Skip to main content

Safety verification for space dynamics via neural-based control barrier functions

Supervisor

Suitable for

Mathematics and Computer Science, Part C
Computer Science and Philosophy, Part C
Computer Science, Part C

Abstract

Barrier functions are Lyapunov-like functions that serve as certificates for the safety verification of dynamical and control models. The OXCAV group has recently worked on the automated and sound synthesis of barrier functions structured as neural nets, with an approach that uses SAT modulo theory. In this project, we shall pursue two objectives: 1. Apply recent results [1] on sound and automated synthesis of barrier certificates on models that are pertinent to the Space domain, such as models for attitude dynamics. Airbus will support this part. 2. Develop new results that extend theory and algorithms to models encompassing uncertainty, such as probabilistic models or models that are adaptive to sensed data. Airbus will support this effort providing environments and models for experiments and testing. [1] A. Abate, D. Ahmed and A. Peruffo, ``Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,'' TACAS, To appear, 2021.