = (S⊗,A, s⊗0 , P⊗, R⊗),
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where S⊗ = S × Q, s⊗0 = ⟨s0, q0⟩ is the initial state pair; P⊗ : S⊗ × A × S⊗ → [0, 1]

is the transition probability function, where P⊗(⟨sj, qj⟩ | ⟨si, qi⟩, ai) = P (sj | si, ai) if

qj = δ(qi, L(sj)) and 0 otherwise; and R⊗ : S⊗ × A × S⊗ → {0, 1} is a reward function

such that R⊗(⟨st, qt⟩, at, ⟨st+1, qt+1⟩) = χF(qt+1), where χF is the indicator function for

the set of accepting states in the TA. In other words, in the product MDP, a non-zero

reward is obtained if and only if the agent transitions to an accepting state of the product

MDP, i.e., those related to an accepting TA state [1].

2.5 Partially-Observable Markov Decision Process

When an agent with no knowledge of its task is exploring the environment then it has no

knowledge of its current product MDP state. All the agent observes is the current MDP

state and whether the agent has received a reward or not. Thus the full product state is

hidden, and the only observations are the rewards. We can model this in the following

way.

Definition 5. A Partially-Observable Markov Decision Process(POMDP) is a

tuple P = (S,A, s0, P, R, γ,O, Z) where (S,A, s0, P, R, γ) is an MDP, O is an observation

set, and Z : O × S → [0, 1] is the observation probability function, where Z(o|s) is the

probability that observation o ∈ O is seen when the agent is at the hidden state s ∈ S

[1].

Restricted to the cases we are considering, the observations are the rewards 0 or 1, and we

observe 0 with probability 1 when we are not in an accepting state of the TA. Conversely,

we observe 1 with probability 1 when we are in an accepting state of the TA.

3 Overview of Single Agent Learning Pipeline

Before considering multi-agent examples, I will present the existing algorithm for TA

learning in the single-agent case. The algorithm learns an MDP and a TA in completely

unknown environments. The pipeline is outlined in Algorithm 1 which was first presented

in [1].
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Algorithm 1 Learning a TA in an unknown labelled MDP
Input: put agent into an (unknown) labelled MDPM
Output: TA A ∗ that represents a task specification
1: ObsSeq ← collect episodes of corresponding trajectories, traces, and reward se-

quences.
2: function LearnProductMdp(ObsSeq) ▷ Step 1
3: Use a HMM/POMDP learning algorithm with ObsSeq to learn and return an

estimate of the transition probability distribution P̂π of the spatial MC M̂π.
4: Use a HMM/POMDP learning algorithm initialised with P̂ as an inductive bias

and trained with ObsSeq to learn and return an estimate of the transition
probability distribution P̂⊗ of the product MDP M̂ ⊗ Â .

5: function DistilTA(M̂ ⊗ Â ) ▷ Step 2
6: Determinise M̂ ⊗ Â using Cone Lumping method to return the MDP-restricted

TA ÂM̂

7: function PostProcess(ÂM̂) ▷ Step 3
8: Remove environmental bias and minimise ÂM̂

3.1 Step 1: Learn Product MDP

The agent’s interactions with the environment are fully modelled by an underlying prod-

uct MDP M⊗ A (Definition 4); however, as the agent explores the environment the

states of the product MDP are not fully observable. That is, the agent observes the

MDP states, the labels and rewards but not the TA states. Therefore, in order to

learn the product MDP the agent’s interactions with the environment are viewed as

a partially-observable Markov Decision Process (Definition 5) . Let the product MDP

M⊗A = (S⊗,A, s⊗0 , P⊗, R⊗), then the POMDP P⊗ = (S⊗,A, s⊗0 , P⊗, R⊗,O, Z). With

O = S × {0, 1} and Z : S⊗ → O. The intuition is that at each time step the agent

observes the current MDP state and also whether the task is completed or not. Thus all

the agent observes is the tuple (st, Z(s
⊗
t )). Where s⊗t = (st, xt) and Z(s⊗t ) = 1 if and

only if xt belongs to the accepting set of states in the underlying TA, and Z(s⊗t ) = 0

otherwise. Choosing some policy π induces a partially observable Markov chain P⊗
π , also

known as a Hidden Markov Model.

Many existing algorithms solve the problem of learning HMMs/POMPDs, in this pipeline

the Baum-Welch algorithm is used [5]. The Baum-Welch algorithm is used twice, first

to learn an estimate P̃ of the MDPs transition distribution. Then this is used as an
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inductive bias for learning an estimate of the transition distribution for the product

MDP P̃⊗. We can formalise the result of the Baum-Welch algorithm as the following:

(P̃⊗
π , Z̃) = argmax

(P⊗,Z)

Pr(O|(P⊗
π , Z)). This is the transition distribution for some product

MDP in the equivalence class [M⊗A ].

Two product MDPs [M1 ⊗ A1] and [M2 ⊗ A2] with the same action spaces A1 = A2

belong to the same equivalence class if they are observationally equivalent. They are

observationally equivalent if for any observation sequence, any action trajectory, and all

τ ∈ N, it holds that PrP
⊗
1 [(ot)

τ
t=0|(at)τt=1] = PrP

⊗
2 [(ot)

τ
t=0|(at)τt=1], where P⊗

i = (M⟩ ⊗

Ai,O, Z).

In summary, given state trajectories and reward sequences for an unknown product MDP

M⊗A the algorithm learns an estimate M̃⊗ Ã of some MDP in the equivalence class

[M⊗A ].

3.2 Step 2: Distill TA from a learnt product MDP

From step 1, the agent has both an estimate P̃ for the transition distribution and also the

digraph ofM⊗A . The first step is to use a fully mixed policy π to compute a product

Markov chain M̃π ⊗ Ã . If we label each edge in the digraph underlying M̃π ⊗ Ã with

the label of the MDP state then it results in an NFA whose accepting states are those

where a reward of 1 is obtained. An example of the NFA that is produced is in Figure 3

[1].

