Skip to main content

Recursive Deep Learning for Modeling Semantic Compositionality

Richard Socher ( Stanford University )

Compositional and recursive structure is commonly found in different modalities, including natural language sentences and scene images. I will introduce several recursive deep learning models that, unlike standard deep learning methods can learn compositional meaning vector representations for phrases, sentences and images. These recursive neural network based models obtain state-of-the-art performance on a variety of syntactic and semantic language tasks such as parsing, paraphrase detection, relation classification and sentiment analysis.

Besides the good performance, the models capture interesting phenomena in language such as compositionality. For instance the models learn different types of high level negation and how it can change the meaning of longer phrases with many positive words. They can learn that the sentiment following a "but" usually dominates that of phrases preceding the "but." Furthermore, unlike many other machine learning approaches that rely on human designed feature sets, features are learned as part of the model. 

Speaker bio

Richard Socher is a PhD student at Stanford working with Chris Manning and Andrew Ng. His research interests are machine learning for NLP and vision. He is interested in developing new models that learn useful features, capture compositional and hierarchical structure in multiple modalities and perform well across different tasks. He was awarded the 2011 Yahoo! Key Scientific Challenges Award, the Distinguished Application Paper Award at ICML 2011, a Microsoft Research PhD Fellowship in 2012 and a "Magic Grant" from the Brown Institute for Media Innovation.

 

 

Share this: