Skip to main content

Modelling the effects of deep brain stimulation in Parkinson’s disease

Professor Rafal Bogacz ( Nuffield Department of Clinical Neurosciences, University of Oxford )

Many symptoms of Parkinson’s disease are connected with abnormally high levels of synchrony in neural activity. A successful and established treatment for a drug-resistant form of the disease involves electrical stimulation of brain areas affected by the disease, which has been shown to desynchronize neural activity. Recently, a closed-loop deep brain stimulation has been developed, in which the provided stimulation depends on the amplitude or phase of oscillations that are monitored in patient’s brain. The aim of this work was to develop a mathematical model that can capture experimentally observed effects of closed-loop deep brain stimulation, and suggest how the stimulation should be delivered on the basis of the ongoing activity to best desynchronize the neurons. We studied a simple model, in which individual neurons were described as coupled oscillators. Analysis of the model reveals how the therapeutic effect of the stimulation should depend on the current level of synchrony in the network. Predictions of the model are compared with experimental data.

 

 

Share this: