
A Package for Inductive Relation Definitions in HOL

T. F. Melham

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge, CB2 3QG, England.

Abstract

This paper describes a set of theorem proving tools
based on a new derived principle of definition in HOL,
namely the introduction of relations inductively defined
b y a set of rules. Such inductive definitions abound an
computer science. Example application areas include
reasoning about structured operational semantics, type
judgements, transition relations for process algebras,
reduction relations, and compositional proof systems.
The package described in this paper automates the
derivation of certain inductive definitions involved in
these applications and provides the basic tools needed
f o r reasoning about the relations introduced b y them.

1 Introduction

The HOL user community has a strong tradition of
taking a purely definitional approach to using higher
order logic. That is, the syntax of the logic is extended
with new notation not simply by postulating axioms to
give meaning to it, but rather by defining it in terms of
existing expressions of the logic that already have the
required semantics. The advantage of this approach,
as opposed to the axiomatic method, is that each of the
primitive rules of definition in the HOL logic-namely,
constant definition, constant specification, and type
definition-is guaranteed to preserve consistency. The
disadvantage is that these rules admit only definitions
that satisfy certain very restrictive rules of formation.
Definitions expressed in any other form must always
be justified formally by deriving them from equivalent,
but possibly rather complex, primitive definitions.

The ML metalanguage allows users to implement
derived inference rules in the HOL system and thus
provides a facility for automating proofs that justify
derived rules of definition. For example, recursive
definitions are not admitted by the primitive rules
of definition of the HOL logic. But certain recursive
type definitions and function definitions are supported
in the system by derived inference rules written in

ML [l, 21. The details of the primitive definitions that
underlie these rules are hidden from the user, and their
ML implementations are highly optimized. So these
derived principles of definition may simply be regarded
as primitive by most users of the system.

This paper describes a set of theorem-proving tools
based on a new derived principle of definition in HOL
for defining relations inductively by a set of rules.
Sections 2 and 3 give a general introduction to the
class of inductive definitions handled by the package
and explain the logical basis for these definitions. The
remaining sections describe the ML functions provided
by the package and briefly mention some applications
for which the package can be used.

2 Inductive definitions

The following is a simple but typical example of a
relation defined inductively by a set of rules. (This
example is taken from [3].) Let R C A x A be a binary
relation on a set A. The reflexive-transitive closure of
R can be defined to be the least relation R* C A x A
for which the following deduction rules hold.

These rules state precisely the properties required of
the reflexive-transitive closure of the relation R. Rule
R1 states that it must contain at least all the values
in R; rule R2 states that it must be reflexive; and rule
R3 states that it must be transitive. The reflexive-
transitive closure R' may therefore simply be defined
to be the least relation that satisfies these conditions.
It then follows simply by definition that the rules R1,

0-818&2460-4/92 $03.00 Q 1992 IEEE
350

R2 and R3 are in fact satisfied by R*. Moreover, it
follows immediately that R* is a subset of any other
relaition that satisfies these rules, since R* is defined to
be the least such relation. This means that R* contains
only those pairs of values that it must contain by virtue
of satisfying the rules. As will be discussed below,
this property gives rise to an induction principle for
reasoning about the relation R’.

The definition given above is valid because the rules
R1, R2, and R3 make only positive statements about
the elements of R*. This guarantees that the least
relation satisfying these rules does exist. In particular,
if the rules have this form, then one can show that the
intersection of any set of relations that satisfy the rules
also satisfies the rules. Moreover, at least one binary
relation satisfies the rules, namely the maximal relation
A x .A. The ‘least’ or smallest relation that satisfies the
ruler3 may therefore legitimately be defined to be the
intersection of all such relations.

In general, an inductive definition of an la-place
relation R consists of a set of rules of the form:

The terms above the line are the premisses of the rule,
each of which makes a positive assertion of membership
in the relation R. The term below the line, called the
conclusion of the rule, likewise asserts membership in
R. The terms Cl,.. . ,Cj are side conditions on the
rule; these may be arbitrary propositions not involving
the relation R being defined. A relation R is closed
under such a rule if whenever the premisses and side
conditions hold, the conclusion also holds. The relation
inductively defined by a collection of such rules is the
least relation closed under all the rules.

2.1 Rule induction

B,y virtue of its definition as the least relation closed
under a set of rules, every inductively defined relation
comes with an associated induction principle. This
principle of rule induction is essential for many proofs
involiving such relations. (The term ‘rule induction’
was coined by Glynn Winskel in [4]).

The principle of rule induction for an inductively
defined relation may be stated briefly as follows. Let
R be an la-place relation inductively defined by a set of
rules, and suppose we wish to show that every element
in R has a certain property P:

if R(z1,. . . , zn) then P [q , . . . I 24 (1)

Since R is the least relation closed under the rules, any

relation S which is also closed under the rules has the
property that R C S. Now, let

s= { (Z l , . . . , Z n) I P[. l , * . . ,Zf l I)

Then to prove the desired property of R, it suffices to
show that the relation S is closed under the rules that
define R. For if the relation S in fact is closed under
the rules, then we have that R E S and therefore that
every element of R has the defining property of S--i.e.
statement (1) holds of the relation R.

For the relation R’ defined above, the principle of
rule induction is stated 88 follows. In order to prove
that a property P[z, y] holds for all z and y for which
R*(z, y), it suffices to show that:

0 for all z and y, R(z, y) implies P[z , y]

0 for all 2 , P[z, 23

0 for all z, y, and t , P[z , 21 and P[z l y] imply P[z , y]

This is an inductive form of argument: if the property
P holds in the ‘base cases’ corresponding to rules R1
and R2, and if P is preserved by the rule R3 (the ‘step
case’ of the induction), then every pair in R* has the
property P. A similar induction principle holds for
every relation inductively defined by a set of rules.

3 Inductive definitions in logic

Inductive definitions are based on the concept of
a relation being closed under a set of rules. Since
rules are essentially implications-if the premisses and
side conditions hold, then the conclusion holds-it is
straightforward to express this concept in logic.

Consider, for example, the rules given above for
reflexive-transitive closure. Let R : a-+a+bool be a
fixed but arbitrary relation on a. (Here, a relation is
represented by a curried function; but we shall continue
to speak loosely of a pair of values 2 and y as being
‘in’ the relation R when R z y holds.) The following
formula then asserts that a relation P : a-m+bool is
closed under the rules defining the reflexive-transitive
closure of R:

(VZY. R Z y 3 P y) A
(Vz. P z z) A
(Vz y. (32. P 2 t A P z y) 3 P z y)

Each rule is expressed by a quantified implication of its
conclusion by the conjunction of its premisses and side
conditions. A rule with no side conditions or premisses
is just represented by a universally quantified assertion
of its conclusion. Closure of a relation under any set

35 1

of rules of the form discussed above can be expressed
in logic in a similar way.

Using this method of expressing the notion of
closure under a set of rules, one can define the least
relation closed under a set of rules simply by taking
the intersection of all such relations. For example, a
function

that maps an arbitrary relation R : a-ta-+bool to its
reflexivetransitive closure Rtc R can be defined in the
HOL logic by the constant definition:

k V R x y . R t c R x y =

(Vx. P x x) A
(Vx y. (32. P x I A P J y) 3 P 2 y))

VP. ((Vx y. R x y 3 P x y) A

3
P X Y

This definition states that a pair x and y is in the
relation Rtc R exactly when it is in every relation P
closed under the rules for reflexive-transitive closure.
That is, Rtc R is defined to be the intersection of all
relations closed under these rules. As will be discussed
in the section that follows, this indeed makes Rtc)2
the least such relation, aa required.

3.1 Deriving the rules and rule induction

Any relation intended to be defined inductively by
a set of rules can be defined formally in the HOL logic
by a constant definition of the kind illustrated by the
Rtc example given above. Such a definition, however,
merely introduces the relation as the intersection of all
relations that satisfy the desired set of rules. The proof
obligations of a derived principle of inductive definition
are, first of all, to show that the resulting relation in
fact does satisfy these rules, and secondly to show that
it is indeed the least such relation. It is these proof
obligations which are automated by the HOL inference
rule described below in section 4.

In the case of the simple reflexive-transitive closure
example, the first proof obligation is to show that:

t- VRx y. R x y 3 Rtc R x y

I- VR x. Rtc R x x

I- VR x y. (32. Rtc R x P A Rtc R z y) 3 Rtc R x y

That is, one must prove that the rules R1, R2, and R3
follow from the somewhat indirect formal definition of
the relation Rtc R given in the previous section. The

second proof obligation is to show that Rtc R is the
least relation that satisfies these rules:

I- VR P. ((Vx y. R x y 3 P 2 y) A
(Vz. P x x) A
(Vz y. (3 z . P z z A P z y) I) P x y))
3

V x y . R t c R x y > P x y

This is the principle of rule induction for Rtc R. These
four theorems constitute a complete statement of the
defining properties of reflexive-transitive closure. All
four can be proved fully automatically in HOL by the
derived inference rule described in the next section.

4 Automation

The main component of the inductive definitions
package is an ML function that takes as an argument
a list of rules and automatically proves the defining
properties of the relation inductively defined by them.
More precisely, this derived HOL inference rule builds
a term that denotes the least relation closed under the
rules using the intersection construction described in
the previous section. A constant is then introduced
(via a constant specification) to name this relation.
The result is a set of theorems stating that the newly-
defined relation is the least relation closed under the
rules supplied by the user.

The ML function that implements this principle of
inductive definition is:

new-inductive-definition
: boo1 -> (inf ix flag)
string -> (defn. name)
(term # term list) -> (pat tern)
(term list # term) list -> (rules)
(tbm list # thm) (result)

The first argument to this function is a boolean flag
which indicates if the constant that is defined is to
have infix syntactic status. The second argument is
the name under which the resulting definition will be
saved on disk. The third argument is a ‘pattern’ that
supplies information which is needed because this ML
function can be used to define classes of inductively
defined relations, rather than just single instances of
these relations. Details of the purpose and format of
this pattern will be explained later. The final argument
is a list of rules, each of which is represented by a pair
of the form:

([premisses and side conditions 3 , conclusion)

The first component is a list of the premisses and side
conditions, which may be arranged in any order. The

352

second component is the conclusion of the rule. Side
conditions can be arbitrary boolean terms, provided
they do not mention the relation being defined. The
premisses and conclusion must be positive assertions of
membership in the relation being defined. The precise
form. that these assertions must take is explained later,
but ;roughly speaking the premisses and conclusion of
a rule must be terms of form " R tl . . . t,", where

is a variable representing the n-place relation that is
to be defined, and each t i : a i is an arbitrary term not
containing R.

Given an infix flag, a name, a pattern, and a list
of rules, the ML function new-inductive-def inition
automatically proves the existence of the least relation
that satisfies these rules. A constant is then introduced
to denote this relation using a constant specification,
the result of which is saved on disk under the supplied
name. The value returned is a pair consisting of a list of
theoi:ems which state that the newly-defined relation
satislies the rules, together with a theorem asserting
rule induction for the relation. These theorems give a
complete statement of the defining properties for the
least relation closed under the specified set of rules.

4.1 A simple example

The following example HOL session shows how the
funct,ion new-induct ive-dei init ion can be used to
inductively define the set of even natural numbers.

new-inductive-definition false 'Even'
let Even = "Even:num->bool" in

("^Even C1)

c c
% 1, %

% 1,

"-Even 0"

c "'Even n*'
%

#let (rules,ind) =

"-Even (n+2)" I;;

The iirst rule in this definition states that 0 is an even
natural number, and the second rule states that if n
is even then n+2 is also even. (Antiquotation and
ML comments are used to give a readable presentation
of thlese rules.) Since the even natural numbers are
exactly those numbers obtainable from aero by adding
multiples of two, these rules inductively define 'Even n'
such that it holds precisely when n is even.

The value supplied for the pattern in this example is
the pair ("Even n* , [I). The first component of this
pair indicates that the constant to be defined, namely
Even, is a one-place function with typical argument
n. In general, the second component of a pattern is a
non-empty list only when a class of relations is being
defined (see below). In this example, Even is a single
inductively-defined predicate, and the list component
of the pattern is therefore empty.

When the definition shown in box 1 is evaluated,
new-induct ive-def init ion automatically proves the
existence of the least predicate closed under the given
list of rules and then defines the constant Even to
denote this predicate. The following automatically-
proved theorems about Even are then returned:

k vn. Even n 3 Even(n + 2)] : thm list 1 rules =
Cl- Even 0;

ind =
k VP. P 0 A (Vn. P n 3 P(n + 2)) 3

(Vn. Even n 3 P n)

The theorems bound to the ML identifier rules state
that the required rules hold of the predicate Even. And
the rule induction theorem bound to ind states that
the set of numbers for which Even holds is the least set
that satisfies these rules.

An analogous set of defining theorems can be proved
automatically for any particular relation inductively
defined by a list of rules. The next section shows how
this derived principle of inductive definition in HOL can
also be used to define a parameterized class of relations.

4.2 Defining a class of relations

The constant Rtc defined in section 3 is not itself an
inductively-defined relation, but rather a function that
maps an arbitrary relation R to an inductively-defined
relation Rtc R. The function Rtc therefore represents
an entire class of inductively-defined relations, one for
each possible value of R.

The information that is required by the derived rule
new-inductive-def init ion in order to handle the
definition of such functions is supplied by its pattern
argument. In the general case, a pattern is a pair of
the following form:

("R 211 . . . v," , ["~i" ; . . . ; " ~ j "1)

The first component of the pattern is an application of
the n-place curried function that is to be defined (in
this case, R) to n distinct variables 211, . . . , 21,. The
second component is a list of those variables that occur
at the positions in this application which correspond to

353

the parameters of class of inductively-defined relations,
rather than to the actual arguments to these relations.

An example of the role of the pattern argument in
defining a class of relations is provided by the following
definition of reflexive-transitive closure in HOL.

t l e t (rules , ind) =
l e t Rtc = "Rtc:(*->*->bool)->*->*->bool"

i n
new-inductive-definition false ' R t c '
("-Rtc R x y", ["R:*->*->bo~l"l)

["'Rtc R x z " ; "-Rtc R z y"
%------------------------------ x 1,

"'Rtc R x y" I ; ;

The pattern in this case is the pair:

("Rt c R x y" , ["R : *->*->b001"])

The first component of this pattern specifies that the
function Rtc is to take three arguments in total-a
relation R, and two values x and y. The second part of
the pattern (the list containing just R) specifies that the
relation argument R is to be a parameter to the class
of inductively-defined relations that will be represented
by Rtc. The remaining variables I and y are assumed
to indicate the positions of actual arguments to the
predicate that represents these relations.

The result of evaluating this inductive definition in
HOL is the following collection of theorems:

rules =
cl- VR x y. R x y 3 Rtc R x y;
!- VR x . Rtc R x x;
I- VR x y . (32. Rtc R x z A R t c R z y)

3
Rtc R x y] : thm l ist

ind =
k VR P.

(Vx y. R x y 3 P x y) A
(v x . P x . x) A
(Vx y. (32. P x z A P z y) 3 P x y)

3
(v x y. Rtc R x y 3 P x y)

Here, the ML variable rules has been bound to a list of
theorems which state the three rules that inductively

define the reflexive-transitive closure of a relation. The
theorem ind states the corresponding principle of rule
induction for an inductively-defined relation R t c R.

4.3 Stating premisses and conclusions

In addition to the use of the pattern argument, the
Rtc example also illustrates a restriction on the form
in which the premisses and conclusions of rules must
be supplied to new-inductive-def init ion. As was
mentioned above, premisses and conclusions must be
positive assertions of membership of the form

" R ti ... t,"
where R is a variable that stands for the function to
be defined. The restriction is that some of the terms
among the arguments t l , . . . , t , in such an assertion
must be variables-namely, the terms that occur at
positions which, according to the supplied pattern,
correspond to the parameters of a class of relations.
In particular, the terms that occur at these positions
must be the same variables given in the pattern itself.

The rules for reflexivetransitive closure shown in
box 3 conform to this restriction. Here, the pattern
indicates that in the typical assertion of membership
"Rtc R x y" (i.e. the first component of the pattern),
the variable R marks the position of a parameter to
the class of relations to be defined. Every premiss and
conclusion mentioned in the rules must therefore be a
term of the form "Rtc R tl t 2 I 1 , where the arguments
t l and t 2 may be arbitrary terms but the parameter R
must be the variable given in the pattern.

5 A tactic for rule induction

The inductive definitions package in HOL includes a
number of auxiliary functions that support reasoning
about inductively-defined relations, in addition to the
derived rule of definition itself. The most important
of these is the following general tactic for goal-directed
proofs by rule induction:

RULE-INDUCT-TEEN
: thm -> (induction thm)

(thm -> t a c t i c) ->
(t u -> tactic) ->
t a c t i c (resuZt)

(premiss cont.)
(s ide cond. cont.)

The first argument to this function is the rule induction
theorem returned by new-induct ive-dei i n i t ion for
a given inductively-defined relation. Like the general
structural induction tactic in HOL, the rule induction
tactic is parameterized by functions that determine
what is done with induction hypotheses. These may be
either premisses or side conditions, and the user may

354

wish to treat these two kinds of induction hypotheses
differently. Two separate theorem continuations are
therefore supplied as the second and third arguments
to the function RULE-INDUCT-THEN.

Given the rule induction theorem for an inductively-
defined n-ary relation R, the function described above
returns a specialized rule induction tactic that reduces
goalls of the form:

VJC~ . . . 2,. R ti . . . t, 3 P [s ~ , . . ., tn]"
to t8he subgoal(s) of proving that the property P is
presierved by the rules that inductively define R. The
rule induction theorem for Rtc, for example, is:

#ind; ; I L
I- V R P.

(V x y . R x y 3 P x y) A
(Vx . P x x) A
(v x y . (32. P x z A P z y) 3 P x y>

3
(Vx y. Rtc R x y 3 P x y) -

A rule induction tactic for Rtc can be constructed from
this theorem by making the simple ML definition: I #let Rtc-INDUCT-TAC:= ~ 7
The use of ASSUME-TAC in this definition means that
the induction hypotheses arising from the premisses
and side conditions of the rules are to be added to the
assumptions of the subgoals that are generated. The
resulting rule induction tactic for Rtc is described by:

RULE-INDUCT-THEN ind

Rtc-INDUCT-TAC = - tactic
ASSUME-TAC ASSUME-TAC;;

?- V z y . Rtc Rt y 3 P [t , y]

This tactic implements the induction scheme described
above in section 2.1. It reduces the goal of proving that
a property P[t ,y] holds for all pairs z and y related
by RItc R to showing that this property is preserved by
the rules that inductively define this relation.

5.1 An example

The following session shows how the rule induction
tactic for Rtc constructed in the previous section can
be used to prove a simple theorem about this relation.

The aim is to show that the reflexive-transitive closure
of a symmetric relation is also symmetric. The proof
begins by using the HOL subgoal package (see [l]) to
set up an appropriate goal to be proved:

#set -goal
(["Vx:*. v y . R x y 3 R y x"],

"Vx y . Rtc R x y 3 Rtc R y x"
[V x y . R x y 3 R y x" 1

* V x : * . v y . Rtc R x y 3 Rtc R y XI');;

I () : void

The assumption of the goal is that the relation R is
symmetric, and the conclusion states that the closure
Rtc R is also symmetric. The conclusion of the goal is
in precisely the right form for a proof by rule induction
using the induction tactic described above. Applying
this tactic results in:

#expand Rtc-INDUCT-TAC;; ILL

(subgoal 1)

OK..
3 subgoals
"Rtc R y x"

["Vx y . R x y 3 R y x" 1
["Rtc R z x" 1
"Rtc R y z" 1

"Vx. Rtc R x x" (subgoal 2)
" v x y . R x y 3 R y x" 1

"Rtc R y x" (subgoal 9)
C "Vx y . R x J 3 R y x" 1
["R x y" 1

I (1 : void

Subgoals 1 and 2 are trivial, since the relation Rtc R is
transitive and reflexive by definition. The tactic proofs
for these subgoals can simply use the rules shown
above in box 4. The proof of subgoal 3 is also easy.
The proposition "R y XI# follows immediately from the
two assumptions of the subgoal; and this proposition
together with the fact that

I V R x y . R x y 3 Rtc R x y

directly entail the required conclusion.
The proof sketched above is a trivial example of the

kind of reasoning sometimes referred to as induction
over the structure (or the depth) of derivations in a
deductive system stated by a set of rules. This form of
inductive argument, which is very common in certain
areas of theory (for example, operational semantics and
process algebras), is made directly accessible in HOL
by the tactic described in this section.

355

6 Tactics and inference rules

In addition to the rule induction tactic described
above, the inductive definitions package also provides
mechanized support for generating tactics from the
theorems that state the rules for an inductively-defined
relation. This takes the form of an ML function:

RULE-TAC : thm -> tactic

The theorem argument to this function is expected to
be a rule expressed in the form proved by the derived
principle of inductive definition described in section 4.
Given such a theorem, RULE-TAC constructs a tactic
that inverts the rule stated by it. The resulting tactic
reduces goals that match the conclusion of the rule to
subgoals consisting of the corresponding instances of
its premisses and side conditions.

