Skip to main content

New Frontiers in Imitation Learning

Yisong Yue ( Caltech )

The ongoing explosion of spatiotemporal tracking data has now made it possible to analyze and model fine-grained behaviors in a wide range of domains. For instance, tracking data is now being collected for every NBA basketball game with players, referees, and the ball tracked at 25 Hz, along with annotated game events such as passes, shots, and fouls. Other settings include laboratory animals, people in public spaces, professionals in settings such as operating rooms, actors speaking and performing, digital avatars in virtual environments, and even the behavior of other computational systems. 

In this talk, I will describe ongoing research in using imitation learning to develop predictive models of fine-grained behavior. Imitation learning is branch of machine learning that deals with learning to imitate dynamic demonstrated behavior. I will provide a high level overview of the basic problem setting, as well as specific projects in modeling laboratory animals, professional sports, speech animation, and expensive computational oracles.

Speaker bio

Yisong Yue is an assistant professor in the Computing and Mathematical Sciences Department at the California Institute of Technology. He was previously a research scientist at Disney Research. Before that, he was a postdoctoral researcher in the Machine Learning Department and the iLab at Carnegie Mellon University. He received a Ph.D. from Cornell University and a B.S. from the University of Illinois at Urbana-Champaign.

Yisong's research interests lie primarily in the theory and application of statistical machine learning. His research is largely centered around developing integrated learning-based approaches that can characterize complex structured and adaptive decision-making settings. Current focus areas include developing novel methods for spatiotemporal reasoning, structured prediction, interactive learning systems, and learning with humans in the loop. In the past, his research has been applied to information retrieval, recommender systems, text classification, learning from rich user interfaces, analyzing implicit human feedback, data-driven animation, behavior analysis, sports analytics, policy learning in robotics, and adaptive routing & allocation problems.

 

 

Share this: