Communication-Avoiding Algorithms for Linear Algebra, Machine Learning and Beyond
James Demmel ( Berkeley )
- 16:00 25th February 2022 ( week 6, Hilary Term 2022 )Zoom
Algorithms have two costs: arithmetic and communication, i.e. moving data between levels of a memory hierarchy or processors over a network. Communication costs (measured in time or energy per operation) greatly exceed arithmetic costs, so our goal is to design algorithms that minimize communication. We survey some known algorithms that communicate asymptotically less than their classical counterparts, for a variety of linear algebra and machine learning problems, often attaining lower bounds. We also discuss recent work on automating the design and implementation of these algorithms, starting from a simple specification as nested loops.