Consider, for example, the theorem which states the
transitivity rule for Rtc:

t -VR x y. (32. Rtc R x z A Rtc R z y)
3

Rtc R x y

When applied to this theorem, the function RULE-TAC
returns the tactic described by:

~ ~~

I’ ?- 3%. Rtc Rx z A Rtc R z y

This tactic can then be used in goal-directed proofs
about membership in the inductively-defined relation
Rtc R. The other two rules that define Rtc R can also
be converted into tactics using the function RULE-TAC.
The result is a complete set of HOL tactics for goal-
directed proofs in the deductive system comprising the
three rules that define reflexive-transitive closure.

It is intended that the inductive definitions pack-
age will also include a function that maps rules stated
as theorems to forward inference rules in HOL (i.e. to
ML functions). For example, the transitivity theorem
shown above can be used to implement the following
derived inference rule:

Any rule expressed as a theorem of the form proved
by the derived principle of inductive definitions can
likewise be converted into a forward inference rule. A
function that automatically constructs such rules has
not yet been implemented, partly because it has not
been found necessary for the applications done so far

(see section 8). For completeness, however, the author
intends in future to add this function to the inductive
definitions package.

7 Case analysis

The final major component of the HOL package for
inductive definitions is an ML function that proves an
exhaustive cwe analysis theorem for any given relation
inductively defined by a set of rules. The name and
type of this function are:

derive-cases-thm : (thm list # thm) -> thm
The arguments to this function are the list of rules
satisfied by an inductively defined relation, together
with its rule induction theorem. (These are precisely
the defining theorems which are proved and returned
by new-induct ive-def init ion.) When supplied with
these theorems, derive-cases-thm proves that if an
assertion of membership in the relation holds, then it
holds only by virtue of the fact that one of the rules
can be used to derive it. This allows one to drive the
rules that define a relation ‘backwards’, inferring from
the conclusion of one of the rules that the premisses
and side conditions hold.

The following interaction with the HOL system
shows the theorem proved by derive-cases-thm for
the Rtc example introduced above. The ML variables
rules and ind are assumed to have the bindings shown
above in box 4.

#derive,cases,thm (rules,ind);; P
I- V R x y.

Rtc R x y 3
R x y V

(32. Rtc R x z A Rtc R z y)
(y = x) v

Roughly speaking, the resulting theorem states that if
Rtc R x y holds, then either:

0 it is derivable by the inclusion rule R1, in which
case x and y are related by R or

it is derivable by the reflexivity rule R2, in which
case x and y are equal; or

it is derivable by the transitivity rule R3, in which
case there must be an intermediate value z such
that Rtc R x z and Rtc R z y.

A similar theorem can be proved automatically for any
relation defined inductively using the package. Work
is currently underway to strengthen this theorem from
an implication to an equation, so that it can be used
for rewriting.

356

8 Applications References

In a joint project with Juanito Camilleri, a set of
example proofs has been developed to illustrate the
poteintial for applications of the inductive definitions
package. These examples include: the definition of
an operational semantics for a simple programming
language and a proof that its evaluation relation is
deterministic; the definition of a reduction relation for
combinatory logic and a proof that it has the Church-
Rossler property; a definition of provability in a Hilbert
style proof system for minimal intuitionistic logic; the
definition of a type system for combinatory logic and
a proof of the Curry-Howard isomorphism for typed
combinatory logic and minimal intuitionistic logic; and
definitions of the trace and transition semantics for a
simple process algebra, together with the proof of a
form,al statement of the relationship between them. A
report on this work is in preparation, and the HOL
source code for the examples will be made available to
interested users.

[l] DSTO, The University of Cambridge, and SRI
International, The HOL System: DESCRIPTION
(1991).

[2] T. F. Melham, ‘Automating Recursive Type Defi-
nitions in Higher Order Logic’, in: Current %rids
in Hardware Verification and Automated Theorem
Proving, edited by G . Birtwistle and P.A. Subrah-
manyam (Springer-Verlag, 1989), pp. 341-386.

[3] A. M. Pitts, ‘Semantics of Programming Lan-
guages’, unpublished lecture notes, University of
Cambridge Computer Laboratory (October 1989).

[4] G. Winskel, ‘Introduction to the Formal Semantics
of Programming Languages’, unpublished lecture
notes, University of Cambridge Computer Labora-
tory (October 1985).

357