After the NFA has been constructed it can be converted into a DFA that will have the

same language as the TA A . 1Cone Lumping is used for constructing the DFA from the

NFA and was first proposed in [1]. Cone Lumping exploits the fact that any outgoing

transition from a state(s, q) ∈ S⊗ to (s′, q′) ∈ S⊗ in the underlying NFA that has the

same label as another outgoing transition from (s, q) ∈ S⊗ must be a transition to a
1In actuality there is a slight restriction here. The DFA we learn can only be the sub-graph of A

that is covered by traces that are attainable in the MDP. Thus the language of the learnt DFA is not
necessarily exactly the language of the full TA A but instead the language of the parts of A that are
accessible via the MDP. However, if a task specification includes inaccessible parts then it does not
matter if these parts are not learnt as they would never be used for synthesising an optimal policy.
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product state with the same TA state (s′′, q′) ∈ S⊗ . Cone lumping can determinise any

product MDP in the worst-case exponentially less time than the Rabin and Scott subset

construction method[1, 17]. It does so in O(|S⊗|3) compared to O(2|S
⊗|).

3.3 Step 3: Minimise the TA and remove Environmental Bias

Some learnt TA A ’ may not necessarily be a minimal TA. Standard methods for min-

imising DFAs can be used such as Hopcroft’s algorithm [10]. However, it is also possible

that the TA A ’ is not minimal due to environmental bias. Environmental bias is when a

learnt TA A ’ contains a label that is not necessary for the completion of the task, i.e. it

is not present at that position in the actual TA A . This can occur when even though the

label isn’t necessary to fulfil the task specification it is impossible to complete the task

without encountering this label. For example, say an agent needs to get to a state with a

label Ò but all the surrounding states are labelled with [. The algorithm learning the

TA cannot tell the difference between the importance of Ò and [, thus the algorithm

assumes [ is part of the task specification as it always appears directly before Ò in any

trace that leads to a reward.

This can be somewhat overcome by a post-processing step. In this step, many TAs A ’

such that M⊗A ’ ∈ [M⊗A ] are considered. Then the TA that requires the smallest

alphabet is chosen. This is done by considering each possible label l and guessing that it

is irrelevant to the true TA A . Then merge any states in A ’ that have an l transition

between them. Then check if this resultant TA still returns the correct output on all the

traces in the observation sequence. If so we know the label can be removed. This step

only works to remove labels that are irrelevant to the entire TA and does not work on

labels that are necessary somewhere in the TA and irrelevant in other places.
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Figure 3: A simple MDP (a) and TA (b). (c) The NFA underlying the product MDP
constructed from this MDP and TA under a fully mixed policy π. MDP states S are
labelled syx (for x, y ∈ {0, 1, 2}) corresponding to the horizontal (x) and vertical (y) cell
position in Figure 3a’s grid.
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4 How to extend to Multi-Agent Settings

The simplest method for extending the TA learning algorithm to a multi-agent setting

involves modelling it as if there was only one agent. This is achieved by encoding the

transition probabilities of each individual agent into a product transition probability, in-

ducing a Markov chain M that represents the states of all the agents, and estimating the

product MDPM⊗A . However, there are several issues with this approach. Firstly, the

size of the learned TA can be relatively large. For instance, in Example 2 the complexity

of the TA is high. This is a significant concern because, as demonstrated in [1], the TA

learning algorithm’s scalability is affected by the size of the TA being learned, experi-

mentally it scaled exponentially with the size of the TA. Secondly, this approach assumes

that all agents are controlled by a single entity and that all agents see all labels. This

assumption is not always valid, as the ways agents communicate and share information

differ depending on the example. Finally, the ability to parallelize the learning of the

product MDP or TA is limited since everything is treated as a single unit. As a re-

sult, this greatly increases the algorithm’s run time, particularly for examples with many

agents. Therefore, it is clear that an alternative method of learning TAs in a multi-agent

setting is necessary. In particular, a new method is required that more carefully considers

the differences between single and multi-agent problems.

4.1 Outline of Multi-Agent Adaptation

The proposed approach involves the splitting of the learning of task automata (TA) for

a multi-agent system. Instead of learning a TA for the whole system, a TA is learned

for each individual agent. These individual TAs can be combined in a specific way to

represent the TA for the global system. This approach can be seen as an improvement

on the one presented in [16], where TAs for each agent are used to satisfy the global

task specification. However, the focus of our method is on learning the TAs, rather

than designing them, which removes the need for prior knowledge of the global task and

reduces the cost of manual decomposition.
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Figure 4: Environment and TA for the 3-buttons task. There are three agents A1, A2

and A3 and there are three buttons YB, GB and RB. The task and possible events is
shown by the TA.

(a) Local TA for agent A1 with alphabet
{YB, RB,Goal}

(b) Local TA for agent A2 with alphabet
{YB, GB, A

RB
2 , A¬RB

2 }

(c) Local TA for agent A3 with alphabet
{GB, RB, A

RB
3 , A¬RB

3 }

Figure 5: A set of local TAs, one for each agent given a local alphabet for each agent.
This set of local TAs is equivalent to the global TA when combined and thus can be used
to synthesise optimal policies.

In the approach presented in [16], a human is required to select the TAs for each agent

based on a priori knowledge of the global task. For example, consider the environment

and TA in Figure 4.

An example of a set of local TAs that could be chosen, such that their combination (the

way to combine is via interleaving which will be discussed in Section 4.4) represents the

global TA, is given in Figure 5.

In contrast, our approach leverages Algorithm 1 that can learn a TA for an agent in a

single-agent setting using trajectories, traces, and reward sequences. For a multi-agent

system, each agent is assigned a set of trajectories, traces, and reward sequences, from

which a product MDP for the agent is learned. A TA that represents the behaviour of
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the agent in the system can then be extracted from this.

By combining the TAs of all agents, the behaviour of the global system can be represented.

With the proposed approach, the need for manual intervention is reduced, and learning

TAs for multi-agent systems with limited prior knowledge of the proposed task becomes

possible.

4.2 Local Trajectories, Traces and TAs

The first choice to be made is to decide what trajectories, traces and reward sequences

we will use when learning the local TA for each agent.

In a naive approach, we can define a local TA for agent j as Aj = (Qj, q
0
j ,Σ, δj,Fj)

where Σ = 2AP . Say we have n agents, t time steps, and a state-action trajectory

((s01, . . . , s
0
n), (a

0
1 . . . , a

0
n), (s

1
1, . . . , s

1
n), . . . , (a

t
1, . . . , a

t
n), (s

t
1, . . . , s

t
n)). We can then define

the local trajectory for agent i as (s0i , a
0
i , s

1
i , ..., a

t
i, s

t
i), which is the sequence of states

and actions where we take only the component of the global state or action vector that

corresponds with our chosen agent. Thereby ignoring the states and actions of the other

agents. In this naive approach, the local trace and the local reward sequence are the

same as the global trace and global reward sequence respectively.

However, running the TA learning pipeline on local trajectories, traces, and reward se-

quences would result in each agent learning the full global TA, with only a small advantage

over the simplest method of modelling the entire multi-agent system as if it was a single

entity. Each agent observes all the labels, so when extracting a TA from the traces, it will

extract a TA that includes all the labels necessary for the completion of the global task,

which is global TA. Additionally, the assumption that each agent’s local trace is identical

to the global trace requires a global method of communication, which may not be feasible

in situations with limited communication between agents. Thus, an alternative method

is needed to address these issues.
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4.3 Local Alphabets

An alternative approach when defining what traces, trajectories and reward sequences we

use when learning a TA is to allow us to restrict the set of labels a given agent observes.

We can then choose this set to be only the labels necessary for agent i to successfully

complete its part of the task or some superset of this. So long as we can accept, for now,

the assumption that we know of at least some labels that are not relevant for particular

agents then this approach can reduce the size of learnt TAs.

Formally, for each agent i we define a local alphabet AP i which leads to a local set of

labels 2APi = Σi ⊆ Σ. We define the local trace for agent i to be (ℓ0i , ℓ
1
i , ..., ℓ

n
i ) where

(ℓ0, ℓ1, ..., ℓn) is the global trace and ℓji = ℓj ∩ AP i.

We can use these local traces to learn a local TA for each agent, let’s say the local TA

for agent i is Ai = (Qi, q
0
i ,Σi, δi,Fi).

4.4 Conditions on Local TAs Necessary for Multi-Agent Q-Learning

Algorithm

Our algorithm aims to learn a set of local TAs that can be used to synthesise an optimal

policy using the method proposed in [16]. The learnt TAs must satisfy the conditions for

any set of local TAs to be able to be used to learn an optimal policy, the conditions were

first outlined in [16] . Assuming we have learned a set of local TAs, I will describe each

condition and present the theorem.

Firstly, to ensure that each agent satisfying its own local TA leads to the global task

being satisfied we want our local TAs to capture the same task as the global TA when

combined. We must define a way of combining local TAs, in the original work [16]

the parallel composition of TAs was used. I propose a more general approach called

interleaving that, unlike the original, allows for multiple events to occur at a given time

step.2

2Interleaving and parallel composition are identical if each label is only a singular event, interleaving
allows for labels that are sets of events. Interleaving does not impact the validity of Theorem 1 as the
assumption that only one event occurs at a particular time step is not used in the original proofs in [16].

21



To interleave a set of TAs means each interleaved state is a product of the states of the

local TAs. The initial interleaved state is the product of the initial state for each local TA.

Transitions occur between two interleaved states if, for a given label l and each local TA

A that has a subset l′ of the events in l in its label set, there was a transition labelled l′

between the two local states for A that are in the interleaved states. The set of accepting

states in the interleaved TA is the cartesian product of the accepting states of each of

the local TAs.

An illustrative example of the interleaving of two TAs is given in Figure 6.

Definition 6. An Interleaving of a set of TAs {A1, . . . ,An} is defined as a TA A =

(Q, q0,Σ, δ,F) where:

• Q = Q1 × . . .×Qn

• The initial state q0 = (q01, . . . , q
0
n)

• Σ = 2AP1∪...∪APn

• Let qk = (qk11 , . . . , qknn ) then δ(qk, σ) = (qj11 , . . . qjnn ), where qjii = qkii if (σ∩AP i) /∈ Σi

and if (σ ∩AP i) ∈ Σi we have that δ(qkii , σ ∩AP i) is defined, then qjii = δ(qkii , σ ∩

AP i), and we require that
⋃n

i=1 σ ∩ AP i = σ, otherwise, δ(qk, σ) is undefined

• qk ∈ F ⇐⇒ ∀i.qki ∈ Fi

We desire the TA produced by interleaving to represent the global task of the entire

system, this is equivalent to saying it recognises the same language as the underlying

global TA. This is the case if the two TAs are bisimilar. Bisimilarity means that we

can come up with some relation between the states of two TAs such that the initial

states are related, and accepting states are related to all and only other accepting states.

Furthermore, if a transition exists between two states in one TA, then a transition with

the same label must occur between two states in the other TA, with each state in the

transition related to the equivalent state in the transition in the first TA. This means the

two TAs recognise the same language and have a similar structure.
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Figure 6: (a) is a TA with alphabet {k, é, �} and (b) is TA with alphabet {é, Ò}.
(c) is the interleaving of (a) and (b)
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Figure 7: (a) and (b) are bisimilar under the following relation ∼ = {(q0, s0), (q1, s1),
(q2, s2), (q3, s3), (q3, s4), (q4, s5), (q4, s6), (q5, s7), (q5, s10), (q6, s8), (q7, s9), (q7, s11)}

We can see a simple example of two bisimilar TAs in Figure 7, which demonstrates how

two TAs of differing size and structure can represent the same language. It also illustrates

how the learnt TAs may not necessarily interleave to a minimal TA describing the task,

but this is not a concern as we never directly use the interleaved TA we just require it to

meet certain conditions. The formal definition of bisimilar is as follows.

Definition 7. Two TAs A1 = (Q1, q
0
1,Σ, δ1,F1) and A2 = (Q2, q

0
2,Σ, δ2,F2) are bisimi-

lar denoted A1
∼= A2 if there exists a relation ∼⊆ Q1 ×Q2 such that :

• q01 ∼ q02

• For every q1 ∼ q2, q1 ∈ F1 if and only if q2 ∈ F2
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• If δ1(q1, σ) = q′1 for some σ ∈ Σ, then there exists q′2 ∈ Q2 such that δ2(q2, σ) = q′2

and q′1 ∼ q′2

• If δ2(q2, σ) = q′2 for some σ ∈ Σ, then there exists q′1 ∈ Q1.δ1(q1, σ) = q′1 and q′1 ∼ q′2

We also require that all the agents agree on the state of the higher-level features of the

environment at any given time. This can be captured by ensuring our labelling function

is decomposable.

Definition 8. A labelling function L : S → Σ is considered decomposable with respect

to local alphabets AP1,AP2, . . . ,APn, and local label sets Σi = 2APi , if there exists a

collection of local labelling functions L1, L2, . . . , Ln with Li : Si → Σi such that L(s)

outputs event e ∈ AP if and only if Li(si) outputs label e for every Li such that e

belongs to the local alphabet of agent i.

Finally, it must be the case that all labels necessary for the completion of the task are

attainable when each agent has been given its restricted alphabet. That property is

captured by ensuring each label is in the local label set of each of its agents from some

controlling set. As outlined in the following definition.

Definition 9. A label l ∈ Σ is controlled by a set of agents Cl ⊆ I if for all combinations

of local states of agents not in Cl, {qjk|∀k ∈ I \Cl.qjk ∈ Qk} there exists some set of states

for the agents in Cl, {qik|∀k ∈ Cl.qik ∈ Qk} such that L(q) = l where q = (q1, q2, . . . , qn)

, qk = qik if k ∈ I and qk = qjk otherwise.

Given the informal description of the conditions for this theorem I will now state it

formally, full justification is given in [16].

Theorem 1. Given a labelled Markov Game G = (I,S,A, P, R, γ,AP , L), a global TA

A = (Q, q0,Σ, δ,F) that encodes the task for G, and a set of local TAs {A1, . . . ,An}

where Ai = (Q⟩, q
0
i ,Σi, δi,Fi). An optimal policy for the labelled Markov Game G can be

learnt using just the local TAs if:

• The Interleaving (see Definition 6) of the set of local TAs {A1, . . . ,An} is bisimilar

(see Definition 7) to the global TA A
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• The labelling function L is considered decomposable with respect to the local alpha-

bets {Σ1, . . . ,Σn} (see Definition 8)

• For each label l that is necessary for the completion of the task, l ∈ Σi for all the

agents i ∈ C, in at least one of l’s controlling sets C (see Definition 9)

4.5 The Learnt TAs

In this section, I propose a way in which we can learn a set of TAs that meet the conditions

in Theorem 1.

Proposition 1. Given a labelled Markov Game G and a global TA A (or a modification

on this global TA discussed in Section 4.6). Assume there exists a decomposition into a

set of local TAs such that the decomposition satisfies the conditions in Theorem 1. Then

if we assign to each agent i a local alphabet ˜AP i, we can get the local traces for each agent

as defined in Section 4.3, and the local trajectories and reward sequences as defined in

Section 4.2. Then if we use these in conjunction with the TA learning algorithm outlined

in Algorithm 1, we can learn a set of local TAs that together meet the conditions in

Theorem 1, therefore can be used to learn an optimal policy using the algorithm in [16].

Proof. For agent i, given a local alphabet AP , and sets of local traces, trajectories, and

reward sequences we can use Algorithm 1 to learn a TA Ai for the task encoded by Ai.

Ideally, we would want L(Ai) = L(Ãi), however, this is not always the case as discussed

in Section 3.3. How to handle the case where L(Ai) ̸= L(Ãi) is discussed in Section 4.6.

Assuming we have, if necessary, undertaken the steps in Section 4.6, we can assume each

of our learnt TAs Ãi accepts the same language as Ai. Then by Lemma 1 the interleaving

of {Ã1, . . . , Ãn} is bisimilar to the global TA.

We have already assumed that the labelling function L is decomposable with respect to

the local alphabets that we have used for the learnt TAs. Therefore this condition is met.

Finally, we also assumed that each label belonged to all the local label sets of the agents

in at least one of its controlling sets. So this condition is also met.
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Therefore the learnt TAs meet all the conditions in 1.

As part of the proof we need to show that the interleaving of the learnt local TAs,

assuming they have the same languages as the underlying local TAs, is guaranteed to be

bisimilar to the global TA, which is shown with the lemma below.

Lemma 1. If a set of TAs {Ã1, . . . , Ãn} each have the same language as another set of

TAs {A1, . . . ,An} , meaning for all i we have L(Ãi) = L(Ai), and the interleaving of set

of TAs {A1, . . . ,An} is bisimilar to some TA A . Then the interleaving of the set of TAs

{Ã1, . . . , Ãn} is also bisimilar to the TA A .

Proof. Let Ã be the interleaving of the set {Ã1, . . . , Ãn}, and let A ′ be the interleaving

of the set {A1, . . . ,An}.

Given TAs are DFAs, two TAs have the same language if and only if they are bisimilar to

each other. Thus L(A ) = L(A ′) as A is bisimilar to A ′. If we can show L(A ′) = L(Ã ),

then it follows that L(A ) = L(A ′) = L(Ã ), and then we could say A is bisimilar to Ã .

It is clear from the definition of interleaving that for any TA T , where T is the interleaving

of a set of TAs {T1, . . . , Tn} and a sequence of labels ℓ1ℓ2 . . . ℓm, that ℓ1ℓ2 . . . ℓm ∈ L(T )

if and only if for all i, we have that ℓ1i ℓ
2
i . . . ℓ

m
i ∈ L(Ti), where ℓji = ℓj ∩ AP i, and for all

j we have that
⋃n

i=1 ℓ
j
i = ℓj.

Thus the accepting language of an interleaved TA depends only on the languages of the

set TAs in the set used to create it. Thus if the languages L(Ai) = L(Ãi) for all i, then

L(A ′) = L(Ã ).

Therefore, Ã is bisimilar to A .

It is clear a wide variety of tasks can be decomposed in this way, for example, if an agent

has an independent subtask within the global task this can be captured with appropriate

local alphabets. Similarly, sequences of tasks with different relevant label sets could be

decomposed like this. It is also clear that if a task involves synchronisation by a particular

set of agents at a given label it is easy to capture this by assuring that this label is in the
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Figure 8: (a) An 8-state local TA for Red and (b) An 8-state local TA for Blue.

alphabets of those agents. In fact, any task can be decomposed like this if we give each

agent the global alphabet as its local alphabet, but clearly in this case each agent would

just learn the global TA. Thus there is no benefit in tasks where every agent needs to

observe all labels in order for the global task to be complete. Example 3 demonstrates a

simple example where there the local TAs are significantly smaller than the global TAs.

Example 3. It is evident from figure 2b that a simple Markov Game can have a very

large TA, we can imagine a local TA for each agent as follows, say that agent Red has a

TA limited to the red labels, black labels, green labels and the blue couch. Similarly Blue

has a TA limited to blue labels, black labels, green labels and the red couch. Then we

would get the local TA in figures 8a and 8.

4.6 Attainable TA

As discussed in Proposition 1 and outlined in Section 3.3, one of the potential issues with

using Algorithm 1 to learn the TAs is that it can be the case that extra labels can appear

in the learnt TA, that are not necessarily in the underlying TA. This happens when a

label l is necessary for some part of the TA, and then in another part of the TA, there is

another label that only appears in traces after the label l. It could be that this l is not

necessary for the completion of the task and thus is not present in the underlying TA,

but in the learnt TA this l transition will always be present as it appears in that position

in all traces that receive a reward. When the l is not present in the underlying TA at

all then we can remove it from the learnt TA using post-processing steps as discussed in
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Figure 9: (c) is a Grid world where Ò is only accessible by first encountering b . (a) Is
the true underlying TA whilst (b) is the learnt TA due to the fact that b always appears
directly before Ò in any trace, even though it isn’t in the underlying TA

3.3, but if it is present in some other part of the TA then this isn’t possible. A simple

example of an environment and task where this is the case can be seen in Figure 9.

This means that our learnt TAs won’t necessarily have the same languages as the under-

lying TAs, however, this doesn’t stop us from learning an optimal policy. First, consider

the following definition.

Definition 10. A trace, ℓ1ℓ2 . . . ℓn, is considered Markov Game-attainable (or simi-

larly MDP-attainable) for a labelled Markov Game (or labelled MDP), G, if there is

some state-action trajectory, (s1, a1, s2, a2 . . . , an−1, sn), such that for all i, L(si) = ℓi and

P (si|ai−1, si−1) > 0. Define the function α(G, ℓ1ℓ2 . . . ℓn) as follows:

α(G, ℓ1ℓ2 . . . ℓn) =


1 if ℓ1ℓ2 . . . ℓn is Markov Game-attainable with respect to G

0 otherwise

In the example in Figure 9, all attainable traces have b before they have Ò . So (∅,∅,Ò)

is not MDP-attainable whereas (∅,b, Ò) is MDP-attainable.

Therefore we can define the following TA, based on the idea of attainable traces:

Definition 11. Given a TA, A , its language, L(A ), and a labelled Markov Game (or

MDP), G the attainable-TA, A α, is a TA such that t ∈ L(A α) if and only if t ∈ L(A )
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and α(G, t) = 1.

3

The global attainable-TA and the local attainable-TAs are the TA that we actually learn

by applying the algorithm for TA learning. For the example in Figure 9a the local

attainable-TA is in fact the TA in Figure 9b. Using these TAs for optimal policy learning

instead of the actual underlying TA does not have an impact as the same attainable traces

are accepted in both TAs. Therefore it is acceptable in the case that the attainable-TA

is different to the true underlying TA to instead aim to learn a set of local TAs where

their interleaving is bisimilar to the attainable-TA.

By using the attainable-TA we avoid the case where the TA-Learning algorithm for local

TAs does not learn a TA with the correct language, thus we can be certain our method

works for these examples.

4.7 Decomposable Labelling function

In Definition 8 for decomposable, it says that local labelling functions Li must exist. This

is a necessary condition for the successful use of the Q-Learning algorithm in [16]. Also,

this is necessary for the TA learning algorithm we employ. As it learns a product MDP

which relies on the labelling function being an injective mapping from states to labels.

There are many examples where the local alphabets don’t lead to properly defined local

labelling functions. For example, say we have agents 1 and 2, we could have the trajectory

((s01, s
0
2), (a

0
1, a

0
2), (s

0
1, s

1
2)) and trace (A,B). Then if we restrict to the local case with local

label set{A,B} for agent 1, we get a local trajectory (s01, a
0
1, s

0
1) and a trace (A,B). We

can see from this that in the local case, agent 1 doesn’t change state but has a different

label at each time step. Therefore we cannot define a local labelling function. This is

illustrated in Figure 10.

3In general the subset of a regular language is not always regular, but for the tasks we are considering
this is always true. Hence why we can define a TA for the attainable language.
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Figure 10: Consider the local traces for a local alphabet of {Ò,k} with this series of
positions for Red and Blue. It illustrates the problem outlined in this section

Many simple examples lead to impossible local labelling functions. However, there is a

systematic way to overcome this.

1. Firstly identify all the labels, {ℓ1, ℓ2, . . . , ℓm}, that agent i sees when it is in state

sji at different time steps.

2. For each ℓk ∈ {ℓ1, . . . , ℓn}, create a new state sjℓki .

3. Then in the Markov Game, for all states where L((s1, . . . , s
j
i , . . . , sn)) ∩ AP i = ℓk

replace sji with sjℓki . Do this for each label ℓk ∈ {ℓ1, . . . , ℓn}.

4. Repeat the above 3 steps for every state for every agent.

If we consider this approach applied to the example we used to illustrate the problem

then we get the following trajectory: ((s0A1 , s02), (a
0
1, a

0
2), (s

0B
1 , s12)) and the trace is still

(A,B). If we once again consider {A,B} as the local label set for agent 1, we get the

local trajectory (s0A1 , a01, s
0B
1 ) and local trace (A,B). Clearly, the local labelling function

is now well defined as we have different states at each time step and different labels.

In practice, the only labels that need to be considered are the labels that appear in more

than one alphabet. We can identify the labels by exploring the environment and recording

all the observed labels for each state and applying the above method where there is more

than one for a given local state. This does increase the size of the MDPs we are trying

to learn. As we have an extra state for each occurrence of this problem.
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4.8 Agent Communication

When designing multi-agent systems, considering the communication protocol used by

the agents is crucial. Algorithm 2 requires certain assumptions to be met for successful

learning of local TAs. These assumptions include that each agent is only aware of its own

MDP states and only observes labels that are in its own local label set.

We can split the local label set into two sets. One is the labels that result from a given

agent’s actions, meaning the agent belongs to one of the label’s controlling sets. These

labels are directly observed by the agent and no communication is required to see these.

The other is the labels that belong to the local label set of an agent but are not controlled

by the agent. The agent won’t directly observe these thus some communication is required

in order for the agent to observe them.

To enable all agents to observe the labels in their local label sets that they don’t control,

we must assume the following communication occurs:

1. For each agent i, consider its local alphabet AP i.

2. For each other agent j, take the intersection AP i ∩ APj.

3. Whenever agent i observes an event e ∈ AP i∩APj it then communicates that this

event has occurred to agent j .

Any communication protocol that respects the above assumptions would allow Algorithm

2 to succeed. For instance, if there is a global controller, each agent can report all their

observations to this controller, which can then send messages to the relevant agents when

an event occurs that is in their respective alphabets. Optimal communication protocols

can be designed for different examples so long as they meet the conditions above.

4.9 Multi-Agent TA Learning Algorithm

Taking the idea of using local alphabets, an algorithm for learning local TAs for a labelled

Markov Game is presented in algorithm 2.
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Algorithm 2 Learning a set of local TAs in an unknown labelled Markov Game
Input: put as set of agents into an (unknown) labelled Markov Game G
Output: A set of TAs {A ∗

i |i ∈ I} where I is the set of agents, such that their inter-
leaving represents a task specification

1: ObsSeq ← collect episodes of corresponding trajectories, traces, and reward se-
quences from the Markov Game.

2: LocalObsSeq← using the local alphabet for each agent process ObsSeq to create
the local trajectories, traces and reward sequences for each agent.

3: for Agent i ∈ I do
4: function LearnProductMdp(ObsSeq) ▷ Step 1
5: Use a HMM/POMDP learning algorithm with LocalObsSeq to learn and

return an estimate of the transition probability distribution P̂π of the spatial MC
M̂π.

6: Use a HMM/POMDP learning algorithm initialised with P̂ as an inductive
bias and trained with LocalObsSeq to learn and return an estimate of the
transition probability distribution P̂⊗ of the product MDP M̂ ⊗ Â .

7: function DistilTA(M̂ ⊗ Â ) ▷ Step 2
8: Determinise M̂⊗Â using Cone Lumping method to return the MDP-restricted

TA ÂM̂

9: function PostProcess(ÂM̂) ▷ Step 3
10: Remove environmental bias and minimise ÂM̂

4.10 Local Reward Functions

Another approach we can take, in addition to the above, is to consider an alternative

definition of reward function where rather than having a reward that is identical for

all agents, we define Ri : (S × A)+ × S → R as the local reward function for each

agent i. Then the overall goal is to maximise the expected sum of all the local rewards,

Eπ[
∑∞

t=0 γ
t
∑n

i=1 r
t
i ]. With this approach, we could then assume our reward function is

designed such that each agent gets a reward of 1 when it has completed its part of the

task. Then when we attempt to learn the local TA using this local reward function we

will only learn a TA with labels that appear before achieving the reward of this agent

and should ignore any labels that appear after.

It is clear that we will only learn smaller TAs in cases where at least some agents have

local tasks that they get a reward before the final agent is rewarded, if all agents get a

reward at the same time then all agents will have the same TA as in the case where we

do not have local reward functions.
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This kind of task is still compatible with the method in [16] thus learnt TAs will still

be able to be used to learn an optimal policy. Additionally, the only changes required

to Algorithm 2 is that each agent now receives its local reward sequence rather than the

global one.

5 Experimental Results

In this project, I have proposed a novel approach for learning both TAs and MDPs for

individual agents in a multi-agent system. To evaluate the effectiveness of this approach,

I will conduct a series of experiments on tasks with varying degrees of complexity, agent

numbers, and grid sizes.

To the best of my knowledge, this is the first attempt to simultaneously learn TAs and

MDPs for individual agents in a multi-agent system. While there is one existing approach

[4] for learning TAs in multi-agent systems, I was unable to obtain the code, making

it difficult to benchmark my work against existing methods. As a result, I will provide

benchmarks for a range of tasks to demonstrate the effectiveness of the algorithm, compare

it to the naive approach of learning a global TA, and discuss insights gleaned from the

experiments.

Specifically, I will examine the scalability of the algorithm, the effectiveness of learning

TAs with low-probability events, the potential advantages of this method with regard to

transfer learning and the impact of using local reward functions rather than global ones.

By exploring these topics, I hope to shed light on the strengths and weaknesses of the

proposed approach and provide a foundation for future research in this field.

5.1 Setup

The environments for the main examples we will consider are the grids in Figure 11.

Initially, for each grid, we will attempt to learn TAs for the two global tasks in Figure

12. The grid worlds all share the same set of events AP = {Ò,k,é,b}, which have

been distributed at random across the grid.
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Figure 11: Illustrations of the grid worlds used in the experiments. The agents always
start in the top left-hand corner of the grid. Blue (or Red) labels only occur when the
Blue (or Red) agent is at that cell. Green labels occur when both agents are in the cell.
Black labels occur when any agent is in the cell

For each experiment, the agents first collect a set of traces, trajectories and reward se-

quences by exploring the grid uniformly at random. Then step 2, which can be completely

parallelised, is to learn the product MDP M⊗A for each agent. These two steps were

implemented in C++, and the rest of the pipeline is implemented in Python. Steps 3

and 4 extract the DFA underlying the product MDP and remove any environmental bias,

these two steps combined take less than 1s for all the experiments that were undertaken

and thus will not be considered any further in the analysis of the running time. Instead,

this analysis will focus on the runtime of the learning of the product MDPs. Specifically,

we will measure the run time in terms of the maximum run time out of the n agents due

to the fact that the learning of each of the agent’s product MDPs can be done in parallel.

All experiments are an average of 3 runs and were carried out on an Intel i7-8565U CPU

(1.8 GHz x 8).

5.2 Performance on Tasks and Learnt TAs

Both the proposed method and the naive method were run on the Tasks outlined in Figure

12 for each grid in 11. For the runs of Algorithm 2 Agent 1 (Red) was given the alphabet

AP = {Ò,é,b} and Agent 2 (Blue) was given the alphabet AP = {k,é,b}. Thus

the assumed knowledge of this task a priori is only that Agent 1 is not interested in
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Figure 12: Two different TAs for the environments in Figure 11
. {k,Ò} stands for when we get both events at the same time. Any event that does

not appear as a transition can be considered a self-loop.

q0start q1 q2
Ò é

(a)

q0start q1 q2
k é

(b)

Figure 13: The learnt TAs for agents 1 and 2 for the Task in Figure 12a.

k and that Agent 2 is not interested in Ò. For the naive approach, which is a direct

application of Algorithm 1 where the product of the agents’ states is used as the states

in the MDP, there is no a priori knowledge of the task.

Algorithm 2 learnt correct local TAs for both tasks for all 3 grids, the exact run times

are presented in Table 1. The learnt TAs for Task 12a are presented in Figure 13 and the

learnt TAs for Task 12b are presented in Figure 14.

The naive approach timed out on all 3 grid sizes for both examples, specifically, it was

unable to converge within 3 hours. This provides clear evidence for the utility of my

proposed algorithm, as it is able to learn TAs for tasks that current methods fail to

converge for.

q0start q1 q2
Òé

(a)

q0start q1 q2
ké

(b)

Figure 14: The learnt TAs for agents 1 and 2 for the Task in Figure 12b.
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In these examples we have learnt 3 state TAs for each agent, however, the run times are

comparable with those for learning 4 state TAs using Algorithm 1 in the single agent

setting. This is because even though we are learning a 3-state TA for each agent, the

DFA underlying the product MDP is, in fact, a 4-state DFA that is then simplified to

a 3-state TA in post-processing. This is necessary for the examples we have considered

because of the kind of traces that we observe. Consider the global trace (∅, é, ∅, ∅, Ò,

∅,k) for the task in Figure 12b. Then the local trace for agent 1 is as follows (∅, é, ∅,

∅, Ò, ∅,∅) but the reward sequence is (0, 0, 0, 0, 0, 0, 1). This means that Agent 1 doesn’t

get a reward immediately after seeing Ò, instead it receives a reward after being in some

other state with no label. Thus the DFA underlying the product MDP will include a

transition into the accepting state from some empty label. This then does not allow us

to extract the correct TA.

We can alleviate this issue by introducing an extra state into the TA underlying the

product MDP. This extra state effectively represents a state where we are waiting for

the other agent to do its part of the task. We transition into this state after seeing Ò,

and then can transition out of it into the accepting state after moving to and from any

combination of MDP states. Then when extracting the TA from the NFA it is easy to

identify this state as meaningless to the task of Agent 1 as we can move out of it into

the accepting state at any time. Thus we can reduce it to the 3-state TA we would like.

Similar reasoning is why Agent 2’s underlying TA is also of size 4 rather than 3.

This need to have a larger underlying TA than our TA is only a runtime issue, the

existing algorithm for learning TAs already has to guess the size of the underlying TA

until it successfully extracts a TA that describes the language of accepting traces. So no

alterations to the algorithm need to be made to account for this case.

5.3 Scalability

As is clear from the results in Table 1 the time taken to learn the local TAs can increase

exponentially with the number of MDP states for each agent. Unfortunately, this is due
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Table 1: Parameters and results for Experiment 1, where the maximum time for conver-
gence out of the two agents for the Baum-Welch algorithm over three runs was measured
for varying grid-world and TAs.

Grid size Task Episode
Length

No. Episodes Convergence
Time (s)

3× 3 a 70 275 451.3
3× 3 b 70 275 432.3
4× 4 a 100 1000 3532.7
4× 4 b 100 1000 3486.7
5× 5 a 130 2000 17232.7
5× 5 b 130 2000 17856.3

Table 2: Parameters and results for Experiment 2, where the maximum time for conver-
gence out of all agents for the Baum-Welch algorithm over three runs was measured for
varying numbers of agents.

No. Agents Episode
Length

No. Episodes Convergence
Time (s)

3 200 450 821.3
4 250 450 1465.7
5 300 450 2112.7

to the underlying method for learning the TAs [1] and is common to other TA learning

methods including SAT-based and ILP-based approaches [1, 4]. It was demonstrated in

[1] that the time taken to learn a TA can also grow exponentially with the size of the TA.

However, one of the benefits of this multi-agent approach is that TAs for complex tasks

with a large number of agents can still be efficiently learnt so long as the local TAs are

small enough. I will demonstrate that with a range of examples called the rendezvous

task. The rendezvous task is an extension of the task in 12b, where each agent must first

synchronise at some state, and then proceed to its own goal state. Grids are presented

in Figure 15. I attempted to learn 3, 4, and 5-agent rendezvous, which have global

TAs of size 17, 33 and 65 respectively and using existing methods would be completely

intractable. The alphabets for each agent were é and their goal state label. Learning

local TAs instead makes these problems tractable, as we learn local TAs of size 4, run

times are presented in Table 2.

37



Òé

¹

¹

¹

k

b

(a)

Òé

¹

¹

¹

¹

k

�b

(b)

Ò

�

é

¹ ¹

¹

¹

¹

k

�b

(c)

Figure 15: Illustrations of the grid worlds used in the experiments for rendezvous of more
than 2 agents.

5.4 Events with Low Probability

When learning TAs in multi-agent environments, some events/labels can appear very

infrequently in traces. An example is the é in the 3x3 environment in Figure 11. This

label only appears when both agents are on the centre cell. Assuming the agents are

distributed randomly, the probability of é occurring at any given timestep is 1/81. As

the number of agents increases, rare events have even lower probabilities. There are

multiple issues that are caused by this.

First, the scarcity of certain events means necessitates longer or more exploration se-

quences to ensure enough of the training sequences receive rewards. This leads to longer

run times learning the TA, however, this issue is not specific to my method and would

apply to any technique attempting to learn TAs from traces of multi-agent environments.

Secondly, the underlying MDP for each agent contains some transitions with very small

probability, for example transitioning to a state where both agents occupy a specific

cell. This kind of state can be present in our MDP when we extend the environment as

discussed in Section 4.7. Consequently, these small probabilities also appear in the learnt

product MDP.

Even when the Baum-Welch algorithm for learning the product MDP converges there are

still some small erroneous probabilities scattered through the transition matrix. This is

an inherent limitation of using HMM learning as our means of learning the underlying
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TA. To address this, in both Algorithm 1 and 2 we ignore values less than some ϵ when

extracting the NFA from the product MDP. This leads to a problem if we have some

important transition probabilities in the product MDP that are also less than ϵ purely

because they are low-probability events. In which case we would not learn the correct

TA.

In more complex tasks involving a large number of agents or a larger grid, it may become

impossible to select a ϵ that avoids this issue. To overcome this challenge, I propose

including active learning[2]. Specifically, the exploration policy would be updated based

on what traces lead to rewards in order to make important low-probability events more

frequent in the traces. Although this approach may result in learned MDPs that do not

accurately represent the agent’s dynamics, it is not a significant concern since the primary

goal is to extract correct TAs for optimal policy learning.

5.5 Local Reward Functions

All the previous experiments have focused on the case where the agents all receive a

reward at the same time when the task is completed. Another way to model the system

is to assume the task is such that agents receive a reward when they complete their part

of the task, as discussed in 4.10.

It is clear this approach will lead to no improvements for the task in Figure 12a, so

I have only run experiments for the task in Figure 12b. The results are presented in

Table 3. The same local TAs were learnt as when we didn’t have local reward functions,

but the run time has significantly decreased. This was due to each agent getting the

reward immediately after the last relevant label, which meant the underlying NFA for

the product MDP was only of size 3.

The results show that utilising local reward functions for tasks where they exist can lead

to a significant improvement in the runtime. In addition, they can decrease the size of

learnt TAs, specifically where some agent sees a label after it has received its local reward

but before the global task is completed. This label could be present in the TA if the global
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Table 3: Parameters and results for Experiment 3, where the maximum time for conver-
gence out of the two agents for the Baum-Welch algorithm over three runs was measured
for varying grid-world and TAs.

Grid size Task Episode
Length

No. Episodes Convergence
Time (s)

3× 3 b 70 275 45.7
4× 4 b 100 450 348.3
5× 5 b 200 5000 3643.7

reward signal was used but if we can assume knowledge of some local reward signals then

this label would be ignored. Hence reducing the size of the TA. Both these improvements

combined show that the proposed method has the potential for stronger performance if

we can assume knowledge of local reward functions.

6 Conclusion

In this project, I introduced an algorithm that successfully learns local TAs in multi-agent

RL systems with unknown environments and sparse, non-Markovian reward signals. I

have ensured that these learnt TAs can be used to efficiently synthesise optimal policies

with the algorithm proposed in [16]. My algorithm was the first (alongside the algorithm

proposed in [4]) to provide a procedure specifically for this problem and exceeds the

capabilities of the existing naive methods. The main contribution is restricting each

agent to a local set of traces which allows it to learn a local TA that is smaller than

the global TA, where the interleaving of these TAs expresses the same language as the

global TA. Extensions of this approach are presented in Sections 4.6, 4.7 and 4.10 address

potential issues and broaden the applicability of the method.

The experiments in Section 5 demonstrate the algorithm’s effectiveness and potential

issues regarding scalability were identified. Active learning was suggested in order to

allow for the learning of more complex tasks. The majority of the practical drawbacks

are a result of the underlying Baum-Welch Algorithm that is used to learn the TAs. An

advantage of my method is that the idea to restrict each agent to its local alphabet can

be used to learn TAs with any TA learning method. Thus if in the future more efficient
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methods are proposed for learning TAs in the single-agent case then my approach can

use this in order to more efficiently learn local TAs in the multi-agent case. Therefore the

main contribution of this project should still be relevant as the state of the field advances.

6.1 Reflections

Implementing the learning of local product MDPs in multi-agent settings was challenging,

primarily due to using an unfamiliar C++ language. Efficiency was crucial to manage

the exponential increase in runtime as the examples’ size grew.

Formulating and proposing new definitions and representations for the theoretical aspects

of the project was an exciting challenge. I enjoyed refining my formulations, aiming for

concise expressions that precisely conveyed my intentions. It was a new and rewarding

experience for me.

Unfortunately, I was unable to benchmark my work against the only other method ad-

dressing the same problem. The corresponding paper was recently released online, and

the authors were not yet sharing their code. Additionally, I would have liked to con-

duct experiments on learning the optimal policy once the TAs were learned. However, I

obtained access to the relevant algorithm’s code quite late in the project’s production,

preventing me from including formal experiments.

6.2 Future Work

A natural next step to improve this work is to look to improve the scalability of the algo-

rithm, potential improvements include exploring more efficient HMM learning methods

for learning the Product MDP and considering alternative approaches to learning each

local TA while retaining the use of local alphabets.

Incorporating active learning into the exploration stage is another way to improve scalabil-

ity. By introducing a bias towards successful traces during initial exploration of unknown

MDPs, we can observe more successful traces, especially in systems where successful

traces occur with low probability under random exploration.
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Additionally, demonstrating the effectiveness of transfer learning is a possibility. This

involves leveraging existing estimates of each local product MDP as initial estimates,

focusing on relearning only the parts that have changed for each local TA. Transfer

learning is particularly useful when only the sub-tasks of specific agents have changed,

eliminating the need to relearn product MDPs for every agent and instead updating only

the relevant ones.
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