Gradients in Games
David Balduzzi ( DeepMind )
- 14:00 25th May 2018 ( week 5, Trinity Term 2018 )Lecture Theatre B
Algorithms that optimize multiple objective functions have proliferated recently — including generative adversarial networks (GANs), synthetic gradients, intrinsic-curiosity, and others. More generally, there’s a shift from end-to-end learning on a single loss, towards modular architectures composed of sub-goals and sub-losses. However, very little is understood about these settings, where there’s no longer a loss landscape, and gradient descent doesn’t necessarily descend. In this talk, I will discuss the general setting, recent work on the geometry of interacting losses, and implications for learning.