Skip to main content

Complexity and Approximation of the Continuous Network Design Problem

Martin Gairing ( University of Liverpool )

We revisit a classical problem in transportation, known as the continuous (bilevel) network design problem, CNDP for short. We are given a graph for which the latency of each edge depends on the ratio of the edge flow and the capacity installed. The goal is to find an optimal investment in edge capacities so as to minimize the sum of the routing cost of the induced Wardrop equilibrium and the investment cost. While this problme i considered as challenging in the literature, its complexity status is still unknown. We close this gap showing that CNDP is strongly NP-complete and APX-hard, even for instances with affine latencies.

As for the approximation of the problem, we first provide a detailed analysis for a heuristic studied by Marcotte for the special case of monomial latency functions (Mathematical Programming, Vol. 34, 1986). Specifically, we derive a closed form expression of its approximation guarantee for arbitrary sets of allowed latency functions. Second, we propose a different approximation algorithm and show that it has the same approximation guarantee. As our final - and arguably most interesting - result regarding approximation, we show that using the better of the two approximation algorithms results in a strictly improved approximation guarantee for which we give a closed form expression. For affine latencies, e.g. this algorithm achieves a 49/41-approximation which improves on the 5/4 that has been shown before by Marcotte.

Joint work with Tobias Harks and Max Klimm.

Speaker bio

Martin Gairing received a Diploma in Communication Engineering in 2000 from the University of Applied Sciences Esslingen. After working as a developing engineer for 5 months at a startup company, he went to Clemson University, where he received his M.Sc. in Computer Science in 2001. He then went to Paderborn, Germany where he was a member of Burkhard Monien's research group. There he received his Ph.D. (more exactly his Dr. rer. nat) in 2006 with summa cum laude. From September 2007 to August 2009, he was a postoctoral researcher in the group of Richard Karp at the International Computer Science Institute (ICSI) in Berkeley. In September 2009, he joined the Economics and Computation Group at the University of Liverpool. His research focuses on Algorithmic Game Theory.

 

 

Share this: