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Abstract 

This  paper describes a set of theorem proving tools 
based on a new derived principle of definition in HOL, 
namely the introduction of relations inductively defined 
b y  a set of rules. Such inductive definitions abound an 
computer science. Example application areas include 
reasoning about structured operational semantics, type 
judgements, transition relations for  process algebras, 
reduction relations, and compositional proof systems. 
The package described in this paper automates the 
derivation of certain inductive definitions involved in 
these applications and provides the basic tools needed 
f o r  reasoning about the relations introduced b y  them. 

1 Introduction 

The HOL user community has a strong tradition of 
taking a purely definitional approach to using higher 
order logic. That is, the syntax of the logic is extended 
with new notation not simply by postulating axioms to 
give meaning to it, but rather by defining it in terms of 
existing expressions of the logic that already have the 
required semantics. The advantage of this approach, 
as opposed to the axiomatic method, is that each of the 
primitive rules of definition in the HOL logic-namely, 
constant definition, constant specification, and type 
definition-is guaranteed to preserve consistency. The 
disadvantage is that these rules admit only definitions 
that satisfy certain very restrictive rules of formation. 
Definitions expressed in any other form must always 
be justified formally by deriving them from equivalent, 
but possibly rather complex, primitive definitions. 

The ML metalanguage allows users to implement 
derived inference rules in the HOL system and thus 
provides a facility for automating proofs that justify 
derived rules of definition. For example, recursive 
definitions are not admitted by the primitive rules 
of definition of the HOL logic. But certain recursive 
type definitions and function definitions are supported 
in the system by derived inference rules written in 

ML [l, 21. The details of the primitive definitions that 
underlie these rules are hidden from the user, and their 
ML implementations are highly optimized. So these 
derived principles of definition may simply be regarded 
as primitive by most users of the system. 

This paper describes a set of theorem-proving tools 
based on a new derived principle of definition in HOL 
for defining relations inductively by a set of rules. 
Sections 2 and 3 give a general introduction to the 
class of inductive definitions handled by the package 
and explain the logical basis for these definitions. The 
remaining sections describe the ML functions provided 
by the package and briefly mention some applications 
for which the package can be used. 

2 Inductive definitions 

The following is a simple but typical example of a 
relation defined inductively by a set of rules. (This 
example is taken from [3].) Let R C A x A be a binary 
relation on a set A.  The reflexive-transitive closure of 
R can be defined to be the least relation R* C A x A 
for which the following deduction rules hold. 

These rules state precisely the properties required of 
the reflexive-transitive closure of the relation R. Rule 
R1 states that it must contain at least all the values 
in R; rule R2 states that it must be reflexive; and rule 
R3 states that it must be transitive. The reflexive- 
transitive closure R' may therefore simply be defined 
to be the least relation that satisfies these conditions. 
It then follows simply by definition that the rules R1, 
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R2 and R3 are in fact satisfied by R*. Moreover, it 
follows immediately that R* is a subset of any other 
relaition that satisfies these rules, since R* is defined to 
be the least such relation. This means that R* contains 
only those pairs of values that it must contain by virtue 
of satisfying the rules. As will be discussed below, 
this property gives rise to an induction principle for 
reasoning about the relation R’. 

The definition given above is valid because the rules 
R1, R2, and R3 make only positive statements about 
the elements of R*. This guarantees that the least 
relation satisfying these rules does exist. In particular, 
if the rules have this form, then one can show that the 
intersection of any set of relations that satisfy the rules 
also satisfies the rules. Moreover, at least one binary 
relation satisfies the rules, namely the maximal relation 
A x .A. The ‘least’ or smallest relation that satisfies the 
ruler3 may therefore legitimately be defined to be the 
intersection of all such relations. 

In general, an inductive definition of an la-place 
relation R consists of a set of rules of the form: 

The terms above the line are the premisses of the rule, 
each of which makes a positive assertion of membership 
in the relation R. The term below the line, called the 
conclusion of the rule, likewise asserts membership in 
R. The terms Cl,.. . ,Cj are side conditions on the 
rule; these may be arbitrary propositions not involving 
the relation R being defined. A relation R is closed 
under such a rule if whenever the premisses and side 
conditions hold, the conclusion also holds. The relation 
inductively defined by a collection of such rules is the 
least relation closed under all the rules. 

2.1 Rule induction 

B,y virtue of its definition as the least relation closed 
under a set of rules, every inductively defined relation 
comes with an associated induction principle. This 
principle of rule induction is essential for many proofs 
involiving such relations. (The term ‘rule induction’ 
was coined by Glynn Winskel in [4]). 

The principle of rule induction for an inductively 
defined relation may be stated briefly as follows. Let 
R be an la-place relation inductively defined by a set of 
rules, and suppose we wish to show that every element 
in R has a certain property P: 

if R(z1,. . . , zn) then P [ q , .  . . I 24 (1) 

Since R is the least relation closed under the rules, any 

relation S which is also closed under the rules has the 
property that R C S. Now, let 

s= { ( Z l , . . . , Z n )  I P[ . l , * . . ,Zf l I )  

Then to prove the desired property of R, it suffices to 
show that the relation S is closed under the rules that 
define R. For if the relation S in fact is closed under 
the rules, then we have that R E S and therefore that 
every element of R has the defining property of S--i.e. 
statement (1) holds of the relation R. 

For the relation R’ defined above, the principle of 
rule induction is stated 88 follows. In order to prove 
that a property P[z,  y] holds for all z and y for which 
R*(z, y), it suffices to show that: 

0 for all z and y, R(z,  y) implies P[z ,  y] 

0 for all 2 ,  P[z,  23 

0 for all z, y, and t ,  P[z ,  21 and P[z l  y] imply P[z ,  y] 

This is an inductive form of argument: if the property 
P holds in the ‘base cases’ corresponding to rules R1 
and R2, and if P is preserved by the rule R3 (the ‘step 
case’ of the induction), then every pair in R* has the 
property P. A similar induction principle holds for 
every relation inductively defined by a set of rules. 

3 Inductive definitions in logic 

Inductive definitions are based on the concept of 
a relation being closed under a set of rules. Since 
rules are essentially implications-if the premisses and 
side conditions hold, then the conclusion holds-it is 
straightforward to express this concept in logic. 

Consider, for example, the rules given above for 
reflexive-transitive closure. Let R : a-+a+bool be a 
fixed but arbitrary relation on a. (Here, a relation is 
represented by a curried function; but we shall continue 
to speak loosely of a pair of values 2 and y as being 
‘in’ the relation R when R z y holds.) The following 
formula then asserts that a relation P : a-m+bool is 
closed under the rules defining the reflexive-transitive 
closure of R: 

(VZY. R Z  y 3 P y) A 
(Vz. P z z) A 
(Vz y. (32. P 2 t A P z y) 3 P z y) 

Each rule is expressed by a quantified implication of its 
conclusion by the conjunction of its premisses and side 
conditions. A rule with no side conditions or premisses 
is just represented by a universally quantified assertion 
of its conclusion. Closure of a relation under any set 
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of rules of the form discussed above can be expressed 
in logic in a similar way. 

Using this method of expressing the notion of 
closure under a set of rules, one can define the least 
relation closed under a set of rules simply by taking 
the intersection of all such relations. For example, a 
function 

that maps an arbitrary relation R : a-ta-+bool to its 
reflexivetransitive closure Rtc R can be defined in the 
HOL logic by the constant definition: 

k V R x y . R t c R x y  = 

(Vx. P x x) A 
(Vx y. (32. P x I A P J y) 3 P 2 y)) 

VP.  ((Vx y. R x y 3 P x y) A 

3 
P X Y  

This definition states that a pair x and y is in the 
relation Rtc R exactly when it is in every relation P 
closed under the rules for reflexive-transitive closure. 
That is, Rtc R is defined to be the intersection of all 
relations closed under these rules. As will be discussed 
in the section that follows, this indeed makes Rtc )2 
the least such relation, aa required. 

3.1 Deriving the rules and rule induction 

Any relation intended to be defined inductively by 
a set of rules can be defined formally in the HOL logic 
by a constant definition of the kind illustrated by the 
Rtc example given above. Such a definition, however, 
merely introduces the relation as the intersection of all 
relations that satisfy the desired set of rules. The proof 
obligations of a derived principle of inductive definition 
are, first of all, to show that the resulting relation in 
fact does satisfy these rules, and secondly to show that 
it is indeed the least such relation. It is these proof 
obligations which are automated by the HOL inference 
rule described below in section 4. 

In the case of the simple reflexive-transitive closure 
example, the first proof obligation is to show that: 

t- VRx y. R x  y 3 Rtc R x  y 

I- VR x. Rtc R x x 

I- VR x y. (32. Rtc R x P A Rtc R z y) 3 Rtc R x y 

That is, one must prove that the rules R1, R2, and R3 
follow from the somewhat indirect formal definition of 
the relation Rtc R given in the previous section. The 

second proof obligation is to show that Rtc R is the 
least relation that satisfies these rules: 

I- VR P. ((Vx y. R x y 3 P 2 y) A 
(Vz. P x x) A 
(Vz y. ( 3 z .  P z z A P z y) I) P x y)) 
3 

V x y . R t c R x y >  P x y  

This is the principle of rule induction for Rtc R. These 
four theorems constitute a complete statement of the 
defining properties of reflexive-transitive closure. All 
four can be proved fully automatically in HOL by the 
derived inference rule described in the next section. 

4 Automation 

The main component of the inductive definitions 
package is an ML function that takes as an argument 
a list of rules and automatically proves the defining 
properties of the relation inductively defined by them. 
More precisely, this derived HOL inference rule builds 
a term that denotes the least relation closed under the 
rules using the intersection construction described in 
the previous section. A constant is then introduced 
(via a constant specification) to name this relation. 
The result is a set of theorems stating that the newly- 
defined relation is the least relation closed under the 
rules supplied by the user. 

The ML function that implements this principle of 
inductive definition is: 

new-inductive-definition 
: boo1 -> ( inf ix  flag) 
string -> (defn. name) 
(term # term list) -> (pat tern)  
(term list # term) list -> (rules)  
(tbm list # thm) (result) 

The first argument to this function is a boolean flag 
which indicates if the constant that is defined is to 
have infix syntactic status. The second argument is 
the name under which the resulting definition will be 
saved on disk. The third argument is a ‘pattern’ that 
supplies information which is needed because this ML 
function can be used to define classes of inductively 
defined relations, rather than just single instances of 
these relations. Details of the purpose and format of 
this pattern will be explained later. The final argument 
is a list of rules, each of which is represented by a pair 
of the form: 

( [premisses  and side conditions 3 , conclusion) 

The first component is a list of the premisses and side 
conditions, which may be arranged in any order. The 
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second component is the conclusion of the rule. Side 
conditions can be arbitrary boolean terms, provided 
they do not mention the relation being defined. The 
premisses and conclusion must be positive assertions of 
membership in the relation being defined. The precise 
form. that these assertions must take is explained later, 
but ;roughly speaking the premisses and conclusion of 
a rule must be terms of form " R  tl . . . t,", where 

is a variable representing the n-place relation that is 
to be defined, and each t i : a i  is an arbitrary term not 
containing R. 

Given an infix flag, a name, a pattern, and a list 
of rules, the ML function new-inductive-def inition 
automatically proves the existence of the least relation 
that satisfies these rules. A constant is then introduced 
to denote this relation using a constant specification, 
the result of which is saved on disk under the supplied 
name. The value returned is a pair consisting of a list of 
theoi:ems which state that the newly-defined relation 
satislies the rules, together with a theorem asserting 
rule induction for the relation. These theorems give a 
complete statement of the defining properties for the 
least relation closed under the specified set of rules. 

4.1 A simple example 

The following example HOL session shows how the 
funct,ion new-induct ive-dei init ion can be used to 
inductively define the set of even natural numbers. 

new-inductive-definition false 'Even' 
let Even = "Even:num->bool" in 

("^Even C1) 

c c  
% 1, % ............................. 

% 1, 

"-Even 0" 

c "'Even n*' 
% ............................. 

#let (rules,ind) = 

"-Even (n+2)" I;; 

The iirst rule in this definition states that 0 is an even 
natural number, and the second rule states that if n 
is even then n+2 is also even. (Antiquotation and 
ML comments are used to give a readable presentation 
of thlese rules.) Since the even natural numbers are 
exactly those numbers obtainable from aero by adding 
multiples of two, these rules inductively define 'Even n' 
such that it holds precisely when n is even. 

The value supplied for the pattern in this example is 
the pair ("Even n* , [I ). The first component of this 
pair indicates that the constant to be defined, namely 
Even, is a one-place function with typical argument 
n. In general, the second component of a pattern is a 
non-empty list only when a class of relations is being 
defined (see below). In this example, Even is a single 
inductively-defined predicate, and the list component 
of the pattern is therefore empty. 

When the definition shown in box 1 is evaluated, 
new-induct ive-def init ion automatically proves the 
existence of the least predicate closed under the given 
list of rules and then defines the constant Even to 
denote this predicate. The following automatically- 
proved theorems about Even are then returned: 

k vn. Even n 3 Even(n + 2)] : thm list 1 rules = 
Cl- Even 0; 

ind = 
k VP. P 0 A (Vn. P n 3 P(n + 2)) 3 

(Vn. Even n 3 P n) 

The theorems bound to the ML identifier rules state 
that the required rules hold of the predicate Even. And 
the rule induction theorem bound to ind states that 
the set of numbers for which Even holds is the least set 
that satisfies these rules. 

An analogous set of defining theorems can be proved 
automatically for any particular relation inductively 
defined by a list of rules. The next section shows how 
this derived principle of inductive definition in HOL can 
also be used to define a parameterized class of relations. 

4.2 Defining a class of relations 

The constant Rtc defined in section 3 is not itself an 
inductively-defined relation, but rather a function that 
maps an arbitrary relation R to an inductively-defined 
relation Rtc R. The function Rtc therefore represents 
an entire class of inductively-defined relations, one for 
each possible value of R. 

The information that is required by the derived rule 
new-inductive-def init ion in order to handle the 
definition of such functions is supplied by its pattern 
argument. In the general case, a pattern is a pair of 
the following form: 

("R 211 . . . v," , ["~i" ; . . . ; " ~ j  "1 ) 

The first component of the pattern is an application of 
the n-place curried function that is to be defined (in 
this case, R) to n distinct variables 211, . . . , 21,. The 
second component is a list of those variables that occur 
at the positions in this application which correspond to 
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the parameters of class of inductively-defined relations, 
rather than to the actual arguments to these relations. 

An example of the role of the pattern argument in 
defining a class of relations is provided by the following 
definition of reflexive-transitive closure in HOL. 

t l e t  (rules , ind)  = 
l e t  Rtc = "Rtc:(*->*->bool)->*->*->bool" 

i n  
new-inductive-definition false ' R t c '  
("-Rtc R x y",  ["R:*->*->bo~l"l) 

[ "'Rtc R x z " ;  "-Rtc R z y" 
%------------------------------ x 1, 

"'Rtc R x y" I ; ;  

The pattern in this case is the pair: 

("Rt c R x y" , ["R : *->*->b001"] ) 

The first component of this pattern specifies that the 
function Rtc is to take three arguments in total-a 
relation R, and two values x and y. The second part of 
the pattern (the list containing just R) specifies that the 
relation argument R is to be a parameter to the class 
of inductively-defined relations that will be represented 
by Rtc. The remaining variables I and y are assumed 
to indicate the positions of actual arguments to the 
predicate that represents these relations. 

The result of evaluating this inductive definition in 
HOL is the following collection of theorems: 

rules = 
cl- VR x y.  R x y 3 Rtc R x y; 
!- VR x .  Rtc R x x;  
I- VR x y .  (32. Rtc R x z A R t c  R z y) 

3 
Rtc R x y] : thm l ist  

ind = 
k VR P. 

(Vx y.  R x y 3 P x y) A 
( v x .  P x . x )  A 
(Vx  y.  (32. P x z A P z y) 3 P x y) 

3 
( v x  y.  Rtc R x y 3 P x y) 

Here, the ML variable rules  has been bound to a list of 
theorems which state the three rules that inductively 

define the reflexive-transitive closure of a relation. The 
theorem ind states the corresponding principle of rule 
induction for an inductively-defined relation R t  c R. 

4.3 Stating premisses and conclusions 

In addition to the use of the pattern argument, the 
Rtc example also illustrates a restriction on the form 
in which the premisses and conclusions of rules must 
be supplied to new-inductive-def init ion.  As was 
mentioned above, premisses and conclusions must be 
positive assertions of membership of the form 

" R  ti  ... t," 
where R is a variable that stands for the function to 
be defined. The restriction is that some of the terms 
among the arguments t l ,  . . . , t ,  in such an assertion 
must be variables-namely, the terms that occur at 
positions which, according to the supplied pattern, 
correspond to the parameters of a class of relations. 
In particular, the terms that occur at these positions 
must be the same variables given in the pattern itself. 

The rules for reflexivetransitive closure shown in 
box 3 conform to this restriction. Here, the pattern 
indicates that in the typical assertion of membership 
"Rtc R x y" (i.e. the first component of the pattern), 
the variable R marks the position of a parameter to 
the class of relations to be defined. Every premiss and 
conclusion mentioned in the rules must therefore be a 
term of the form "Rtc R tl t 2 I 1 ,  where the arguments 
t l  and t 2  may be arbitrary terms but the parameter R 
must be the variable given in the pattern. 

5 A tactic for rule induction 

The inductive definitions package in HOL includes a 
number of auxiliary functions that support reasoning 
about inductively-defined relations, in addition to the 
derived rule of definition itself. The most important 
of these is the following general tactic for goal-directed 
proofs by rule induction: 

RULE-INDUCT-TEEN 
: thm -> (induction thm) 

(thm -> t a c t i c )  -> 
( t u  -> tactic) -> 
t a c t i c  (resuZt) 

(premiss cont.) 
(s ide cond. cont.) 

The first argument to this function is the rule induction 
theorem returned by new-induct ive-dei i n i t  ion for 
a given inductively-defined relation. Like the general 
structural induction tactic in HOL, the rule induction 
tactic is parameterized by functions that determine 
what is done with induction hypotheses. These may be 
either premisses or side conditions, and the user may 
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wish to treat these two kinds of induction hypotheses 
differently. Two separate theorem continuations are 
therefore supplied as the second and third arguments 
to the function RULE-INDUCT-THEN. 

Given the rule induction theorem for an inductively- 
defined n-ary relation R, the function described above 
returns a specialized rule induction tactic that reduces 
goalls of the form: 

VJC~ . . . 2,. R ti . . . t, 3 P [ s ~ ,  . . ., tn]" 
to t8he subgoal(s) of proving that the property P is 
presierved by the rules that inductively define R. The 
rule induction theorem for Rtc, for example, is: 

#ind; ; I L  
I- V R  P. 

( V x y .  R x y 3 P x y ) A  
(Vx .  P x x)  A 
( v x  y .  (32.  P x z A P z y) 3 P x y> 

3 
(Vx y.  Rtc R x y 3 P x y) - 

A rule induction tactic for Rtc can be constructed from 
this theorem by making the simple ML definition: I #let Rtc-INDUCT-TAC:= ~ 7 
The use of ASSUME-TAC in this definition means that 
the induction hypotheses arising from the premisses 
and side conditions of the rules are to be added to the 
assumptions of the subgoals that are generated. The 
resulting rule induction tactic for Rtc is described by: 

RULE-INDUCT-THEN ind 

Rtc-INDUCT-TAC = - tactic 
ASSUME-TAC ASSUME-TAC;; 

?- V z y .  Rtc Rt y 3 P [ t , y ]  

This tactic implements the induction scheme described 
above in section 2.1. It reduces the goal of proving that 
a property P[t ,y]  holds for all pairs z and y related 
by RItc R to showing that this property is preserved by 
the rules that inductively define this relation. 

5.1 An example 

The following session shows how the rule induction 
tactic for Rtc constructed in the previous section can 
be used to prove a simple theorem about this relation. 

The aim is to show that the reflexive-transitive closure 
of a symmetric relation is also symmetric. The proof 
begins by using the HOL subgoal package (see [l]) to 
set up an appropriate goal to be proved: 

#set -goal 
(["Vx:*. v y .  R x y 3 R y x"], 

"Vx y .  Rtc R x y 3 Rtc R y x" 
[ V x  y .  R x y 3 R y x" 1 

* V x : * .  v y .  Rtc R x y 3 Rtc R y XI');; 

I () : void 

The assumption of the goal is that the relation R is 
symmetric, and the conclusion states that the closure 
Rtc R is also symmetric. The conclusion of the goal is 
in precisely the right form for a proof by rule induction 
using the induction tactic described above. Applying 
this tactic results in: 

#expand Rtc-INDUCT-TAC;; ILL 

(subgoal 1 )  

OK.. 
3 subgoals 
"Rtc R y x" 

[ "Vx y .  R x y 3 R y x" 1 
[ "Rtc R z x" 1 
"Rtc R y z" 1 

"Vx.  Rtc R x x" (subgoal 2) 
" v x  y .  R x y 3 R y x" 1 

"Rtc R y x" (subgoal 9) 
C "Vx y .  R x J 3 R y x" 1 
[ "R x y" 1 

I (1 : void 

Subgoals 1 and 2 are trivial, since the relation Rtc R is 
transitive and reflexive by definition. The tactic proofs 
for these subgoals can simply use the rules shown 
above in box 4. The proof of subgoal 3 is also easy. 
The proposition "R y XI# follows immediately from the 
two assumptions of the subgoal; and this proposition 
together with the fact that 

I V R x y .  R x  y 3 Rtc R x  y 

directly entail the required conclusion. 
The proof sketched above is a trivial example of the 

kind of reasoning sometimes referred to as induction 
over the structure (or the depth) of derivations in a 
deductive system stated by a set of rules. This form of 
inductive argument, which is very common in certain 
areas of theory (for example, operational semantics and 
process algebras), is made directly accessible in HOL 
by the tactic described in this section. 
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6 Tactics and inference rules 

In addition to the rule induction tactic described 
above, the inductive definitions package also provides 
mechanized support for generating tactics from the 
theorems that state the rules for an inductively-defined 
relation. This takes the form of an ML function: 

RULE-TAC : thm -> tactic 

The theorem argument to this function is expected to 
be a rule expressed in the form proved by the derived 
principle of inductive definition described in section 4. 
Given such a theorem, RULE-TAC constructs a tactic 
that inverts the rule stated by it. The resulting tactic 
reduces goals that match the conclusion of the rule to 
subgoals consisting of the corresponding instances of 
its premisses and side conditions. 

Consider, for example, the theorem which states the 
transitivity rule for Rtc: 

t -VR x y. (32. Rtc R x z A Rtc R z y) 
3 

Rtc R x y 

When applied to this theorem, the function RULE-TAC 
returns the tactic described by: 

~ ~~ 

I’ ?- 3%. Rtc Rx z A Rtc R z  y 

This tactic can then be used in goal-directed proofs 
about membership in the inductively-defined relation 
Rtc R. The other two rules that define Rtc R can also 
be converted into tactics using the function RULE-TAC. 
The result is a complete set of HOL tactics for goal- 
directed proofs in the deductive system comprising the 
three rules that define reflexive-transitive closure. 

It is intended that the inductive definitions pack- 
age will also include a function that maps rules stated 
as theorems to forward inference rules in HOL (i.e. to 
ML functions). For example, the transitivity theorem 
shown above can be used to implement the following 
derived inference rule: 

Any rule expressed as a theorem of the form proved 
by the derived principle of inductive definitions can 
likewise be converted into a forward inference rule. A 
function that automatically constructs such rules has 
not yet been implemented, partly because it has not 
been found necessary for the applications done so far 

(see section 8). For completeness, however, the author 
intends in future to add this function to the inductive 
definitions package. 

7 Case analysis 

The final major component of the HOL package for 
inductive definitions is an ML function that proves an 
exhaustive cwe analysis theorem for any given relation 
inductively defined by a set of rules. The name and 
type of this function are: 

derive-cases-thm : (thm list # thm) -> thm 
The arguments to this function are the list of rules 
satisfied by an inductively defined relation, together 
with its rule induction theorem. (These are precisely 
the defining theorems which are proved and returned 
by new-induct ive-def init ion.) When supplied with 
these theorems, derive-cases-thm proves that if an 
assertion of membership in the relation holds, then it 
holds only by virtue of the fact that one of the rules 
can be used to derive it. This allows one to drive the 
rules that define a relation ‘backwards’, inferring from 
the conclusion of one of the rules that the premisses 
and side conditions hold. 

The following interaction with the HOL system 
shows the theorem proved by derive-cases-thm for 
the Rtc example introduced above. The ML variables 
rules and ind are assumed to have the bindings shown 
above in box 4. 

#derive,cases,thm (rules,ind);; P 
I- V R  x y.  

Rtc R x y 3 
R x y  V 

(32. Rtc R x z A Rtc R z y) 
(y = x) v 

Roughly speaking, the resulting theorem states that if 
Rtc R x y holds, then either: 

0 it is derivable by the inclusion rule R1, in which 
case x and y are related by R or 

it is derivable by the reflexivity rule R2, in which 
case x and y are equal; or 

it is derivable by the transitivity rule R3, in which 
case there must be an intermediate value z such 
that Rtc R x z and Rtc R z y. 

A similar theorem can be proved automatically for any 
relation defined inductively using the package. Work 
is currently underway to strengthen this theorem from 
an implication to an equation, so that it can be used 
for rewriting. 
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8 Applications References 

In a joint project with Juanito Camilleri, a set of 
example proofs has been developed to illustrate the 
poteintial for applications of the inductive definitions 
package. These examples include: the definition of 
an operational semantics for a simple programming 
language and a proof that its evaluation relation is 
deterministic; the definition of a reduction relation for 
combinatory logic and a proof that it has the Church- 
Rossler property; a definition of provability in a Hilbert 
style proof system for minimal intuitionistic logic; the 
definition of a type system for combinatory logic and 
a proof of the Curry-Howard isomorphism for typed 
combinatory logic and minimal intuitionistic logic; and 
definitions of the trace and transition semantics for a 
simple process algebra, together with the proof of a 
form,al statement of the relationship between them. A 
report on this work is in preparation, and the HOL 
source code for the examples will be made available to 
interested users. 
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