Skip to main content

Quantum circuits for quantum operations

Roger Colbeck ( University of York )

Every quantum gate can be decomposed into a sequence of single-qubit gates and controlled-NOTs. In many implementations, single-qubit gates are relatively 'cheap' to perform compared to C-NOTs (for instance, being less susceptible to noise), and hence it is desirable to minimize the number of C-NOT gates required to implement a circuit.

I will consider the task of constructing a generic isometry from m qubits to n qubits, while trying to minimize the number of C-NOT gates required.  I will show a lower bound and then give an explicit gate decomposition that gets within a factor of about two of this bound. Through Stinespring's theorem this points to a C-NOT-efficient way to perform an arbitrary quantum operation.

 

 

Share this: